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FIG. 1. Energy of a vortex line versus variational
core parameter in a cylinder with radius 6 A. Curves
A, B, and C are results of Ref. 1. Dashed line is the
representation of Ref. 2 by Ref. 1. Curve D is the
actual result of Ref. 2.
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FIG. 2. Density versus distance from the axis of
the vortex line. Curves A and B are results of Ref. 1.
Dashed line is the representation of Ref. 2 by Ref. 1.
Curve C is Fetter's density pattern (Ref. 3). Curve
D is the result of Ref. 2.

of our previous results) It .is of the order of
2-3%, which is insignificant. The difference in the
position of the minimum is merely due to the dif-
ference in the nature of the parameter a in Eq.
(3. 6) of Ref. 2. This is manifest in Fig. 2. In this
figure we have superposed curves C and D on Fig.
2 of Ref. i. Curves A and B represent the density
profile of the vortex line obtained by Chester et al.
Curve C is Fetter's ansatz for the profile, ' Eq.
(3. 5) of Ref. 2. Curve D represents our results,
Eq. (3. 7) of Ref. 2. Figure 2 shows that the only
difference between the Hartree calculation and that
of Chester et a/. is in the nonmonotonic behavior
of the density beyond 1 A. There is no significant

difference in the size of the core. Notice that the
dashed line represents our results in Ref. 1. The
nonmonotonic behavior of the density is a result
of the inclusion of the pair correlations. This was
not attempted in the calculation of Ref. 2. One can
account for it in the Hartree approximation by in-
cluding higher moments of V(x —y) than the zeroth
one. This will be reported elsewhere.

It is important to emphasize that owing to the
extreme simplicity of the Hartree theory, it is
very desirable to find and extend the limits of its
applicability. In contrast to the obvious objection
quoted above, one often finds that hydrodynamic
descriptions apply far beyond the regions of vari-
ables in which they can be a priori justified.
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The report by Johnston and King' that He~ atoms
evaporated from the liquid may have a mean tem-
perature exceeding that of the source raised the
hope that such experiments might probe the quasi-
particle spectrum of He II. It is now known that
their findings were due to He-He scattering in the va-
por, and that their experimental arrangement is proba-
bly unsuitable for observing the effect sought, be-
cause of a concentration of normal fluid near the

helium surface. However, it seems not without in-
terest to calculate what might be expected under
ideal circumstances.

Following Anderson's suggestion that one should
observe single-particle elastic emission from the
roton excitations on the basis of a phase-space
argument, Griffin' derived an expression for the
evaporation rate in analogy with standard solid-state
tunneling theory. The critical quantity in this ex-
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FIG. 1. (a) Quasiparticle spectrum &,. {b) Bogolubov
coefficient l-g~.

pression is the spectral density function for the
liquid,

&(q, v)= f" dt e'"'([A&(t), Att(0)]),

where A& is the anihilation operator in the super-
fluid. In this paper we take advantage of a recent
approximate theory of a strongly interacting Bose
gas' to calculate A(q, ~} explicitly and see what
features are most relevant to an ideal evaporation
experiment. Pe find that the crucial quantity is the
momentum-dependent coefficient which enters into
the Bogolyubov transformation to a quasiparticle
representation, and that it is the roton branch
which contributes most strongly, as suggested by
Anderson.

By assuming that only those He atoms which are
emitted essentially perpendicular to the surface are
detected and by treating the tunneling coefficients
as constant, we find that Griffin's equation (4) can
be simplified to

&(ep) ~ f, e "~ 'r 4(q, e, + e~) dq, (2)

where ~0 is the latent heat of evaporation at T = 0.
Following Novaco, and making a Bogolyubov trans-
formation to quasiparticle operators, we find

(Ap ~p)~ ~& 'do=( ~ (4)

and B~= 12. 14p ' sinp. (iVe adopt reduced units
2ma /I = 1, where a is the boson hard-sphere ra-
dius. ) This gives the results shown in Fig. 1.
Only the first term on the right-hand side of (3)
contributes to the integration in (2}, which can
simply be carried out by inspection of Fig. 1. This
leads to the behavior shown in Fig. 2(a}, where we
have plotted relative intensity against the kinetic
energy of the evaporated atom. Since energy ~
(time of flight), this leads to an evaporation pro-
file like that in Fig. 2(b). It is interesting to note
that this differs from that observed by Johnston and
King in the absence of the large exponential tail.

