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A kinetic theory has been proposed by several authors with the goal of eliminating the
divergences which appear in the density expansion in nonequilibrium systems. Here, it
is shown that for a two-dimensional simple gas the theory presents a new divergence, re-
sulting from the fact that correlations propagate over long distances as a result of hydro-
dynamic transport. This divergence is discussed explicitly for a gas model: the Mvcwell
model. It will be indicated why the kinetic theory for a perfect Lorentz gas does not exhibit
this new divergence.

I. INTRODUCfION

Near the perfect-gas state, equilibrium quantities
of a classical Quid can be calculated by means of
the virial expansion. In the same manner, nonequi-
librium quantities such as viscosity or thermal con-
ductivity can be expanded in powers of density.
One can also develop the collision operator of the
kinetic theory in powers of the density n. In the
lowest order in n, one finds the Boltzmann kinetic
equation, then the Choh-Uhlenbeck equation, ~ etc.
This second approximation in n implies an explicit
solution of the three-body problem, so that any cal-
culation to this order would be difficult. However,
it has been shown that the shear viscosity of a gas
of hard disks, at the Choh-Uhlenbeck order, leads
to a diverging integral, and that presumably the
same difficulty arises with the next higher order

of density for a gas of hard spheres.
A theory has been proposed~ with the goal of

eliminating these divergencies: The transport co-
efficients are developed in powers of the density.
Summing in each order the most divergent contribu-
tions, one is led to a renormalized Choh-Uhlenbeck
collision operator, called the "ring-collision opera-
tor. " This operator brings into effect the collective
dynamics for calculation of the long-range correla-
tion. In Sec. II we derive this ring-collision opera-
tor in a manner slightly different from those given
previously. 3

The Green's function for the linearized Boltzmann
equation appears in the ring-collision operator. In
the general case, one cannot find this Green's func-
tion explicitly. Nevertheless one knows its proper-
ties for those disturbances which propagate at long
range, i.e. , in the hydrodynamical limit. The
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possibility of the long-range propagation of correla-
tion thus appears. In the case of the two-dimen-
sional gas, a new type of divergence originates from
this propagation. We will show this new class of
divergence in a particular case.

Until now this renormalization has only been
studied for the perfect Lorentz gas. We will in-
dicate why for this particular case the renormalized
theory does not possess the new divergence.

II. RING KINETIC EQUATION FOR A MONOATOMIC GAS

Following the work of Kawasaki and Gppenheim, '
several methods have been proposed to renormalize
the divergent density expansion of nonequilibrium
quantities.

In general, these methods start from an expres-
sion for a transport coefficient given by a Kubo in-
tegral. In the model to be treated in Sec. IV, the
transport coefficient is not given by an already
known Kubo formula. We therefore give a direct
derivation of the renormalized ring-collision term
without starting from a Kubo-type formula.

Let f,(1, 2, . . . , S) be the s-body distribution func-
tion obtained from the distribution function
D(1, 2, . . . , N) of N identical particles by

V

' NE

N (N )!

di', dl'„D(1, 2, . . . , N),

(2. I)
where V is the volume of the box containing the par-
ticles, dI', =dr, dp„and D(1, 2, . . . , N) is normalized
as fdI', ~ ~ ~ dl'„D(1, 2, . . . , N)=1.

The particles of mass m are supposed to interact
through a two-body potential V(r„). The Bogoliubov-
Born-Green-Kirkwood- Yvon (BBGKY) hierarchy
provides us with an infinite system of coupled equa-
tions defining the evolution of the reduced distribu-
tion functions f,. The general term of this hierarchy
read se

shall use the s-body correlation functions P,. The
first functions f, are defined as

f,(1)= e,(I),

fa(1 2) 41(I) 4'1(2)+ 4'a(I

f (I, 2, 3) = P (1)Q (2) 4 (3) + P (I, 2) 4 1(3)

4,(2, 3)4,(I)

+ 0 (I, 3)4 (2) + 4i (I, 2, 3) .
The evolution in space and time of the cor~elation

functions p„Q2, and ft), is described by the set of
equations~

ski, (I)
+Hip, (1)= -nj dI'a e, ,a [pa(1, 2)+ $1(1)$1(2)],

(2. 3a)

'4a(» 2)
St +Had'a(» 2)+ ei,

alai(1)ei(2)

ndi-'a(I+OP, a) &, ,a[pa(I, 2, 3)

+ gaia(2, 3)g, (1) + gaia(I, 2)4i,(3)], (2. 3b)

Shia(l, 2, 3)
+Ha%a(» 2 3)= —(I+&iia+&a, a) ei. a

x [y,(I, 2)y, (3)+d, (2, 3)y,(I)]. (2 3 )

To write (2. 3a)-(2. 3c) we have used the permuta-
tion operator &,

&
which acts on a function of (r;, p, )

and (r1, p, ) as

+ 1.1 f(t,i )~f(f, 1)

In (2. 3c) the terms involving integration are
dropped since, as we shall see, they lead to correc-
tions of higher order in the density. The expansion
of the right-hand side of (2. 3a) in powers of the
density is obtained as follows: To get the first term
we set the right-hand side of (2. 3b) equal to zero
and solve to find

' +Hj', +n Q )l dl'a, i 81 a.if„1=0, (2. 2) 4'a(1, 2) = —61 a(t) 81 a4'1(1)p 1(2), (2. 4a)

S
s I (pe)
8rv &pe apj

H, =H~+ P 8, 1,

where H, is the Liouville operator of the s noninter-
acting particles defined as

In place of the s-body dista'Sution functions f„we

where G, a(t) is the Green's function for the two-
body Liouville equation. This result is then put into
the right-hand side of (2. 3a) and, taking the limit
of t large, we are led to the Boltzmann equation.
Continuing, in the next order we put (2. 4a) into the
right-hand side of (2. 3c) and solve for Qa(1, 2, 3).
This will clearly involve the three-particle Green's
function, and hence a solution of the three-body
problem. The second term in the density expansion
of Pa(1, 2) is now obtained by putting this first ap-
proximation for Pa(I, 2, 3) together with (2. 4a) into
the right-hand side of (2. 3b), dropping the third



1176 Y ~ PDMEAU

term on the left-hand side, and solving by means of
the two-body Green's function. Putting the result
into the right-hand side of (2. 3a) and taking the limit
of long times, we are led to the Choh-Uhlenbeck
correction to the Boltzmann equation. However,
there is a grave difficulty with the long-time limit.
In the three-dimensional case, the Choh-Uhlenbeck
correction exists but in two dimensions it diverges
logarithmically. In three dimensions the next cor-
rection diverges.

These divergences occur because there is an in-
finite volume in phase space over which the partic-
ular term in the density expansion of the pair cor-
relation function is nonzero. This arises from the
unphysical feature that in the formalism the par-
ticles are allowed to traverse long distances without
interaction. Actually, it appears that the dynamics
of the long-range part of Q~ are collective. That
is, as the particles traverse long distances they are
continually interacting with the other gas particles
and this interaction produces a modification of the
long-range part of P2. It has been proposed that
this effect can be treated by selecting in each order
of the density the terms in (t)~ leading to the stron-
gest divergence and adding them all up. The result
of this resummation is the so-called ring-collision
term, which we want to study here.

It turns out that the ring-collision term can be
obtained fairly simply from Eqs. (2. Sa)-(2. 3c) if
we treat them as a set of coupled equations to be
solved without expansion in powers in n. This can
be done since we have dropped the term in (2. 3c)
which involves P4. What we-must do is to solve
(2. Sc) for Ps and then put the result in (2. Sb), which

gives a linear integrodifferential equation for P~.
This equation is too complicated to solve exactly,
but for the region of phase space of interest, where
the two particles are far apart, we can produce a
solution. We now show how this is done to give the
ring-collision term.

It is expected that, by putting into the right-hand
side of (2. 3b) the correct value of P„ the cor-
responding term will create a cutoff effect on the
long-range part of Ps(1, 2). This cutoff occurs in
a region of phase space where Ir, -r~I »xp, xp

being the range of the two-body potential V(r, ,&).

Moreover in (2. 3b) the function ps(I, 2, 3) takes
place after an operator e&, 3 or an operator 82 3.
The cutoff effect therefore depends on the value of

Ps(1, 2, 3) in the region of phase space of particles
1, 2, 3 defined by the inequalities I r, —r, I- rp and

Irf lsl»rs (or Irs —rsl(ro and Ir, -r l»srs). Let
p3'" be the value of Q3 in this region. Since in this
region we have Iri —r 2I» rp and Ir2 —r, I»rp, the
potentials V(r, ,) and V(rs, ) are nearly equal to zero
and in order to calculate Q3"' ' one is allowed to re-
place in (2. 3c) Hs s and 8, s by zero. Hence Qs"' '

is given by the solution of

+ y s(2, 3)4,(I)j = 0. (2. 4b)

Similarly, let p3 ' ' be th. value of (t) 3 in the region
of phase space of particle: 1, 2, 3 where we have

Ir, —rzI»xp and Irz —r3I yp, then Q3
' ' is the solu-

tion of

H' (2» e

+ P (I, 3)$,(2) ]= 0. (2. 4c}

&& 8, [P (1, 2; t)P (3; t) +P (2, 3; t)P, (1;t)]

+ 11m(E + H, + &, )
'

&Q
"'"(1, 2, 3; t = 0) .

6 ~p

(2. 6)

The last term on the right-hand side of (2. 6) de-
fines the contribution of the initial value of p3"' ' to
the value of Qs"'s' at time t If Ps ' '(1., 2, 3; t = 0)
is a correlation function with a finite range, it can
be shown that this contribution of the initial value
of Ps"'" to Ps"'"(I, 2, 3; t} vanishes, and since there
is no reason for taking as an initial value of p3' '

a correlation function with an infinite range, the
effect of this initial value will be neglected, and
(2. 6) reads

Qs
' '(1, 2, 3; t) = —lim(&+Hs+ ei, s)

6e pq

s sl.ks(ii 2i t)4|(3't)

+ Ps(2, 3; t)g, (I; t)]. (2. 7)

In Laplace transform, (2. 4b} reads

(e+ s+ s.s}4s' '(e)+6s.sf, d« "Ns(»2't)As(3't)

+ Ps(2, 3; t)ps(I; t)] = 4' ' '(t = 0) . (2. 5)

It is presumed that the long-range part of Qs
evolves in a time of the order of a mean free-flight
time, which in turn is much longer than the duration
of a collision. Since Q3"' ' takes its values in a re-
gion of phase space where particles 1 and 3 interact,
f3 ' evolves in a time of the order of the duration
of a collision. Consequently, in order to calculate
p3"' ' at a given time, one may assume that p& and
fgj), do not depend on time and that, after a time of
the order of the duration of a collision, p'3' ' takes
a constant value which is equal to lim&gs""(e), as
c- 0, . Accounting for this assumption, Eq. (2. 5)
is solved, giving

(1, 2 3; t) = —lim(f +Hs+ 8 )
Op



TRANSPORT THEORY FOR A TWO-DIMENSIONAL DENSE GAS

Similarly, we have

Q
' ' '(1 2 3' t) = +-Q ' ' '(1 2 3' f)

Now, inserting into (2. 3b) the values P~"'" of P,
behind the operator 8, „and $3 ' ' behind Hz, „we
obtain

dI' 1+(P,, 2 g, , 1, 2;g y, 3;g

+ Qg(2, 3; t)$~(1; t}]. (2. 8)

T, ,s lim&, ,[1—(c+H30+ 8, ,) '8, ,]

-=lim8, 3(e+H03+ 8, ,) '(e+H3)

In order to simplify the expression of (2. 8), we
have used the so-called "binary-collision operator"
T, ,3 defined as

= Iim(e+H3}[(c+H3) —(e+HB+ 8& 3) ](e+HB) .
g»0

(2 8)

Owing to the presence of HB in the definitions of

7, „ it would seem that 7, 3 were a three-body op-
erator. Nevertheless, it can be shown ' that T, ,
acts only on the dynamical variables of particles 1

and 3 and is a true two-body operator.
Now we have to deduce from (2. 8) and (2. 3a) a

kinetic equation for P,. This must be done in the
following way: At first one assumes that P, is con-
stant in time and calculates from (2. 8) the corre
sponding value of Pq for large times. Let P~($,(t))
be this assymptotic value of Pz, by inserting this
value of the correlation function into (2. 3a), a
"Markoffian" kinetic equation is obtained. If we are
able to deal in this way, without coming across any

divergence, we can apply the Chapman-Enskog
method' and compute the transport coefficients cor-
responding to this kinetic equation. The existence
of transport coefficients therefore depends on the
existence of the functional P&(]. Now we shall try
to obtain this functional and the corresponding ex-
pression of the kinetic equation.

By means of Laplace transform Pz(Q, (t)] is for-
mally deduced from (2. 8) and is given by

Qz(P, (t)) = —lim[&'+Hz+nA(1) +nA(2)] 'H, ,zg, (1; t)g, (2; t)

+ lim &' [&' + Hq+ nA(1) +n A(2) ] 'Qz(1, 2; t = 0) .
8' Op

In (2. 10) there appears the A(j) operator which
depends on P&(f) and acts on a function g(j) as

A(i)4(i) = f &I', T, ,,[4(j)%,(3; &)+0(3)4,(j; f))

Since T&, is a true two-body operator, A( j) is a
true one-body operator.

Furthermore since $2($~(t)) must be a functional
of Q, (f) only, its expression (2. 10) is inadequate,
since it depends on the value of Qz at t = 0. It can
be verified by a density expansion of this contribu-
tion of the initial value P,(1, 2;t= 0) that, if
Pz(1, 2; t= 0) has a finite range, this contribution
vanishes and that, within this last restriction, we
have

$2($,(t)}=—lim[ ' e+H+n2(1A)+n (2A)]
'

(2. 11)

Inserting this value of P2 into the right-hand side

of (2. 3a), we obtain, at least formally, the expected
Markoffian kinetic equation. What is the meaning
of this kinetic equation with respect of the density
expansion of the kinetic theory T

In fact we are looking for a divergence-free cor-
rection to the Boltzmann collision operator. In

general, "to obtain this correction one expands the
exact kinetic operator (or the exact value of P,) in

powers of the density, and at each order of this ex-
pansion one finds secular terms with a maximum
divergence, which gets more and more catastrophic
when the order in n increases. Since the origin of
these secularities has been explained in the litera-
ture, we do not duplicate these explanations. These
divergencies correspond to the so-called" ring
dynamical events occurring between a finite number
of particles, hence the collision operator which re-
normalizes these divergencies will be called the
"ring-collision operator. "

Here we shall not reproduce the whole procedure
of renormalization, but shall use an expansion of

$3(P,(t)j in which the leading term gives the value
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A(e'; 1, 2) -=e'+ Hi,
B(e'; 1, 2) «'+H~o+nA(1)+nA(2),

C(e'; 1, 2) = —(e'+&) .
From the algebraic identity

(A+B+C) =A. -A (B+C)+A i(B+C)

(2. 12a)

(2. 12b)

(2. 12c)

of ps at the Boltzmann order and the following term
gives rise to the renormalized correction corre-
sponding to the ring-collision term. We write the

operator [e'+Hi+nA(l)+nA(2)] as the sum of the

three operators A(e'; 1, 2), B(e'; 1, 2), and C(e'; 1, 2)

defined as

this case through the use of Fourier transforms of
functions and operators. In this simplified form
any operator acting on the dynamical variables of
a particle is turned into an operator acting on the
momentum of this particle and into a function of a
single wave vector k.

Usually a two-body linear operator T, 2 is defined

by a function T(l, 211, 2), and acts on a function

P(l, 2) as

P(1, 2) = f dI'Id I'- T(1, 2~ 1, 2)$(1, 2).

The matrix elements of T, 2 act on the momenta

p, and pz and are defined as

x B '(A+C)(A+B+C) i, (2. 13) &Ti„Tt',
~
T,,2~ R, Ts') = V ' f dr, f dr~ f dr=i f dry e '~' ~i

and from

[e» +H, +nA(l) +nA(2)] ' ~ [A(c»; 1, 2)

+B(e';1, 2)+C(e';1, 2)]-',

the operator [
' eH+z+ An(l) +An(2)]

' is expanded as

[e'+HI+nA(l)+nA(2)l '=A '(e'; 1, 2) —A '(e'; 1, 2)

x C(e'; 1, 2} [C '(e»; 1, 2) + B '(e '; 1, 2)]

x C(e'; 1, 2) A '(a'; 1, 2) + ~ ~ ~ . (2 14)

xe if '~I e'I' I e'f '~I T(1, 2~i, 2). (2. 16)

From the translational invariance of the law of
motion, it may be shown that the only nonzero ma-
trix elements of T, 2 are of the form &Tc+q,

k'-q~ T, ,i~k, k'). From this last property, and
from the elementary properties of the Fourier
transformation, one has

f dry Ti, g e &»1»(pi, pa)

This development is inserted into (2. 11), and
after insertion into (2. 3a) of the corresponding value
of Qz, gives to a series of collision terms. The
first few terms of this series are

ay,
1+H,y, = -n dr, T, ,y, (i)y, (2)

= eif'~i (k, 0
~
T, 2~ 0, k) C (p„pi},

f dx'2 Ti i e'"' "ie(p„p, )

=e' '"i(k Ol Ti.&l» 0)4»(pi pi)

(2. 17)

(2. 18)

+no dIi T, ,a lim[B '(e'; 1, 2)

+C '(a'; 1, 2)] T, 2»()»1)»(f»2i) + ~ ~ ~ ~

(2. 15)

Using (2. 17) and (2. 18) one can find a simplified
form of the ring-collision term for an homogeneous
system. For this case, T, i/, (p, ) P,(pi) is given by

Ti,aei(pi}ei(p2}=f H/(2 )"]e"' ' ""

The first term on the right-hand side of (2. 15) is
the well-known Boltzmann-Enskog collision term.
The second one can be expanded formally in powers
of the density n, giving rise at any order to the
most divergent terms corresponding to the "ring
dynamical events. " One may assert that this sec-
ond term is the actual renormalized ring-collision
term.

In Sec. III, this collision term will be studied in
detail for the case of an homogeneous system,
namely when $,(1) depends on p, only. A simplified
form of the ring-collision term may be obtained in

x&k, —»I Ti, el 0 0)»t»i(pi)»f'i(pa)»

(2. 19)
where v is the number of dimensions of the system.

The equality (2. 19) results from the definition
(2. 16) of the matrix elements of T, 2 and from the
Plancherel-Parseval theorem. From (2. 17), (2. 18),
and from the definition (2. 12b) of the operator A(j),
one deduces that the operator A is diagonal in the
Fourier representation, and that the operator
B(e'; 1, 2) itself is diagonal in this representation,
giving
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(2 1 2) T1,2 'tf'1(P1)41(P2) =- [&'+&2+«(I) +«(2)] '
T11241(P1)41(pl)

„e'"''"1"2'8 (&', Tc; I, 2)(k, —%l 12lG, 0) $1(pz)$1(p2),2r" (2. 2o)

where B(2', k; 1, 2) acts on functions of p, and pz,
and is defined as

8(2', k; ll 2) =2'+ [zoic (p, —p2)]/m+nA(l, k; y, )

+nA(2, -k; Qz), (2. 21)

The ring-collision term is generally a function
of (r„p,) and a functional of the one-body distribu-
tion function P, . From (2. 15) the value of this
collision term is

s„(s;y,1= far, r, , u -[a-'(a'; s, rI
e '~0+

+C-'(t'; 1, 2)] T, , 2$, ( 1)$,(2).

For the special case of an homogeneous system,
the ring-collision term depends on p& only, and
from (2. I'I), (2. 18), and (2. 20) it may be written

Ssg„g,)—=n J dp, f [dt's/(21z)" ](O, OIT1.21& -k)

x [8 '(e', %; 1, 2) + C '(e'; 1, 2) ]

x(k, —k 1».2 lo, 0) @,(p ) @ (p ), (2. 23)

where

~ W

C( ) 2) ) &k ~ py $k ~ p2I m
(2, 24}

Section III is devoted to the study of Snap„p, )
through its expression (2. 23).

where A(1, k; pz) is a linear functional of $1, and
an operator a.cting on a function g(p, ) as

A( j, k; $1)g(p&) = J dp, [(k, Gl T1, & lk, 0) g(p&)Q, (p, )

+(k ol Ts 110, k) g(p&)$1(p&)]. (2. 22)

III. DIVERGENCIES OF THE RING-COLLISION TERM
IN TWO DIMENSIONS

It has been conjectured' that the ring-collision
operator removes the most dangerous secularities
which appear in the density expansion of the colli-
sion operator. More precisely, it has been em-
phasized that the renormalization introduces in the

theory a new length, the mean free path, and that
this length acts as a cutoff on the diverging integrals
of the density expansion. Using this sort of argu-
ment, one predicts that, for v = 2 (v is the number
of dimensions of the system), the ring-collision
term behaves like n inn in the small-density limit.
For a special case of the perfect Lorentz gas, this
conjecture has been verified. '

Nevertheless, by investigating the case of the
two-dimensional simple gas, we will show that a
new kind of divergence appears in this renormalized
collision theory. This divergence will be exhibited
by inspection of the convergence of the integral
(2. 22) which defines Ssfd1„$,}. It will be proved
that in some cases this integral diverges in the limit.
k —0, when e is equal to zero. This ring- collision
term is a very complicated quantity, especially be-
cause it depends nonlinearly on Q, . Thus we shall
consider, instead of the general term SR{p„g,], its
linearized value calculated when P, differs from an
etluilibrium value &g of a small amount. In partic-
ular it must be pointed out that, following the
Chapman- Enskog theory, " a transport coefficient
is determinated from this linearized collision op-
erator.

From the expression (2. 23) of SsQT„@,] and from
the defini'ion (2. 21) of the operator 8(&', R; 1, 2), it
may be seen that Q, figures in Ssg„g,j in two dif-
ferent places: at first in the product p, (p, )p, (pz)
on the extreme right of (2. 23), and then in the op-
erator 8(e', k; 1, 2), since A(j, fc; p, ) is a functional
of (t),. Thus the linear variation OS', owing to a
variation 6P& of Q, around 4)„ is split up into two
parts:

~Sebi; ~&rf = ~Ss''d11; ~4'1]+ ~Ss 'd1 1; ~4'1),

where

5Sst"(p, 5p,}=n J dpz f [dk/(2zz)" ](0, 0
l T, 2 lk, —k) lim[B&&'(e', k; 1, 2) + C (e', k; 1, 2) ]]t ~p

x(k, -klT. ..lo, o) [()y,(p, )y,'(pz)+54, (pz)41(p, )], (3. 2)
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5Sza'g; 5y,]= -n' f dP, f [df/{2z)" ]&0, 0ITg ~ alk, — )»mBa'{ ',
I' t]ts,

x [A{1,f; 5p, )+A(2, -k; 5$,)]Ba'{z',k; 1, 2}(k, —kl T, a IO, 0) $&{p&)4&{pa)~ (3 . 3)

and where

Bo{z f;1,2)= z' +[if {ps-pa)Vm

+nA{1,f; P~~)+nA(2, —k; Qg) .

In the case of an hard-care potential, there is a
simplification, since 5Sz'QT„5$,}=0. In fact, in

this case, ' the matrix element of T, ,~ acts on a
function 4{p„pa) as

&k+q k'-qlTi. alk, k'& 4'{&i pa) =- {I/m} IF&i-pal

xf dbe "' "& 's'[@{p,pa') —4'{ig, Pa)], {3 4)

where the integral runs over the values of the impact
parameter b, and where p(b, Pg- pa) is the value of

(r, —ra) at the time of the collision which creates the

particles 1, 2 with a momentum p, and p~, the value
of these momenta being p', and p& before this colli-
sion. Now, since an equilibrium function P,{p,)
verifies

4'l{P1)~1{pa} 41{pl)41{pa)~

we have

&» —kITi. alo, o) y', {P,)P,{Pa)=0, 5sz"Q„'5Q,] =0

for a hard-core potential.
In what follows, we shall study the linearized

ring-collision term 5Szg&, 5g,j in the case of an

hard-core potential, where this collision term is
equal to 5Ss''Ip„5$~). More precisely we shall
examine the integrand on the right-hand side of
(3. 2) near k = 0. In this integrand, the operator
Ba'{z', k; 1, 2) acts on the function uf{P„pa) defined
as

a„-{p„pa)=(k, —flT&, al0, 0)

x [Qq{P,}5$,{pa)+ Pq{Pa)5&])q{P&)].

This function depends on k through the matrix
element (k, —k

I
T, a I

0, 0), and an inspection of

{3.4) shows that this matrix element, and thus

o!f{p„pa}, are continuous and well defined around
k=0. But the situation is more complicated in what
concerns the operator lim, . a Q {z',k; 1, 2), as
c'-O„since Bo(0, 0; 1, 2} has zero as an eigenvalue.

In order to state this question more precisely,
let us recall the expression of Bo(e', k; 1, 2},

Ba{z',k; 1, 2) = z'+ [ik ~ {pg —pa)]/m +nA(1, k; Qt)

+nA(2, —k; Q, ),

and define the eigenfunctions p{f,p&) and the eigen-
values z „{f)of the operator [(ik p, )/m +nA(1, k; pq)]
as

z„(k)iL(k, pq) =[(ik p, )/m+nA(1, k; Q, )]p(k, p q).

af(p, , pa)= Q af, „„g(k,pi. ) p, '(-kiPa) (3.6)

Now, from (3.6) and (3. 7) the function

Ba '(z', k; 1, 2)ua(p„pa) may be expressed by means of
th'e spectral decomposition of Ba (e', k; 1, 2) giving

Ba '(e', k; 1, 2) aa(p» pa)

oa:g.~' 0(»pa) P (-4 Pa}
z'+ z„(K)+ z„.(-%) (3. 7)

It is known that the spectrum of the operator
[(ak ~ p&/m)+ nA(1, k = 0; @q)] has a mixed structure, '
with a discrete set of eigenvalues and a continuum,
and it may be thought that the spectrum of the oper-
ator [(a% p&)/m]+ nA(1, k; Pq)] has the same struc-
ture. However, as we shall be only concerned with
the discrete part of this spectrum, the contribution
of the continuum may be neglected.

Let us study now the behavior, near k= 0, of the
denominator [z'+z„(k)+ z„.(-k)] occuring in (3.7}.
The linearized collision operator A(1, k= 0, pq) has
zero as a degenerate eigenvalue, the corresponding
eigenfunctions being P, , p~P~, and p, p, , as can be
verified from the definition (2. 11) of the operator
A(1, k; Pf), and from the expression of the matrix
element of T, , given in (3. 4). Since the operator
[(lk ~ pq)/m+ nA(1, k; P&)] goes to A(l, k = 0; @,} with

k, at the same time some of its eigenvalues z, (k) goto

{3.5)

The eigenvalues of Ba'(e', k; 1, 2) are [z'+z„(k)
+ z„(-k)], the corresponding eigenfunctions being
the products p, (k, p, ) g'(-k, pa). Now we shall ex-
press the function Ba'(z', k; 1, 2}a;(Ih, pa) by means
of this spectrum, but we have previously to expand

aa(p» pa) on the basis of eigenfunctions of
Ba(z', k; 1, 2), we will assume that this can be done as
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the eigenvalue zero of A(1, k = 0; (p,). This statement
corresponds to the existence of phenomena such as
sound propagation and entropy and vorticity diffusion.
In the first case (sound propagation} z„(k) is of or-
der k near k= 0, in the latter ones (entropy and

vorticity diffusion) z„(k} is of order k . These
statements may be proved in a purely algebraic
way. But the details of this proof are not essential

for what follows, and they are given in Appendix A.
When p, and p,

' are the labels corresponding to the
diffusion eigenfunctions, the eigenvalues of
B '( z ='Q, k; 1, 2}, namely [z„(k)+z„,(-k)] ', are
of order k near k= 0. This point is of a crucial
importance for the two-dimensional systems: By
means of (3. 7) the collision term 1}Sz"(p» 5(())i)

reads

(
6C'()1, ;54, )= fdP, (0 0~T, (k, -k) l)m L(2z)" ' ', o, „,„z'+z„(k)+z~(-k)

dp
' „(Q, 0~ T a~k, —k) lim Co (z kt 1 2}(x) (Pi Po).

) (2v}" ' " '-o, (3.8)

Thus, for these diffusion eigenfunctions, the in-
tegrand on the right-hand side of (3.8} behaves near
A=O as

k"lim, („z) k

S'(j„y)=sf (2
.(0, Q))', g~ k, -k)

x lim ( [B'(z', k; 1)] ' + [C'(d, k; 1, 2)] ')
gt~ 0 +

(the numerator k" ' originates from the volume ele-
ment dk expressed in spherical coordinates), and
the corresponding integral, say

dk lim —,

diverges logarithmically when v = 2. Nevertheless
the actual existence of this divergence may be
challenged at this stage, since it is submitted to
some supplementary conditions:

(i) The diverging term is multiplied by

lim g dk J dpo (0, 0I Ti, o~ k, -k) P(k) pi)a-0

xu, '(-k po)&i;~ ~ ~

where k is the polar angle of the vector k. The di-
vergence exists only if this quantity differs from
zero. This question must be considered very care-
fully. In fact, for the case of the perfect Lorentz
gas, this quantity is equal to zero, and the diver-
gence disappears.

Let us consider this particular case: The only
moving particle is the light particle, labeled 1, the
other ones making a random array of fixed scatter-
ers. The ring-collision term of this Lorentz gas
may be deduced by minor change from the operator
Sz[pf (Pi), calculated for a simple gas. This ring-
collision term for a perfect Lorentz gas is known
for some time': It is linear in the velocity distribu-
tion function (p, (p, ), and reads in our formalism

x(k -kI Ti, oi Qi o)ei(pl}i

where n is the density of scatterers, T& z is the
value of the operator T& z when the particle 2 is
fixed, and (k, —k1T', o10, 0) acts on functions of p„

B'( z, k; )I=z + (fk p, )/m+n(k) 0~ TI,z~k) 0)

(0 Oi T1,210 0)d(k= 0 pi) = 0 . (3. 11)

But, since the matrix element (0, 0!T,' a10, 0)
acts on a function g(P, ) as

(0, 0[ T,', ) 0, 0}y(P,) = (/ p, )/m) J db[g(P, ') —tP(P, )],

(3. 12)

therefore the only function d(k= 0, p, ) which satisfies

C'(z ', k; 1) = —[& + (ik pi) /~ m] .

Let us restrict ourselves to the case of a hard-
disks interaction, for which the modulus of the mo-
mentum p, is constant in time. In this case the
distribution function of the momentum of the light
particle may be considered as a function of the polar
angle of p„say p, .

In order to study the collision term Sz(P» (P,)
from the point of view of the divergence, we have
to define the "hydrodynamical" part of the spectrum
of the operator B'(z', k; 1). An hydrodynamical
eigenfunction d(k, P, ) is defined in the k= 0 limit by

B' (z = 0, k = 0; 1)d(k = 0;pi) = 0, (3. 10)

which is equivalent to
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(3. 10) and (3. 11) is just a constant, independent of

Pi
More generally, since the operator B'(z', k=0;1)

is isotropic, its eij,enfunctions are the circular
eigenfunctions e' ~i, and the expansion of a function

a(p, ) on the basis of the eigenfunctions of
B'(z', k=o;1) ~s 8™plyits Fourier expansion. The
diffusion eigenfunction d(k=o, p, ) being a constant,
e. g. , d(k=0, p, ) =1, the component az of a function

a(p, ) on this eigenfunction is

a, =(I/2z) j, dp, a(p,). (3. 13)

Now we may consider the expression (3.9) of the
ring-collision term for the perfect Lorentz gas.
In this term the operator [B~(z', j; I)] ' acts on the
function

al(P~) =(k, —k( Tt,z(0, 0)fg(P)) . (3. 14)

The divergence occurs if, and only if, this func-
tion has a nonzero component on the diffusion eigen-
function d(k, p, ) in the limit k=o, namely, if

a;...-=(I/2z} j dp, &0, 0i r, .,i0, 0)y, (p, )

differs from zero. But from (3. 12) we have

A(0) A(k) A(0)
z''+D, k z'+z(k) t'+D~k (3. Is)

D, and D~ being two positive constants which depend
on D and k, . Hence, we have

+D p 1 dk Ak
Mkp

+Dip

These last inequalities, together with (3. 15),
prove that both the quantities

r A(k)
dk lim and lim dk A(k)

e' p+ z+z

diverge logarithmically.
From this general result, one can conclude that

the divergencefoundin 5$„"'{p„5P,) does not depend

on the mutual order of the integration over k and

of the limit E'=0,. Nevertheless, since this ques-
tion is a major source of controversy, ' we shall
examine it carefully in the model to be studied in

Sec. IV.

dk lim, — and lim dk

actually diverge 7
The answer is yes, if one assumes furthermore

that, for any given value of kp&0, we have

dkA(k)
lim OQ

z + z(k
+ AO'0

(3. 15}

Proof. From the properties of A(k} and z(k),
there exists a nv. mber kp, strictly positive, such
that for 0& k&kp

We may now assume that the logarithmic diver-
gence occurring in the general expression (3.8) of

5Sz"'{p„.5$,) is absent in S„'(p„Q,}, since the factor
k" due to the diffusion eigenvalue of B'(z', k;1) is
just multiplied by the function ag ~ which goes to
zero with k.

(ii) Up to now the limit z'=0, has been taken be-
fore the integration over k has been carried out, and

one may wonder whether the existence of the diver-
gence depends on the mutual order of the integra-
tion and of the limit.

In order to give an indication about this question,
let us consider the following problem: Given two

functions A(k) and z(k) of a two-dimensional vector
k such that A(k} is continuous and differentiable at
k=0 and A(0) oo, and z(k) =Dkz as k-o(D&0), do
both the quantities

IV. RING KINETIC EQUATION FOR THE MAXW'ELL MODEL
IN TWO DIMENSIONS

In this section, we shall study the ring-collision
term in a special model, and we shall prove in this
model the actual existence of the divergence ex-
amined in Sec. III. This model has various advan-
tages:

(i) An eigenvalue of the linearized collision op-
erator can be calculated exactly, without any refer-
ence to an approximation like the "first Enskog"
approximation.

(ii) This calculation may be related to a transport
coefficient which is not the mobility of a light par-
ticle in a perfect Lorentz gas. This latter point is
here of a crucial importance, since the predicted
divergence disappears in the perfect Lorentz gas.

Generally, if we try to obtain an explicit value
of any quantity at the ring approximation, we have
to calculate the operator Bo'(z', k; 1, 2). In the
general case, we cannot do this, since we do not
have an explicit expression for the Green's func-
tion for the linearized Boltzmann-Enskog equations.
The main obstacle stems from the continuous char-
acter of the operator A(j, k; $0~}. It then appears
natural to have recourse to a model in which the
momentum space has a discrete and finite charac-
ter. The problem of inversion of the continuous
operators is thus transformed into an elementary
problem of the inversion of finite matrices. We
shall thus study a well-known model of a simple gas
(i. e. , with a single component) with a discrete
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momentum space: the Maxwell model. '
This section is devoted to the calculation of an

eigenvalue 0 of the linearized ring-collision opera-
tor 5$s{p~; ) in the Maxwell model. With a view to
this calculation, this section is arranged as follows:
In Sec. IVA, elementary properties of the model
are given, many proofs are omitted, since they are
not essential here and will be the subject of another
publication; in Sec. IV 8 it is explained how the
eigenvalues z„(k}and the eigenfunctions p(k~ p)
are obtained for this model by using methods of
elementary algebra; in Sec. lVC the eigenvalue
fl of the linearized ring-collision operator 5Ss Pp„)
is explicitly defined and it is shown that A is given

by a divergent expression.

A. Definition and Properties of Model

In this model, identical particles move parallel
to perpendicular axes in a two-dimensional Carte-
sian plane. The modulus of the velocity is always

equal to unity. Since the velocity can be aimed at
four different perpendicular directions, this veloc-
ity j is one of the four elements of a discrete set:
jz(I, II, III, IVj. This set is provided with an addi-
tion law; e.g. , I+IV=II+III=I (mod IV}. Let
e~ be the unit vector of the j direction, the direc-
tions are labeled in order to give

ef + e)+II 0 ef ' eJ+I

This simple case of the Maxwell model is pro-
vided with a two-body collision law. Since the mo-
tion of the center of gravity of two colliding parti-
cles 1 and 2 is unaffected by the collision, this col-
lision is wholly determined by the trajectory of the
particle with the relative position r, —r~. Further-
more we assume that there are only head-to-head
binary collisions, i. e. , that two particles may
collide only if their velocities are respectively equal
to j and j+0, and thus the corresponding "relative"
particle moves parallel to the axis of the Cartesian
plane, the modulus of its velocity being 2. The
velocity of this relative particle is characterized
by a discrete index j„[j, z jl, II, III, IV}], exactly as
the velocity of the actual particles is. When this
particle goes close to the origin, it is deflected fol-
lowing a "hard-core" law, i. e. , at any time its
motion is rectilinear, and the deflection is instan-
taneous. Deflection occurs when this relative par-
ticle crosses over a bisector of the axis, at a dis-
tance from the origin smaller than W2. In no time
its velocity index becomes equal to j„—I or to j„+I,
the precise value being determined by the condition
that the intersected bisector of the axis is the in-
ternal bisector of the right angle drawn by the
trajectory. They are two possible choices of inter-
action law, since the perpendicular axes of the
Cartesian plane possesses two bisectors. To com-
plete the specification of the interaction law we

0

FIG. 1. Trajectory of relative particle during a tvro-

body interaction.

stipulate that one of these two»secto» has been
chosen. The interaction law defines a permutation
in the set of velocities j„through the one-to-one
correspondence between the values of j„before and
after the collision. Let j„-p (j,) be this permuta-
tion which verifies p [p (j„}]=j„. In Fig. I the tra-
jectory of the relative particle is drawn during a
two-body interaction, where the choice of the bi-
sector defining the "hard core" corresponds to the
nilpotent permutation p defined by p (I) = II. This
choice of the interaction law will be used in what
follows.

This model has been extensively studied with re-
spect to the Boltzmann kinetic equation, and the
question arises: Can the ring-collision term be
fairly applied to this model, in order to calculate
a transport coefficient at the ring order? For that
purpose, one demands of this model the three fol-
lowing properties: (i) There is a kinetic theory,
with an equilibrium ensemble. (ii) A hydrodynamic
theory can be constructed, and a transport coeffi-
cient can be deduced from the kinetic theory, by
the Chapman-Enskog method (iii) T.he collision
operator (and therefore the transport coefficient)
may be expanded near its Boltzmann value in a
formal way by considering events occurring between
a finite number of particles moving in their entire
phase space, and this finite-number-of-particles-
colliding expansion (FNCE) leads to diverging inte-
grals.

Let us determine these three points more pre-
cisely:

(i) In this model a momentum distribution func-
tion Q, (p, ) is replaced by a vector P& of a four-
dimensional space. In order to avoid confusion in
the labels the index 1 occurring in a one-body dis-
tribution function @,(p} will be omitted for this
model. An s -body distribution function is turned
into a tensor f, ,~, , (r, rz). In an equilibrium
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situation ' any s-body distribution "function"

f„&~. ~ (r, ,rs) is factorized as f„.&,,~, ...,J(r„rs}= g& P~, and the equilibrium distribu-
tion function Pj satisfies

0 0 0 0~j ~f+II @f+I~f I ~ (4. 1)

ej being the unit vector of the j direction. The ex-
plicit value of P& corresponding to given values of

y and n is determined by

IV

+/~=i, Z 4y eyn=y
j I

4I %III = 4II 4 IV
0 0 0 0

Thus, after some algebraic manipulations, we have

'4 +n ' n' (4. 2)

where

An equilibrium situation is characterized by the
density n and the total current y, which is equal to

IV
y=P Z y,'nj*I

sin (qadi
—qz)

(ii) The model possesses a continuous set of
equilibrium states determined by the values of the
density and of the current. A kinetic theory can be
constructed, showing that, in a homogeneous sys-
tem, the total density and the total current are con-
served. Accordingly, the evolution of slowly vary-
ing perturbations of the local density n (r, f} and of
the local current y (r, t) is described by a system
of hydrodynamical equations relating the partial
derivatives of n(r, t) and of y(r, t). The Chapman-

Enskog theory' shows how the hydrodynamical
equations can be deduced from the kinetic theory.
Without going into the details of this calculation,
let us indicate that at the first order in the gradients
a set of hydrodynamical equations of the "perfect
fluid" are deduced. At the following order, terms
of viscous "pressure" are introduced, and a trans-
port coefficient appears, analogous to a viscosity.
As usual, this transport coefficient is defined from
an eigenvalue of the linearized collision operator.
For this model, this eigenvalue problem is well
suited; it is defined through the following property
of the collision operator. Let

The explicit form of the matrix element of T, 2

is deduced from the general formula (3.4) and
reads

(k+q k'- ql Ti, 21» k & 'j'i~'

Jg ~ f3+II ~Pl, Jj+IZ e (q).[~flsD (Jg) — Jf IJ)~

where
(4. 3)

The most simple equilibrium situation is defined
by the absence of macroscopic current, i. e. , by

y = 0; the corresponding value of Q» is —,'.
The kinetic theory of this model can be derived,

as usual, from a master equation or from the
BBGKY hierarchy. Since the "binary collision ex-
pansion" of the exact collision operator is known
in general, "the same expansion can be used for
the collision operator of this model. The basic
element of this expansion is the matrix element of
&&,q, (k+g, k —g l T, , alk, k'&, a linear operator
acting on a function 4 (p„p2). This function 4 (p„pa)
is turned into a 4x4 tensor 4 f, f~ and the matrix
element of T, 2 into a linear operator acting on this
tensor

[(k+q k'-ql y'i, 21k k'&4 (l 2)]g,.~,

[(k+ q, k ' —q l T, , g l
k, k &1','", 4',

be the kinetic equation of this model, written for a
homogeneous system. The collision term $(j;P)
is known, at least formally by its density expan-
sion. ' We may define the linear variation of
Sfj; P) owing to a variation 5@ of @ near an equi-
librium value P . This variation 5$(j; 5Q) may be
considered as the result of the action of the linear
operator 5$jj;) on the function 5Q.

From the conservation properties of S, it can be
shown that the distribution function y, defined by

y&
-- (-)J, is the only eigenfunction of the linear op-

erator 5${j;),with a nonzero eigenvalue. This
statement will be verified for the ring-collision
term. However, it must be pointed out that, at
this state, the existence of this nonzero eigenvalue
of 5$(j;j has only been Postulated, since we need
only the formal properties of 8 to define this eigen-
value.

(iii) Closed cycles of collision between three,
four, and five bodies cannot occur for this model.
Let us study now the event occurring between six
bodies shown in Fig. 2. Particle 3 may be chosen
on a collision "cylinder" of surface AB x1, 4 on
ACx1, 5 on CF x1, and AB, AC, and CF are as
large as desired; particle 6 must be chosen on a
surface of order 1, to allow the recollision E.

The total extension of the phase space in which
particles 3-6 can be chosen is infinite, of order
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Ns ijrn{k) = —z„(k)+z, (k)[i(kz+ k»)+ n —na (k)]

+ k,k„—in[1 —a'{k)](k,+ k„), (4. 6)

A 3
8

N jj,v(k) = z„(k)/n —[zz (k)/n]{3n+ ik«)+ [z„(k)/n]

x [k', + 2nik„+ 2nz —2n'a'(k)] —ik, rk', /n

—k~ —ni(k~+ k~~)[1 —a (k)] .

FIG. 2. Closed cycle of collisions between six bodies.

[z„(k)—ik j]jjj(k) + n[ jjj &»(k) —jjj (k)]

+nao)[jp(j& «0) j j+110 )] (4. 4)

The linear homogeneous system (4. 4) defines the
diagonalization of a 4 &&4 matrix, the eigenvalues
being z„(k) and the eigenvectors jjj(k). Since this
diagonalization can be done by means of the stan-
dard methods of linear algebra, the details of cal-
culation are omitted here. The characteristic
equation of this diagonalization is

x —4nx +x [4n + k —4n az(k)] —2nxk + krak«

+ nz[1 —a (k) ](k, + k„)z = 0, (4. 6)

and z„(k) is one of the four roots of this algebraic
equation.

The components jjj(k) of an eigenvector are given,
up to an undetermined constant N„, by

N jjz(k) = —a(k)[z„(k) —iz. (k)(k»- kz)+k~k~~] ~

iV„jj» (k) = a(k) [z'„{k)+ k',],

xyz, ",y, z- ~. If the ring-collision operator give8
a convergent result, more or less equivalent to a
cutoff of x, y, and z to the mean free path, then
the riag-collision operator would be of order n~.

B. Hydrodynamical Modes of the Maxwell-Model Gas in the
Boltzmann-Enskog Approximation

With a view to an explicit calculation of the non-
zero eigenvalue of the linearized ring-collision op-
erator, we shall seek in this section the spec-
trum of the operator {(ik p, )/m+nA(l, k;$0)j for
the Maxwell model in the case P&= —,'. In order to
use the formula (3.8), we must calculate z„Ot) and

p, (k, p) and give the explicit decomposition of any
function 4 (p) on the basis of eigenfunctions ij(k, p).

According to the definition (2. 21) of the operator
A(j, k; 4 ) and to the value (4. 3) of the matrix ele-
ment of T, 2, Eg. (3.6) reads for this model

Nevertheless, we do not require an exact solution
of (4. 4), since our attention is mainly devoted to
the values of z, (k) and jjj(k) near k =0. In this limit
(Appendix 8) there exist three hydrodynamical
eigenfunctions, each of them corresponding to an
hydrodynamical "mode": the diffusion of the vor-
ticity, labeled d, and the two sound waves, labeled
"s'" and "s,"propagating in two opposite directions
for a given value of k. The diffusion of the entropy
is absent from this model, which is obviously free
from any thermal effect. The fourth mode, labeled
"p, " corresponds to a purely damped perturbation,
since z„(k=0) differs from zero.

These eigenvalues and eigenvectors are given in
the Table I with a proper choice of the undeter-
mined constants N„.

Furthermore, in order to deal with expression
(3.8), we must be able to expand a distribution
"function" fj on the basis of eigenvectors jjj(k) such
that

fj f„)fj+fqdj+ f——,+ Sj+f, —Sj,

Q (kj/k) jjj = 6„,++ 6„,
These properties proceed from the values of the

eigenfunctions given in Table I. Thus from (4. 7),
one deduces the values of f„, f„f,+, and f, near
k=0,

fx -~jfj(-)

f,a=+ v2 Zj fj+ (I/k)Qkj fj,

f, = (1/k) Zjkj„ fj .

(4. 8)

Now, since we know fully the spectrum of the
operator [(ik ~ p, )/m nA+(1, k; P )] near k = 0, we can
succeed in an explicit calculation of the nonzero
eigenvalue of the linearized ring-collision operator.

where f„, f~, f;, and f, are some linear combina-
tions of the fj's, which depend on k. Near k = 0,
these combinations can be found by using the follow-
ing combinatorial properties of the eigenfunctions
in the k= 0 limit:
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5Ss[iz;5e}=& Z I" 2„z[«,OIT),ilk, -k&]z,',1'
iz Izyjz J

x «m &zz ~ 1 (' "'&)
gs «0

(4. 9)

where

(I)z,j,(e k; 54) = + [[Bo'(&,k)]z",1 + [C'(e, k)]1~', ~z }
"i'f2

C. Divergence of the Ring4:ollision Term in the Maxwell Model

As announced, we shall demonstrate the diver-
gence of the ring-collision term in two dimensions
by calculating the nonzero eigenvalue of the linear-
ized ring-collision operator. I et 0 be this eigen-
value. First it will be shown that the correspond-
ing eigenfunction is yf. Since the interaction is of
the hard-core type, the ring-collision term, linear-
ized around an equilibrium value P of P, is equal
to 5Sso)$„5$}. After some straightforward mod-
ifications, owing to the discrete character of the
velocity space in the model, from (3. 2) 5S)z{jz,5Q}
is given by

C (e', k;1, 2)=C (e', -k;2, 1),

(k, —k I Ti z IO, 0) =( -R, k I TR 1 I 0, 0)

Inserting now into (4. 9) the explicit value of the
matrix elements [(O„OIT, z Ik, -k)]Izz zzz given in
(4. 3), one obtains

dk
5S)z(jz; 5$}=n

( )z
lim a(k)

4

x [(I'p(zz), z (zz). zz(~'~ "I5(t))

)I)zz—, zz. zz(&', k; 50)], (4. 12)

dk&= —n
(2 }z

lim a(k)[)I)» zv(e', R; }()
7F 9 0

where a(k}—= [sin(k, —k«)]/(k( —ki, ) is an even func-
tion of k. Using this last property, together with
(4. 11), one shows at once that 5Ss(j„5(f)}depends
upon j, as (-) 1. Thus the eigenfunction of the
operator 5$„(j„}is }(1= (-)z, and the corresponding
eigenvalue is

((k, -kIT, , 10, 0)),'
f~ f2

f ' 2

(', &; x)] . (4. ia)

x((f)z" 54)z" +(f)z"5/11. ) .
2 2

(4. 10)

In order to prove that yf is an eigenfunction of
the linearized collision operator, it must be veri-
fied that, taking 5$& = (-)z in (4. 9), we have
5Sjj„5$}equal to Q(-)zz, where 0 is a constant
independent of j,. For that purpose, one remarks
that it is true of the function )I)3 I (e', k; 5p) that x (5 $&i' P»' + 5 P»' P &) ) .0 0 (4. 14)

Let us find now the other eigenfunctions of
5S„(ji; }, and show that the corresponding eigen-
values are naught. For that purpose one remarks
that (I)I &

(e', %; 5(t)) is given by the action of a linear
operator on the tensor ~.fI f2 defined as

Z ((k, —k I T),z I0, 0) )zzI, zzz
fi I

I '

I (&', k; 5p) =pi I (e', —k; 5p) . (4. 11) From (4. 3) this tensor is explicited as

This equality (4. 11) originates from the following
properties of symmetry of the operators 80', C ',
and (k, -k I T, z IO, 0), which are obvious conse-
quences of their definitions:

Ba (e, kI 1 2}= 8() (c k~ 2~ 1)

w0 a~ ~0~k; f', f' f', f'+ IIL 'YP(f') ~P(f')+ ll + 'VP(f')+ II+P(f')

0 054f 4P+ 11 '45@+ zzAP ]

or, by setting 5P& = 5QP&0, and accounting for (4. 2),

Vorticity
diffusion

Sound waves

Purely damped
perturbation

TABLE I. Hydrodynamical eigenmodes in the Maxwell model.

Eigenvalue

ki'ki'i+ 4 nz(kzz —ki'z)',

ik 1
s (k) =+—+

2 [kI+kII+3n (kt kII) j+O(k )v'2 Sgk

z„=+4~+O(k)

Eigenfunction

kf +I
d, (k) = +O (k)

k

k P2s'(k) =~ —+ o (k)
2k 4

yf =(-)f+O(k)
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&;j', ji = a(k)6j', ji jj( ) 1

~ AIIAIv(64'rr + 64 jv —64r —64 jjj) . (4. 15)

Thus og, j. j, and 5$s{j„5$}are equal to zero for

any choice of 5Q such as the combination 5Q»+5/»
5/I 5ft}'111 is equal to zero. This is realized

when 6gj is a linear combination of the following
three functions of the velocity: 1, 5j„,—6j, hnd

5f I 5f III Thus the three eigenfunctions of the
operator 6$„{j„}with the eigenvalue 0 are poj,

(6j+ II 6j)4 ji and (6j+ I 6j+ III}4j
Now we shall succeed in an explicit calculation

of 0, and prove the divergence of the integral
(4. 13}. As announced, we shall restrict ourselves
to the equilibrium defined by the absence af macro-

scopic current, i. e, by fIt}f =-,'. In that case, and

when 5pf=gf, one has

&j j = a(k)6j j jj( ) (4. 16)

Now, by combining (4. 10), (4. 13), and (4. 16),
0 is given as

A =n Z Z, a'(k) lim {[Bo'(z',k)],',,~„
j' j' j 6' 0

f+f'
+ C '(z', k}]I,'j,jr}(-} '6j;.j,"jj . (4. 17)

First one calculates the part of 0 proportional to
the operator C '(z', k). From the general definition
of this operator we have

k}]j,j+n — 6j,j 6j', j rj(z +2&kj)

Thus we have

n Z + /2 z a (k} lim [C '(z', k)) I'.1„(—)j'j&6,

n '" . 1 sin'(k, —k„)
dkj dk„ lim z' 2'k„(k, —k, )z

aa +

(4. 18)

And since

lim, 2. = 2. P —+ —5(k»)
1 1 1 w

Q ~ I I ~ II

jjrCk)jjrrj( k} jjjr(k} jjjv(
~'+z„Ck)+z„.(-k)

(4. 20)

A=K A„„ n
(4. 18)

where

dk
A„~, = —4n

(2 )z a(k)

in the sense of the distributions, it is easily shown
that the contribution to A originating from C '(z, k)
is equal to —&n.

To proceed further, we must invert the linear
operator Bo(z', k; 1, 2) for this model. Owing to
the discrete character of the velocity space, this
inversion is equivalent to the solution of a system
of 4 =16 linear equations. The corresponding
algebra is presumably quite heavy; however, let
us recall that we are seeking the value of the in-
tegrand of (4. 17) near k = 0, and in this limit we
are aware of the spectrum of the operator [(ik p, )/
m+nA(2, k; P )] and thus of the operator Bo(z', k; 1,2).
In order to express 0 by starting from this spectral
expansion, we split 0 into the various contributions
of the eigenfunctions of Bo(z', k; 1, 2):

and where the term (- ,'n) orig—inates from the term
calculated in (4. 18). In (4. 20) the function a-„,, ,
is the function of two velocities e„-.f, f, given in
(4. 16) and written on the basis of eigenfunctions
jjj.$) jjj.(-k). This change of basis can be donef1
near k =3, by means of the formulas (4. 8), and
gives for example

1
+o4 4 2 ~ kfj pI kf jyI Qjef j f ~

fl fj12121' 2

= (k', —k'„)/k'. (4. 21)

As has been explained in Sec. IO, we are mainly
interested in those values of 0„„,for which

[z, (%)+z;(-k)] is of order k' near k=0. This oc-
curs in two cases: (i) when both jj and p' are the
label of the diffusion mode defined in Table I, and
(ii) when jj and jj' are, respectively, equal to s'
and s or to s and s', since z,s(k)=+i(k/v 2)+O(k').

Let us consider these three contributions (namely
Az z, A..,.~ and A. ..) to the eigenvalue A. Using
again the results of the Table I, and the expansion
of a function of the velocity on the basis of eigen-
function jjjCk) given in (4. 8), one obtains the values
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of the integrand of (4. 20} near k=0. For the case
p. = p. '=d, one has

d, (jc) d„,(-k) —d„(k) d (- k)
e'+ zz(k) + zz(- %)

homogeneous terms of these equations are the ele-
ments of the tensor e„-.~; &. which are everywhere
finite. Thus the solution of this system, namely the
4&& 4 tensor

(4. 24)

) (k, —k'„)'
O(~ ))4 k

k ', k„+m'(k', —k,', ) o(y, )) g(g) (4 22)
nk

Now we are able to calculate the contribution of
the domain of small values of (t to the integral which
defines Q z. Let A~~~obe this contribution, which
is exactly defined in Appendix C. In the same ap-
pendix it is shown that this contribution diverges
logarithmically in the limit c'-O„giving

~0 2n
Qg, ((. (( g3 )

lnz
+

Among similar lines, it is shown in Appendix C
that the integrals defining the two contributions
0,+„+ diverge logarithmically in the limit a' = 0,.
The exact result is quite complicated and is not
reproduced here.

At this stage we have proved that some contribu-
tions to the eigenvalue 0 are logarithmically diver-
gent. However, in order to demonstrate the nonex-
istence of 0 we will have to consider the other con-
tributions to 0, in order to rule out the (improbable)
possibility of divergences which would just compen-
sate the divergences of A„~ and of 0,+,~.

First, the convergence for the large value of k
of the integral defining 0 may be questioned. This
convergence is proved in Appendix D. Moreover,
one has to prove this convergence in the domain of
finite values of k, and in the domain of small values
of k for those contributions 0„„,which have not
yet been examined, namely, for those values of
A~„. which differ from A~ ~ and from Q,&,+.

Let us glance over these two latter points:
(i) A simple inspection of Table I, and of the de-

finition (4. 20) of 0„„.shows that the factor
lim[z'+z, (k)+z„.(-k)] ' occuring in this definition
is of order k or constant near k = 0, except when

(p, p') = (d, d) or (s', s'). Hence the integrand,
written in polar coordinates, remains finite when
a'=0. near k=0, and in the same limit the integral
defining 0„„,is well defined, except when (l(,, p )
= (d, d} or (s', s').

(ii} Let us prove the absence of any singularity of
the integrand occuring in (4. 20) for a finite value of
k. As has been pointed out, this integrand is de-
termined by the inversion of the operator B0(e ', k)
and this inversion is equivalent to the solution of a
set of 16 linear inhomogeneous equations. The in-

is finite, except when the corresponding determinant
is naught. Since the eigenvalues of the linear opera-
tor [Bo(z' =0, k)]& '& are [z„(It)+z,.(-k)], the cor-
responding determinant is zero when two eigen-
values verify

z„(k)+z,, (-k) =0. (4. 25)

These eigenvalues are the roots of the same
characteristic E(l. (4. 6), which is invariant under
the transformation k- —R. Thus the condition (4. 25)
implies the existence of a root of (4. 6) such that

Re(z„(k)}~ 0. (4. 26)

This possibility is excluded by inspection of
(4. 6), and thus the absence of singularity of the in-
tegral on the right-hand side of (4. 20) occuring for
a finite value of % is proved.

We can assert now that the integral defining 0
has an uncompensated logarithmic divergence when
&' goes to zero, and we have shown that this di-
vergence originates from the hydrodynamical long-
range propagation of disturbances. Hence the study
of this model provides us with a strong indication
in favor of the existence of the divergence in any
two-dimensional simple dense gas.

V. CONCLUSION

We have shown that, for a particular case, the
"renormalization" program in the nonequilibrium
density expansion leads to a new class of diver-
gences. In fact, it seems that this divergence is
a manifestation of a fundamental property of fluids, '
i. e. , in a nonequilibrium state there is a long-
range long-time hydrodynamical propagation of
correlations, which may render invalid the Bogo-
lubov synchronization hypothesis for a certain class
of many-body systems.

It appears legitimate to think that in two-dimen-
sional systems the ring-collision term is diver-
gence free only in the case of the perfect Lorentz
gas.

Thus for the case of a two-dimensional gas, there

This possibility may be excluded for any finite
value of k. In fact Table I shows that near k=0,
Re(z„(k)})0, whatever k will be.

Hence, given this last property of Re(z „(k )}near
k = 0, in order to satisfy (4. 26) for a finite value of
k, say k', there must exist a vector k" such that

0(k" &k', Re(z„(k")}=0.
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remain the following problems to solve:
(i} Does there exist a transport theory analogous

to that of the three-dimensional gas? For example,
can we say that the Kubo integrals which define the
transport coefficients are convergent? Indeed, the
existence of a new divergence does not preclude
the existence of transport coefficients which could
be found by another type of development than that
which leads to the ring approximation.

(ii) If the Kubo integrals diverge for two-dignen-

sional systems, what sort of law connects the fluxes
to the gradients, replacing the laws of Fourier and

of Newton?

scalar Green's functions (z +H z)
' and (& +Hz+ 8»z}

The matrix elements of T, z, namely (k+q, k '

—q I T, z I k, k '} are scalar too, and the operator
A(1, k; p, ) defined in (2. 22) is scalar when Q, (p, )
is U invariant, namely, when

U 41(P1} 411(Pl)

This is precisely the case when g, (p, ) is an equi-
librium distribution function P,(p,). Thus A(1, k;
4,) is scalar and so is the operator L (1, k) defined
in (Al}.

(ii) A scalar product of two functions of p, is de-
fined as

APPEND1X A (e, 0) = f &P1 4 (P1}4(P1} . (A2)

In this appendix it will be proved that the operator

L(1, k) = (i k ~ p1)/m+nA(1, k; 0 1) (Al)

has (v+2} eigenvalues z, (k) such that z,(k=0) =0,
two eigenvalues z,(k) being of order k and the re-
maining ones of order k . This result is known for
some time in what concerns the operator

(i k p, )/m +n A(l, k = 0; p, ) for v = 3 .
Hence we shall prove that this property of the op-
erator L(1, k} is of a very general character, since
we shall only use quite general hypotheses. An es-
sential element of this proof will be the property of
isotropy and of parity invariance of the space in
which the particles behave. Hence this proof is not
valid for the Maxwell model studied in Sec. IV of
this paper. But for this model, the eigenvalues
z„(k) are the roots of an algebraic equation, given
in (4.5), and it may be proved in a straightforward
way that one of these roots is of order k~ near &= p.

For the sake of the general proof, the following
assumptions will be needed:

(i) The operator L(1, k) is a smlar quantity. In
order to define this property, let us consider an
element U of the group of rotations and space re-
flections in the Euclidean space R"; in the terminol-
ogy of group theory UE'0(v). From U one defines
the operator U acting on functions of some sets of
vectors of R" as

U $( V1 ~ ~ ~ V ) = g(U V1, ~ ~ ~, U V ) ~

The vectors V&, ~, V„must belong to one of the
following sets of vectors: (a) the dynamical vari-
ables of a particle, or (b) the variable of the Fou-
rier transform of a function of the position.

The operator A(1, k; 401) is scalar if it commutes
with any operator U,

[U, A(I, k; 4,')] = 0 .
In order to verify this property, one notices at

once that the operator T, z defined in (2. 9) is scalar
since it is an algebraic combination of the obviously

The result of this scalar product may depend on
the choice of the coordinate system, since p and $
depend actually on p& and on other vectors. Thus
the U invariance of this scalar product reads

(U@, Ug) = U(g, t)t) . (As)

(iii} The operator L =L(1, k=-0) has (v+2) eigen-
functions with the eigenvalue 0. For further con-
venience, one writes these eigenfunctions as

4& „(P1) =- y1(P1) = ( P/z)" "e "',
(v+2)v z v

4 e(P1} (2P)2 P1 2il
41(P1) y

(A4)

L'f(P1)=o

may be written as

f (P1) = ~ f.4.(P1)
ann, 8;1,2. ~ ~, V

the numbers f, being the components of the vector
f inK.

(iv) Let us define the operator [Lo] transposed
of L as

(0 L'e) =&[L']'& 0'f.

The operator [L ] has a nonempty kernel K . In
K, we may define a basis of functions P,(p, )(a =n,
8; 1, 2, . . . , v)as

4.(P1)= I, 4(p1) = p'1 $,(p, ) = e, .p, . (A5)

The bases of K and K, respectively, defined in
(A4) and (AS), are mutually orthogonal

41(P1)= 2p' 41(P1) (i=1, 2, ",v)

In the terminology of group theory, the (v+ 2)
functions g,(p,) (a=n, 8; 1, 2, . . . , v) may be con-
sidered as a basis of the kernel K of I. . Any func-
tion f(p, ) such that
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(g„g)= 0 (a =n, ,' 1, 2, . . . , v) . (A7)

Furthermore, since the kernel K of L is non-

empty [property (iii)], the solution of (A6) is deter-
mined up to the addition of an arbitrary vector of
K. Among all the solutions of (A6), let us call
[Lo] 'g the solution which is orthogonal to K . Thus
the general solution of (A6) reads

f(P1) [L ] g(P1) +~ b.f4. (Pi) (AS)

The quantities M, are the components of an arbi-
trary vecto: of K.

The operator [Lo] ' is known explicitly in the
particular case of the Maxwellian molecules. " In
the general case, [Lo] ' is calculated by means of
the sp-called "Enskog expansion. " ' '

Now we are able to find the eigenfunctions p(k, p&)

and the eigenvalues z, (k) of L{2,k) near k = 0.
These quantities are defined by

L, (1, k)p(k, p,)=z, (k)p(k, p ), z„(k=0)=0.
(AQ)

Moreover, we shall assume that the various
quantities occurring in (A9) can be expanded near
k=0 as

(g„p,) = 5, , (a, b = n, 8; 1, 2, . . . , v) .
Properties (iii) and (iv) are elementary proper-

ties of the linearized Boltzmann collision operator.
(v} In what follows we will have to consider the

problem of the inversion of the operator L, namely,
we will have to solve an integral equation

~'f(pi) =g(pi) . (AS)

Firstly, since [Lo] has a nonempty kernel, g(p, )
must fulfill the following conditions:

In (A12) the dependence of p (k, p~) on 5=k/b
has been indicated since, as will be shown,

limp, (k, p,) as k- 0 depends actually on k.
From (iii) one deduces at once that po(k, p, ) is a

vector of the kernel K This vector is defined by

its components po on the basis Q&, ) of K. The
components p, are to be determined by expending
(AQ) in powers of k. In this way, one has at the
first order

f.' p'(k, p, ) = [z'-k. L'] p'(k, p, ). (A13)

UL'=(UL') U, (A15)

where U is any element of O(v) and (UL'} is the
result of the transformation U on L' considered as
an ordinary vector of 8". Let us consider now the
matrix element (P„,k ~ L~ Q„) and the space inversion
P: PV„= —V„. From (A3) we have

(C. , L'4„) =(P &. , PL' 4„), (A16)

and from (A4} and (A5) we have

P tI}„=~p„and P fII}„=fgj}„.

This equation has been studied in (v). First, one

has to account for condition (A7) of orthogonality
of the right-hand side of (A13) with K:

(q. , k L'4, ) ~', . (Ai4)
&~ e&) 1 ~&e ~ ~ ~ e&

This set of conditions defines the diagonalization
of the matrix (P„f L' Q, ) acting on vectors of K
This diagonalization is a very simple one, since
many elements of this matrix are equal to zero.
The operator L' is the gradient with respect to k
of the scalar operator L(l, k), thus L~ is a vectorial
operator and we have

L(l, k)=L +k L +k k ~ L + ~ ~ ~

where

(A10}
Applying now (A15) and (A16), one obtains

(f. , L' 4. ) =(t. , &L'} 4. = 4(. , L'4-. )= 0. (»7)

I = L(1, k=0), —

z.(k) = z', + z', +

- 1-(1, k )I i-o,

(All)

One shows along similar lines that the only non-
zero matrix elements (g, , k L' g, ) are those for
which a (or b) is equal to n or 8; and b (or a) is the
value of the vectorial index j such that e, = A, . This
result is nothing else but the "selection rules" of
the operator k L'. Let us call now "/" the index
j such that e, = k, and "t" [f = 1, 2, . . . , (v - 1}] the
(v- 1} remaining vectorial indices. Thus from the
selection rules {A14) yields

z„(k) z „z . z„(k) —kz'„
z„= ™"~, z„= 'm

4-0

z'„v, ', = 0 [t = 1, 2, . . . , ( v - 1)], (A18)

z„p, = (P, , k ~ L Q„)p„+(g, , k ~ L Q~) lP~, (A19)

and as

p(k, p, ) = p, '(b, P, ) + P. '(k, Pi) +

where

(A12)
z'. ue=(4, k L'4i) ~i,

z'. V'. = (4. , k L' 4 & ) v ~ .

(A20)

(A2i)

p'(I, p, )=limp. (k, p, ), . . . .
0-0

Now, it is obvious that the eigenvalue z'„= 0 is &-

fold degenerate, the corresponding eigenvectors
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.(t. , k L'@,)(»„k L'e.)]'".
The components p.„, p, &, and p, , of the corre-

sponding eigenvectors are determined from (A20)
and (A21), the components po, are equal to zero.
Now, instead of the functions Q,(p,) defined in (A4),
we shall use as a new basis in E a set of vectors
po(p, ) which are eigenvectors of the matrix
(g„f L'4o). This choice of eigenvectors of
(P„k L'4o) remains quite undetermined, since
this matrix has zero as a v-fold degenerate eigen-
value. From this basis {po) of K one defines a new
basis {g„}in E such that

(0„.Vo) =6... .
The functions g„(p, ) and p (k, p, ) verify

(P„,k L' po) = z'„6„„.,
The functions p (k, p,} will be determined subse-
quently from the calculation of p (k, p, ).

Now we are able to solve the integral equation
(A9} which is a particular case of (A6). The sol-
vability conditions (A7) have been written in (A14),
and (AQ) yields

p (k, pq} = [L ] [z —k L ] p (k, pg)

(A22)

(A28}

+2 &."u"(i, p, ) (A24)

being determined from

po, =0 and (g, , k L'Q„)go+(~P, , k L'@&) p.oo=0.

The two remaining eigenvalues of the matrix
(P„lt L'4, ) are given by

z'„= ~ [(y„,k. L'@,)(y, , k. L'4„}

+N„k L'4. )4.(p, ).

This eigenfunction corresponds to the entropy dif-
fusion. '

From (A26), z'„ is given as

zo. =(C. , k: k L'~o). Q. , [k L'1 [L'] '

x [k L' —z'] po) (A28)

Owing to the form of the operators k: k L~ and

[k L'] [L ] '[k L' —z'„] occuring in (A28) it is not
difficult to see that the selection rules never imply
that z~ is equal to zero. However, it does not
really prove that z'„ is a well-behaved quantity,
namely, that z2 exists and differs from zero. A

general and exact study of this question would re-
quire some knowledge about the operator [Lo] ',
and to our knowledge, the general problem of the
existence of [Lo] ' has not yet been solved rigorously
However, if one leaves the requirement of mathe-
matical rigor, it may be shown quite simply that
z„ is well behaved. Let us consider the low-density
limit of z'„when z'„= 0. Since limL' = ~p, /m as n - 0,
we have

It may be verified from the "selection rules" of
the operators occurring in (A27) that the functions
po(k, p, ) which verify (A27) and z'„= 0 are

—t'$(, p, ) =[(e, p, }/2P)]4', (p, ).
e, being any of the (v- 1) unit vectors perpendicular
to k. This set of eigenvectors corresponds to the
vorticity diffusion

—d (k, pq) = —(P, , k ~ L'Q„) g(p~)

z', = {t),k p, /m, [L'] 'k p, /m po). (A29)
with the quantities M"„being undetermined at this
stage Expan. ding now (AQ) up to the second order
in R, one has

Lo~'(k, p, ) =(z'„-k L')q'(k, p, }

Now it is an elementary task to verify that this
value of z„ is related in a simple way to the trans-
port coefficients of the gas. In the case of the
vorticity diffusion for example, one has

+[z'„-k: k L']i'(~, p, ) . (A26)

The condition of solvability (A9) together with (A24)
and (A25) yields

(z'„z„'.) ~„"'+z'„6„„,= (y„,, k: k L' i o}

+ {& [}t.Li) [Lo] -i
[k I i- zi) ~o) (A26)

(1—6 „)(4,, , k: k L'po)+(I —6„,,)

[(t. L&] [Lo] -i [g Li] po } 0 (A27)

From (A26) one deduces a set of conditions which
define the eigenfunctions po(A;, p, ). In fact, let us
consider (A26) when applied to the case z', = z', .= 0:

g being the shear viscosity of the gas. The shear
viscosity of a gas is exactly known for the case of
Maxwellian molecules; for other types of two-
body interaction, the Enskog expansion' ' provides
us with means to calculate g; g is well defined,
except for very long-range potentials like the Cou-
lomb one for v= 3. But this kind of interaction law
has been tacitly excluded, since we have assumed
that L exists.

Hence we may assert, within the restriction due
to our actual knowledge about the operator [L'] ',
that z„ is a nonzero and finite quantity near n =0,
the value n = 0 being obviously excluded. Thus the
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initial assumption is proved.

APPENDIX B

In this appendix, we derive the expressions of the
eigenvalues z„(k) and the eigenfunctions fz&Oz) near

k=0. The calculations are still elementary, and

the main object of this appendix is to clarify the
notion "near k = 0." From the characteristic Eq.
(4. 5), it may be deduced that "near k = 0" a root
z,(k) exists, proportional to k', its expansion being
given as

*,(k(= ' " ' ' ' "' — (0, ~ k„)'((,, —k„)' ~ (, ,)[k'k,', ~
' '(O' —I' )']

2nk 180kz I+ II I II ' isn3k4

x [kz+ kzz —vsz (kz —kzz)s(kzs+ kzsz +4kzkzz)]+ O(k ).

In (Bl) the terms of increasing order depend ac-
tually on k and on the rate k, /k» (or on the angle
k), and we are seeking the leading term near k = 0,
whatever the rate kz/k„will be, since we are
interested in the whol, e domain of small values of lkl.

The successive terms on the right-hand side of
(Bl) are of the type P (k„k»)/k s (m integer
~ 0), where P~(kz, kzz) is a homogeneous polynomial
in k, and k„of degree m. Hence each term is
bounded as

P.(kz z k„)/k ' "-~,k"',
A is a constant determined by the particular form
of P (k„k,z). Moreover the leading term of this
expansion, namely,

kzkz~z+ ms (kz —kzz}
2nk

is bounded from below as

kzkzz+ssz (kz —kzz} k Iz z s)z ~ sup(4) 3n2nkz 2n

Since this leading term has a lower bound propor-
tional to k2, and since the terms of higher order
are bounded from above by A„.k 's

(m &0), we
may assert that this term is truly the leading term
of z,({z}near k =0, independent of the rate k, /k» .
Tnus, given a small number $, there existsapositive
number ko such that for k ~ ko we have

k2k2 + ~~2 k2 k2 2

(I-&) ' "" ' " -«z, (k)-{i+&)
2nk

kzkz z + sn (kz —kz z }
2nk

cosk or sink is equal to zero; for these latter cases,
N, dz(k} is of order k'. Tnus the leading term in
the expansion of N, dz(k) is of order k', except when

the angle 4 lies in small intervals around 0, & &, &

and &&. The width of these intervals is determined
by the ezluality of terms of order ks and k' in (B4),
and thus is of order k. Consequently the contribu-
tion of this range of values of k to an integral over
k is negligible in the limit k-0, and, in an integral
over (z, N, dz(f) may be replaced near k = 0 by
kssink cosk. Taking N, = —k/k„one obtains more
generally

d, (k) =k„,/k near k =0.

This approximation is valuable in an integration
over R, but not t'or any value of k.

The other quantities defining the spectrum are
calculated near k = 0 along very similar lines, giving
rise to the results of the Table I.

APPENDIX C

In this Appendix it will be shown that the integrals
defining 0, ,, and A,+„~ behave like ln& when &

goes to 0,.
From the definition (4. 20} of 0„„., and from the

value of

dz(f)dzzz( —k) —dzz (k)dzv( k)
e '+ z, (k) + z, (- lz)

given in (4. 25}, the contribution of the small values
of k to O, ,„reads

+ ~ k(ko 4 &J

Let us examine now the corresponding eigenfunc-
tion, namely d&(K). According to (4. 6), the com-
ponent dz(k) of this eigenfunction may be expanded
near k =0 as

kzkzz+ ~s (kz —kzz) O (ks}X
k

+0~k )nu

(C I)

(B4)N, d, (k) = —k sinkcosk+O(8),
k being defined by tgk = k» /k, .

Near j:-0, N, rlz\k) is of order k', except when

In order to define ko, namely, the domain of
small values of k, let us consider a number ko
such that, for k &k(), the two factors occuring in
the integrand in (Cl) are bounded as
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(k2 k2 )2 k2 k2 2 I2
E k2& z I Il O(k2) ~ I I kzz& E x.2

4k4 + i - ~ k4 + -4 4 + (c2)

-1

kzkkzkzk. —(k12 k121)2 & 2'+
2 kzkzz + —(kz- kzz) + O(k )

2

2 + 2 kzkn+ —(kz- kzz)
a a

nk 3
(c3)

E, and Ez are some numbers which depend on the
precise form of the term O(k2) occurring in (4. 25)
and $ is a given small number. The important point
is that k0 depends on E„E~, and $, but not on E .
By means of the inequalities (C2) and (C3), one
finds upper and lower bounds of 0„'~0 which are
equal up to a constant independent of E, and one
may obtain the main part of Q„' ~0 near e = O„which
is given by

After a quite long but straightforward calculation,
it may be shown that the right-hand side of (C7) be-
haves as ln~ near e =0, , giving

I

~ ~$0 g ~$0 16' lnf
k k k 1$ kk p Iz(1 4 n2)

z&k d k (kz —kzz }
Aq ~0 - —4n lcm

62~ 62~ y(p (2&l k

kz kzz+ 33l (kz kII}
( )X 6 +

with

2n2 + 2(l/2n —m~}
'

(1-~kn')

APPENDIX D

This integral may be carried out by using polar
coordinates. After the integration over the angle,
one obtains

-8n p dk (k2/2n+2e )z~2""~ p(1-kn2 k (-' k' 2~')I"

(c8)

Although this last integral may be explicitly per-
formed, we shall not give the exact result, but
only its value in the limit & -0, . We may notice
t»t, by taking as a new variable of integration
k = (p )

'~ k, the quantity e lies only in the upper
bound of the domain of integration, and it is an
elementary task to find the behavior of the integral
when E goes to 0, . Thus

A

Ak2 ~ (z ~3 }
inc (c8)

Following the same procedure, the other diver-
gent contributions to 0, namely Q,~,~, are calcu-
lated by evaluating the corresponding integrals in
the domain k &k0, k0 being a small number. One
obtains

2 2
fl k(kp g k(kp 8

d k (kz —k„)
8 $+ k+, S k p (2 )2"0

In this appendix, it is proved that the integral
(4.17) which defines 0 is convergent for the large
values of k. Many calculations are elementary
and only the general lines are given here.

At first we shall examine the behavior of a(k) in
the limit k- ~. Since

sin(k» -k, ) sin[kW sin(k —
& zz})

k„—k, kv 2sin(k ——,
'

Iz)

where tgk = k»/k„ thus a(k) goes to zero when k

goes to infinity, except when k is nearly equal to
—,
'

m or 4m. In order to define more precisely the
range of values of k where, for a given value of k,
a(k) differs noticeably from zero, let us consider
the inequality la( k ) I & $, f being a given small num-
ber. From (Dl) this inequality may be replaced
by the less restrictive ones

[k v 2
~
sin( k —-', 2)

~ ]
' & & .

Accordingly, when k goes to infinity, a(k) differs
from zero only in a domain of value of k around —,

'
m

and 4 & with a width of order k '. Thus the contri-
bution of this range of value of k may be neglected
in the domain of large values of K, and we shallcon-
sider in this domain a(k) as being equal to zerowith
respect of a quantity of order unity. This remark
is useful when applied to A(1, k; g ). According to
the general definition of A(l, k; p ) one has

-1
+ 4„k2 (kz+ kz + l n' (kz —k»)'& 2 [A(1, k; @ )]Iz cr&z ———[Ck(z, )

—P; ] -a(k)
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[+D(J()+11 @j(+(I] (D2}

In the domain of large values of k, a(k) may be
neglected; thus we have

+ [~(I) k ~'
(t) )] g 4)/ = —[4)()()g) —ey ] . (D3)

fg

Using this asymptotic value of A(1, k; (t) ), it is

not difficult to invert the operator Bo().", k; 1, 2) in
the limit k- ~, since the equivalent set of 16 linear
equations is converted into four independent sets
of four linear equations which are solved at once.
Defining now the domain of large values of k by
k & &, & being a given number, as large as wanted,
we may evaluate the contribution of the domain
k&& to Aas

2(c'+ik, + ik(,}(c'+ik(+ikn+ 4s) 1 1
)

D,J„„(2v)' [(c'+ 2ik, )(c' + 2ik„) + 4si(k, +k„)][a'+2n+ i(k, +k„)] c '+ 2ik, e'+ 2ik„

(D4)

In (D4) the integrand has been evaluated from (4. 17) by using the asymptotic expression of the operator
[B(t((c,k)],t'P deducedfrom (C3}. Using the variables of integration k, =-,'(k, +k«), k. =-,'(k, —k»), and car-
rying out in (D4) the integration over k„one obtains

II ' = z z z z n (( —2arctan — +(6s -k k)[ --((ract an —arctan
—16n dk sin (k.) g y 8 8 2 y-~i y+ ~a

n 4n 4n

(D5)

To obtain (D5) we have supposed, as allowed,
that ((&4n, and have written y=((( -k )",6=k
-16n .

The integral on the right-hand side of (D5) defines
the contributions to 0 of the domain of large values

of k. It cannot be performed explicitly; a simple
inspection, however, shows that the whole integrand
is well defined and continuous in the domain of in-
tegration, and thus that II"» is not divergent in the
limit a' =0..
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