A calculation similar to ours has already been
carried out by Hyman, Scully, and W'idom. ' Al-
though also based on a tunneling approach, their
calculation differs from ours in that they work in
terms of excitations having finite lifetimes rather
than in terms of stable quasiparticles. In spite of
the predictions of these theories are remark-
ably alike, as evidenced by the similarity of the ro-
ton peak in Fig. 2 of their paper to our Fig. 2(a).
(We have not included the phonon contribution to the
evaporation rate, as it is quite small in the energy
region of interest, but our theory also predicts be-
havior similar to that shown by Hyman et al. }
Hyman et al. estimate the Lorentzian linewidth y of
the roton excitation from a calculation of roton-
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4(q, (u}= 2v(1 -g,') ' [ 5((o -(u, )+g, s((u+(o, )].

Next we use Novaco's theory in a phenomenological
sense. That is, we adopt his expressions relating
g& and w&, the quasiparticle spectrum, but we take
(d& as given by experiment. Thus,
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FIG. 2. (a) Equation (2). N is in arbitrary units, &&

in dimensionless units. (b) Schematic behavior of pre-
dicted evaporation profile for a time-of-flight experiment.
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phonon collisions, following Landau and Khalatni-
kov. They find p&'kB = 0. 001 'K. Our curve differs
from theirs essentially in width, and for compari-
son, our result corresponds roughly to
r/ks =-0. 005 'K. This is quite reasonable, for in

adapting a quasiparticle approach, we effectively
include additional scattering mechansims leading

to a decrease in the lifetime of the excitations.
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A simple classical model is used to estimate the deviations of the Hes quasiparticle energy
in He at T = 0 from the parabolic form E(p) = -E() +p /2m. The result is in reasonable agree-
ment with a recent experimental determination of this effect.

A recent analysis' of the second-sound velocity
in dilute solutions of He' in He' demonstrates that
the He3 quasiparticle energy deviates from purely
parabolic behavior as a function of the momentum

P. As pointed out in Ref. 1, this effect can be
described by continuing the expansion of the energy
in powers of P beyond the first-order term which
appears in the theory of Landau and Pomeranchuk:

p'
e (p) =- E3+ [1 —X(p'/p, '))

where m is the inertial mass of the quasiparticle
in the limit p-0 and E, is the binding energy of the
He' atom in He at T=O; y is a dimensionless con-
stant and P, is the characteristic momentum
P, = m4s, s being the first-sound velocity in He and

m4, the He' atomic mass. Brubaker ef; al. find
that their data are consistent with a value of y= 0. 14
a 0. 05.

In this paper a calculation of g based on a simple
classical hydrodynamic model is given. The re-
sult is that g=0. 18, in reasonable agreement with
the measured value. Specifically, consider the
energy associated with the motion of a compressible
sphere of radius ao (the He~ atom) through a com-
pressible ideal fluid (the superfluid He') at velocity
$0Qe, . The radius aQ is chosen so that the vol um e
of the sphere is that volume of liquid displaced by
a He atom in He',

Vxv=0

—+ V(pv)=0Sp
Bg

(2)

(3)

&vo', =(1+&)v,'/~,
where v4 is the molar volume of He and NQ is
Avogadro's number; the experimental value' of (2

is 0. 28. Clearly, this model can be equally well
applied to the motion of other impurities in He' by

changing a accordingly. To determine X we must
keep terms in this energy which are of order wQ,

i. e. , it is necessary to keep the first-order non-
linear corrections in the hydrodynamic equations.
The compressibility of He' is K= 1/pos', where po
is the density of pure He', while the compressibility
of the He impurity K~ may be found from measure-
ments' of the molar volume of dilute solutions under
pressure. Defining a velocity by 1/s~=—poff'~, this
procedure leads to s /s~ =1.l.

It is clear that this model is too simple to give
a satisfactory quantitative description of the effect
found in Ref. 1; nevertheless, it is believed that
the calculation is qualitatively valid and of interest
as such. The reader should be reminded that the
same model predicts a value of m = 1.83m„ in

comparison with the experimental result m= 2. 2Pm3
found in Ref. 1.

The hydrodynamic equations are the usual ones'
for He; at T= 0, He' is all superfluid and the equa-
tions simplify to those for an ideal classical fluids:


