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Sound Propagation in hcp Solid Helium Crystals of Known Orientatione
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Pulse-time-of-flight measurements have been used to determine the velocities of 10-MHz
transverse and longitudinal sound in the hcp phase of solid helium-four at a molar volume of
approximately 21 cm per mole. The measurements have been made on single crystals grown
from superfluid helium. The orientations of these crystals have been determined by an opti-
cal birefringence technique. The five elastic constants for this molar volume of hcp solid
helium have been calculated using the data obtained in these experiments.

I. INTRODUCTION

Previous measurements on the hcp phase in sol.id
He of the longitudinal sound velocity by Vignos and
Fairbank' and the transverse sound velocity by
Lipschultz and Lee have revealed significant anisot-
ropies in these sound velocities. At the time those
mea, surements were made, techniques for determin-
ing crystal orientation were not developed, so that
a detailed knowledge of sound propagation in solid
He could not be obtained from the results.

Vos et al. and Heybey and Lee have recently
shown that optical birefringence measurements
could provide a useful method of determining the
direction of the c axis in single crystals of hcp
solid helium. Measurements of the differences be-
tween the ordinary and extraordinary refractive in-
dexes at molar volumes of 21 cm'/mole gave a value
of tn, —nl =2. 6~10, corresponding to orthog-
onality between the c axis and the direction of the
light beam, thus showing that centimeter-sized
samples of hcp solid He4 corresponded to sizable
fractional wavelength shifts between ordinary and
extraordinary rays of visible light traversing these
samples at appropriate angles.

In this paper, measurements of the transverse
and longitudinal sound velocities as a function of
crystal direction as determined by these optical
methods in hcp solid He~ crystals grown from the
superfluid phase of liquid helium are described.
From these results, the elastic constants of solid
helium are obta, ined and used to calcula, te the Debye
temperature and the second-sound velocity.

II. APPARATUS AND EXPERIMENTAI. PROCEDURE
A. Experimental Chamber and Cryogenic Apparatus

A chamber was constructed to allow sound propa-
gation through the solid helium sample in two orthog-
onal directions and to permit a beam of light to
traverse the chamber in a direction perpendicular
to the two sound paths. A cross section of the sam-
ple chamber assembly is shown in Fig. 1.

This chamber consisted of a copper cube 1.25 in.
on a side with —,'-in. holes bored through the cube

perpendicular to each of the faces. Eight blind bolt
holes tapped for 4-40 stainless-steel screws on
each face allowed attachment of the window and
transducer flanges. Lead gasket seals between
the flanges and the chamber proved to be leak tight
during the experiment.

The ac-cut 10-MHz quartz sound transducers
with gold-plated surfaces were used to generate a
transverse (or shear) wave in response to the rf
potential applied between the two faces of the trans-
ducer. Each of these transducers also produced
a longitudinal wave in response to the rf pulse.
The horizontal and vertical transducer pairs were
mounted such that the axes of each transducer
pair (sender and receiver) were parallel in order
to ensure a maximum signal. This si,ngle trans-
ducer orientation was used throughout the experi-
ment and was sufficient to give a wide variety
of sound data corresponding to different helium
crystal orientations. The transducer Ganges were
each designed to allow one of the gold-plated sur-
faces of the transducer to make contact with the
smooth surface of the flange. Electrical contact
to the front surface of each transducer was made by
means of a copper ring insulated from the side of
the flange by a thin (0.001-in. ) Mylar sheet. The
copper ring was held in place with a brass nut and a nylon
washer for insulation. A copper-wire leadfrom the
copper ring passed through a short brass capillary sol-
dered into a hole drilled through the transducer flange.
A high-pressure seal was made between the copper
wire and brass capillary using Stycast~ 2850 GT
Epoxy. This seal was found to be reliable at liquid-
helium temperatures after repeated cyclings to
room temperature. The copper wire, now outside
the pressure chamber, was soMered to a fine
coaxial' cable which extended to the top of the Dew-
ar and to the outside of the Dewar through a soft
solder seal which was vacuum tight. Both ends of
the coaxial cable were sealed with Styca, st.

The invar support Ganges for the Pyrex windows were
similar to the transducer flanges except that each win-
dow flange had a Q-in. hole drilled throughits center
for the light beam. The 8-in. -thick Pyrex windows

1162



SOUND pROPAGATION IN hcp SOLID HELIUM CRYSTALS 1163

el ~

Inuar flares~ X
r r)

Indium "0"-Ring

Pyrex Window

, imp/i', i:
Brass Rstainiag Rut~

~ ~psppsr Rrrlg

rr. ; ~'he%
gar

~A.C. Cut Quartz Troneducer

Epoxy Seoied Feed Through

FIG. 1. Cross-sectional view of the sample chamber.

were sealed to the invar with an indium 0 ring.
These flanges were constructed of invar in order to
reduce stress birefringence in the Pyrex windows
caused by differential expansion during thermal
cycling. The procedure for obtaining a satisfactory
seal is now described. The 0. 015-in. indium wire
was wound into about three turns and placed onto
the flange, and then the window was pressed into
place with a TeQon washer and brass nut. After
several hours, the indium made a suitable seal.
Then the brass nut and washer were removed, and

the flange was ready for mounting. If this seal
was found to be leak tight at room temperature,
it would generally be superfluid tight at liquid-
helium temperatures, although after cycling to
room temperature leaks sometimes developed.

The general design of the cryostat is shown in

Fig. 2. The sample chamber rested on a copper
base that served as a holder for the bottom trans-
ducer and as a good conductor of heat. Two copper
rods connected this copper flange thermally as well
as mechanically to the He refrigerator which was
in turn suspended in the vacuum space from the
bottom flange of the main helium bath container by
a stainless-steel pumping tube. By pumping on this
helium refrigerator, the temperature of the sample
chamber was held near 1.3 'K throughout the data-
collecting period. Surrounding the sample chamber
and helium refrigerator was a copper shield main-
tained near liquid-helium temperatures by contact
with the main helium bath (at 4. 2 K). Surrounding
this shield was an aluminum shield at liquid-nitrogen
temperatures. Both the aluminum and copper shields
had small holes to allow the laser light beam to pass
through the sample chamber and out again. The
outer room-temperature Dewar vacuum jacket had
two Pyrex windows which were sealed with rubber
O rings. This arrangement required only one set
of windows at low temperatures and one common
vacuum space.

He solidifies at a pressure of 25 atm, or greater,
and thus a separate system for producing and main-
taining this pressure was necessary. The system
used in this experiment is shown in Fig. 3. A
sample of liquid helium was condensed in a pressure
capsule at a temperature of 1.9 'K obtained by
pumping on an auxiliary liquid-He bath, with helium
exchange gas providing the thermal contact between
the pumped helium bath and the pressure capsule.

t

I

I

I

~Helium Dewar

Pumping Line

Fore Pump&

Low Pressure Low Pressure
Valve I Valve +2

(Lpl) &BRI» I
{Lp2) eog Input

(HPI)

Liquid N~
Trap

Liquid l))I&

Trop

~He Pof

Copper Rod~

Helium Fill
Copillory

Copper Sample
Chamber

Epoxy Feed Through

Grass Transducer
Flanges

I~

I 1

I K I

Copper Support Flonpe~ I. ~Insor Window Flange

Exchonge Gos
Input and

Exhaust

~ ~

Exchange Gos
Spode~

Heoter wound
around the

pressure capsule ~—-

Temperoture Resis

High Pressure
Volve 2

(HP2)
0-50 otrn
8ourdon

Gouge

I

i~)

To Somple
Chatnber

Pressure
Capsule
( 4cm3)

~Liquid Helium
below fhe
X point

FIG. 2. Schematic drawing of the lower portion of the
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FIG. 3. System used for pressurizing the helium
sample.
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The exchange gas was then partially removed and an

electrical resistance heater was used to raise the
temperature of the pressure capsule to 15-20'K,
thus evaporating the helium which had condensed
in it. This evaporation gave rise to a large increase
in pressure since it occurred in a restricted volume.
The pressure was controlled with precision by vary-
ing the current through the resistance heater. The
pressure capsule was connected to the sample cham-
ber by means of 0.030-in. -o.d. 0.011-in. -i.d. stain-
less-steel capillary tubing corresponding to the He

fill capillary shown in Figs. 1 and 2. The pressure
capsule near 20 K also served as a cold trap to

purify the helium gas used to form the samples.

B. Sound-Velocity Measurements and Crystal Growth

The hcp helium crystals examined in this experi-
ment were grown from the superfluid by increasing
the pressure at constant temperature. It has been
found in these experiments that hcp single crystals
could be grown quite readily from the superfluid
below 1.45 K. At higher temperatures the solid
grows in the body-centered-cubic phase. '

It was impossible to confirm directly that any
given sample grew as a single crystal. It was only
after analyzing a great deal of experimental data
for a large number of samples that it was possible
to infer that most of the samples which gave good
transverse and longitudinal sound signals were in-
deed single crystals.

The procedure used for most of the data contained
here is now presented. The pressure was increased
to approximately 25. 8 atm while a longitudinal sound

signal characteristic of the liquid phase was ob-
served on both sets of transducers. At this pres-
sure an hcp solid started to form at the bottom of
the sample chamber and a sound signal character-
istic of a solid appeared on the horizontal sound

path. The vertical sound path continued to show
the presence of some liquid in the chamber while
the crystal grew to fill the sample chamber. During
this growth process, which took two or three min-
utes, the pressure and temperature of the sample
chamber remained constant. The solid-liquid inter-
face and the diffraction pattern produced by the
laser shining on this interface were observed during
the growth period. It was found experimentally
that an uneven surface indicated that crystals of
poor quality or polycrystalline samples were being
formed, because in these cases transverse sound
did not propagate. The completion of the crystal
growth was accompanied by the disappearance of
the liquid sound signal from the vertical set of
transducers.

Once growth of the crystal was complete, the
pressure was held constant near the melting curve
while the sound-velocity and optical measurements

were made. A pulse-time-of-flight method was

used to obtain the sound velocities. The output of

a pulsed oscillator operating at 10 MHz with pulse
width of 2 p, sec and triggered by a time-mark gen-
erator' was applied to the transmitting quartz trans-
ducer. The received signal from the second trans-
ducer was amplified by a wide-band amplifier' and

the output of the amplifier was in turn displayed by

one channel of a dual trace-delayed sweep oscillo-
scope." For the time-of-flight measurement a sec-
ond output from the time-mark generator was applied
directly to the other channel of the oscilloscope.
The time-base expander and delay-time adjustment
of the oscilloscope made measurement of the lead-
ing edge of the initial and received pulse convenient.

The majority of the crystals for which sound

pulses were observed were characterized by one

transverse and one longitudinal pulse on both the
vertical and horizontal sets of transducers as in

Fig. 4. On rare occasions, one longitudinal and

two transverse signals as shown in Fig. 5 were
observed. Usually there were also one or more
echoes present on the oscilloscope trace. Attenua-
tion measurements were not performed in this ex-
periment, but typical attenuation lengths in the
best crystals were of the same magnitude as those
of Lipshultz and Lee.

C. Optical Measurement and Analysis

%hen plane-polarized light traverses a uniaxial
birefringent medium, such as a crystal of hcp solid
helium, it emerges as elliptically polarized light.
The characteristics of the resultant elliptically
polarized light for various orientations of the initial
polarization angle are sufficient to determine the
parameters of the birefringent medium, namely,
5, the retardance, '~ and P, the orientation of the fast
axis. ' Using 5 and P for an hcp helium crystal, the
angle between the c or optic axis and the direction
of light propagation as well as the orientation of the
projection of the c axis on a plane perpendicular to

FIG. 4. Photograph of an oscilloscope trace showing
a small longitudinal pulse with a time of flight of 55 psec
and a large transverse pulse with a time of flight of 113
p, sec.
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FlG. 5. Photograph of an oscilloscope trace showing
a longitudinal pulse at 56 @sec, a small transverse pulse
at 85 @sec, and a large transverse pulse at 110 psec.

the light direction may be found. This information
is required in order to determine the direction of
the c axis of the crystal relative to the laboratory
coordinates and hence relative to the directions of
sound propagation.

The ellipse corresponding to the emerging ellip-
tically polarized light is characterized by its ellip-
ticity, the orientation of its major axis relative to
some known direction, and its handedness. The
ellipticity is the ratio of the minor axis b to the
major axis a of the ellipse. In optical measure-
ments an angle &u, defined by tan&a = b/a, is usually
determined. The handedness of the ellipse gives
the sense of rotation of the electric vector around
the propagation direction of the light. A left-handed
ellipse implies that the electric vector rotates
counterclockwise when viewed in a direction opposite
to that of the light propagation.

In order to determine the characteristics of the
emerging elliptically polarized light for each value
of the initial plane polarization, the experimental
set-up shown in Fig. 6 was used. Unpolarized
6328-A light from the helium-neon laser was passed
through a spinning metal disk with holes uniformly
spaced along the circumference of a circle in order
to give the light intensity a 600-cycle/sec component.
A small portion of the main beam was then reflected
for use as a reference to a lock-in amplifier. ' The
remainder of the beam passed through a Nicol prism
polarizer to give the beam an initial polarization,
and from there passed through the Dewar and sam-
ple chamber. A quarter wave plate and a second
Nicol prism (the analyzer) were used in series to
determine the optical properties of the emerging
elliptically polarized light. The detector was a
photo-duo-diode" connected to the lock-in ampli-
fier. Another photodiode was used to detect the
reference signal.

The parameters of the emerging elliptically po-
larized light were measured for five values of the
initial polarization, obtained by rotating the first
Nicol prism. For each initial polarization, the
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FIG. 6. Block diagram of the optical apparatus.

quarter wave plate and analyzer were then rotated
in a systematic manner until the light intensity
reaching the detector was minimized. The positions
of the initial polarizer, quarter wave plate, and

analyzer were then recorded. The quarter wave
plate was then rotated by 90', without changing the
position of the initial polarizer, and the new posi-
tion of the analyzer for which the transmitted inten-
sity was a minimum was recorded. The minimum
in the light intensity at the detector indicated that
the elliptically polarized light emerging from the
Dewar was converted to linearly polarized light
by the quarter wave plate and subsequently blocked
hy the analyzer. The axes of the quarter wave
plate were then parallel to the major and minor
axes of the elliptically polarized light. If the fast
axis of the quarter wave plate was initially aligned
with the major axis of the ellipse, the 90' rotation
would result in aligning the fast axis with the minor
axis.

The above procedure measures the ellipticity of
the elliptically polarized light emerging from the
sample chamber, with the help of the relationship
tan&a = b/a, which has been introduced previously.
The angle between the orientation of the linearly
polarized light emerging from the quarter wave
plate and the major axis of the ellipse (and hence
one of the axes of the quarter wave plate) is (d.
When the quarter wave plate was rotated by 90'
the sign of the angle & measured from the major
axis was changed, but the magnitude of ~ remained
the same. Thus the difference in the two recorded
positions of the analyzer was equal to 2w.

The procedure is best illustrated by a concrete
example. Assume the light emerging from the Dew-
ar is left elliptically polarized with the major
axis vertical as shown in the left side of Fig. 7.
If the fast axis of the quarter wave plate is aligned
with the minor axis, the orientation of the resultant
linearly polarized light will be as shown, and
tan&a = b/s. When the quarter wave plate is rotated
by 90', the resultant linearly polarized light will
be as in the right side of Fig. 7. The difference
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FIG. 7. This figure illustrates how rotating the quarter
wave plate through 90' allows measurement of the angle
2(d for left elliptically polarized light.

sin2~ = sin5 sin2(a —P).

In Eq. (1), which is derived in a later section of this

between the two measured positions of the linearly
polarized light is 2w. Note that if the light emerg-
ing from the Dewar had been right elliptically po-
larized, the difference in the two positions would
have been —2&. This procedure eliminates any
systematic error in the location of the axis of the
quarter wave plate or analyzer.

The maximum value of the phase shift or retard-
ance 5 in these experiments resulting from passage
through the sample chamber was about 30', which leads
to a maximum value of 30' for 2' as will be shown sub-
sequently. Hence the axis of the ellipse which was
closest to the orientation of the linearly polarized
light emerging from the quarter wave plate was
known to be the major axis. Thus always using the
same sense of rotationof the quarter wave plate en-
sured that the sign of the angle 2& was related to the
handedness of the ellipse. The convention used in
this experiment for calculating 2' was to subtract
the angle corresponding to the analyzer position
when the fast axis of the quarter wave plate was
aligned with the major axis of the ellipse from the
angular position of the analyzer when the slow axis
of the quarter wave plate was aligned with the major
axis of the ellipse. These angles were measured in
a counterclockwise direction from an arbitrary axis,
where the observer was looking into the light source.
If Fig. 7 is considered, it becomes evident that a
value of 2& less than zero would imply right ellip-
tically polarized light, while a value of 2& greater
than zero would imply left elliptically polarized
light.

When the values of sin2w were plotted against the
orientation of the initial polarization as measured
from some arbitrary reference direction, the curve
of Fig. 8 represented by Eq. (1) was obtained:

paper, 0. is the orientation of the initial polarization,
and P is the initial polarization direction for which

linearly polarized light emerges from the sample
chamber. In order to obtain the values of 5 and P
from the experimental data, a least-squares fit of
the five measured values of 2(d as a function of a
was made to Eq. (1). The angle |) is the retardance
of the chamber and its value is seen from Eq. (1)
and Fig. 8 to be 5 = 2'

If the sample chamber had been a, single bire-
fringent plate, then P would have been the orienta-
tion of the fast axis of the sample chamber for the
case of 2&v changing from (-) to (+) as the initial
polarization was rotated counterclockwise. This
may be shown by noting that linearly polarized
light with an angle of polarization slightly to the
right of the fast axis of a birefringent plate pro-
duces right elliptically polarized light or 2w & 0.
The actual sample chamber consisted of three
birefringent plates in series, namely, the entrance
and exit windows of the chamber and the helium
crystal. Thus P was not simply the orientation of
the fast axis, although there was a simple relation-
ship between the fast axis of an equivalent birefrin-
gent plate and the angle P even for this case, as
will be shown in the following discussion.

The sample chamber windows were birefringent
at low temperatures, probably because of the differ-
ential thermal contraction between the windows and
the metal flanges. The smallest retardances were
observed in Pyrex glass windows with invar flanges,
and were on the order of 2'-4' per window. Hence
this was the configuration used in the experiment.
Quartz windows with invar flanges had a larger
birefringence, and quartz or glass windows with
brass flanges had phase shifts up to 50' or more
at liquid-helium temperatures. Since it was de-
sirable for the phase shift of the helium crystal to
be large compared with that of the windows, only
those crystals with retardances greater than 10'
were judged to provide acceptable data points. The
outer room-temperature windows necessary to
maintain the vacuum insulation were found to have
no significant birefringence.

The method used for determining the window re-
tardances is now described. With the collimated
narrow beam of the laser it was possible to observe
four reflections from the (very slightly) tilted win-
dow, one from the back face of the entrance win-
dow, one from the front face of the exit window,
and finally one from the back face of the exit
window. The retardance for each of these beams
was measured without solid in the chamber, giving
a set of four values: zero, double the retardance
in the entrance window (for two of the reflections),
and double the retardance in the combination of
both windows. The reflection from the back face
of the entrance window was easily identified, since
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$in 3 *Sin 2 fLi~s

matrix formalism by a 2~ 2 matrix which in general
has complex elements. The general form for a
matrix representing a birefringent plate with retard-
ance 5 and fast axis at some angle 8 with respect
to the reference direction is

(
cosg5 + z sin&5 cos28 s sin —,'5 sin28
i sin —,'5 sin28 cos—,'5 —i sin-,'5 cos2|II

FIG. 8. Plot of sin2~ versus & as given by Eq. (1),
sin2(d = sin& sin2(+ -p). sing is equal to the maximum
value of sin2(d. The angle p is determined from the in-
tersections of curve with the a axis.

Circular retarders (optically active substances)
have the effect of rotating the plane of polarization
of linearly polarized light and are represented by
a 2&& 2 matrix having the form of a rotation matrix.
If the right circular retardance is 0„then the matrix
is

the measured retardance was nearly identical to
the retardance of the beam reflected from the front
face of the exit window. The optical parameters 5
and P of the entrance windom were then obtained
from the measurements and analysis associated
with Eq. (1). The corresponding parameters of
the exit window were obtained by reversing the
direction of the laser beam and repeating the above
procedure.

To determine the optical properties of the helium
sample from the measured properties of the com-
bination of windows and sample, it was convenient
to represent the various optical components by
Jones matrices and the polarized light by Jones
vectors. The Jones matrix formalism'6 is a com-
pact scheme for writing down the effect of a bire-
fringent plate on the incident polarized light. The
notation of Shurcliff'6 is adopted and a complete
discussion of Jones matrices can be found in this
reference. In this formalism, linearly polarized
light is represented as a two-element column ma-
trix of the form

siny '

where y is positive when it is measured counter-
clockwise from some arbitrary reference direction
with the observer looking into the light source. If
the reference direction is taken as the horizontal,
the expression

~

~
cosghg slllp5g
—sin-,' W„cos-,'5~

Thus the effect of a circular retarder on linearly
polarized light is to rotate the direction of the
linear polarization by the angle —,'5~. The sign of 5„
is changed for a left circular retarder. Here it is
convenient to note that linearly polarized light can
be broken up into two counter-rotating circularly
polarized components. A difference in refractive
index for these two components leads to a net rota-
tion in the plane of polarization when these compo-
nents are reconstituted into linearly polarized
light.

The effect of a series of retarders on incident
light is calculated in the Jones matrix formalism
by writing down the matrices corresponding to the
individual retarders in the same order in which
they appear physically and multiplying them out.

The Jones matrix corresponding to a linear re-
tarder will be denoted by the expression [6, , 8;]
and the Jones matrix corresponding to a circular
retarder will be represented by [6s ]. Then the ma-

f
trix corresponding to a combination of linear and
circular retarders is given by a product of the form
[6„,8„] [6„„][6» 8,] and the column matrix
P& of an emerging beam of polarized light is given
in terms of the column matrix Po of the incident
polarized light by the matrix equation

f, =[6„,8 ] [6, ] . [6„8,]f, .

represents vertically polarized light. Elliptically
polarized light is represented by a column matrix
of the form

A, exp(ia, )

A„exp(i~„)'

Retardation plates are represented in the Jones

As an application of Jones matrices, we shall de-
rive Eq. (1) for a single birefringent plate. If an-
gles are measured from the fast axis of the birefrin-
gent plate (8 = 0), linearly polarized light passing
through this plate and emerging as elliptically po-
larized light is described as

(
exp(i6/2) 0 cosPI A, exp(ie„)

0 exp(- i6/2) siny) A, exp(i&„)
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Recall that Eq. (1) relates the ellipticity 2&a of the

emerging elliptically polarized light to the retard-
ance 5 as well as the angle (a —P) between the fast
axis of the birefringent plate and the polarization
vector of the incident linearly polarized light. To
obtain this equation, it is convenient to use the
following relationship, derived by Born and Wolf, '
which relates the measured angle 2~ to the param-
eters of the ellipse on the right-hand side of Eq. (2):

sin2&u = —sin2 (tan ' A„/A,) sin(E„—&„)

The minus sign appears on the right-hand side of the
above equation because our sign convention differs
from that of Born and Wolf.

Substituting the expressions y = tan 'A„/A„and
e„—&, = —5 obtained from solving Eq. (2) into the
above equation leads to the following result:

sin2~ = sin2v sin6 .

With n as the orientation of the initial polarization
relative to some arbitrary axis and P as the position
of the fast axis relative to this arbitrary axis, this
equation becomes Eq. (I), i. e. ,

sin2~ = sin5 sin2(& - p).

The optical measurement made on the combination
entrance w&ndow-crystal-exit window gave the re-
tardance and the orientation of the effective fast
axis for the combination. In order to find these
parameters for the crystal itself it was necessary
to analyze a system of three birefringent plates.
This analysis requires use of a theorem' '9 which
shows that any system of n birefringent plates can
be replaced by a system of an optical rotator fol-
lowed by one birefringent plate. In terms of the

abbreviations introduced above for the matrices,
this theorem is expressed mathematically by the
following for the case of three birefringent plates:

Since matrix multiplication is noncornrnutative, in-
terchanging [52, 82] with [53, 83] in the product matrix
on the left-hand side of Eq. (3) changes the pa, ram-
eters 6„8„and6„onthe right. The symbols 6,
and 8, refer to the (hypothetic" I) equivalent birefrin-
gent plate which could be used in conjunction with the
rotator 6„to produce the same final polarization
state as the three plates.

The angle 6, is the measured retardance, and P
is the measured orientation of the initial linear po-
larization which corresponds to the linearly polar-
ized light entering the sample chamber and emerging
as linearly polarized light. The angle P is given
by P= ,8+ t„)/2. This equation means that linearly
polarized light emerges from the combination of
plates when the direction of the initial linearly po-
larized light is such that the equivalent rotator
[8„]rotates the initial linear polarization through
an angle of 5„/2 (clockwise for 5s positive) until
it is parallel to the fast axis of the equivalent bire-
fringent plate, where the fast axis is designated
by the angle 8,. It is straightforward to demonstrate
the validity of Eq. (1) for this more complex case.
Equation (3) implies that the matrix product repre-
senting the windows and crystal is equal to the prod-
uct of the matrices representing the equivalent
birefringent plate and the optical rotator. If the
angles are measured from the fast axis of the en-
trance window, which is equivalent to setting 8, =0,
the matrix equation takes the following form:

cos 63 +i sin-,' 63 cos 283 i sin283 sin-,' 63 Co z 62 + i sinz 6a cos282 i sin282 i z 62.i sin28, sin-,'63 cos-,'6, —i sin-,'6, cos28, i sin28, ~in 26p cosz62 —i sin-,'6~ cos28,

~ ~

cos-z6i + i sing 6g

0
0 ~ cosz 6& + i sinz 6 cos28,

CQsz 6g —i Slnz 6g Slnz 6e

i sin28e sinz 6e cos z 6g sinz 6g
cos—,'6, —i sin —,6, cos28, —sin —,'6„cos-,6„

(4)

The general matrices representing birefringent
plates and circular retarders are of the form

A+iB C+iD
—C+iD A —iB

The product of any number of these matrices will
always give a matrix of the same form. Thus Eq.
(4) can be reduced to four simultaneous equations,

one for each of the terms A, 8, C, and D. In order
to obtain the parameters 8~ and 6, of the helium
crystal in terms of the measured quantities P and
6„weproceed in the following manner, which does
not involve an explicit solution of the four simulta-
neous equations corresponding to Eq. (4). The vari-
ables A, B, C, and D of the general matrix form
are derived from the right-hand side of Eq. (4) and
are thus expressed in terms of 6, and 8„the param-
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eters of the equivalent birefringent plate as well as
6„,the parameter corresponding to the rotator.
This leads to the following expressions:

= cos5z [cos5, cos5, —sin5, sin5, cos283 cos(28, —28,)]

—sin5z [sin5, cos5, cos28~+ cos5, sin5, cos(28, —293)]

A = cosp6~ cosg5g

8 = cos28, si —,'6, cos-,'6„—sin28, sin-,'6, sin-,'6„,
C = cosy 6 sing 6R,

D = cos28, sin-,'6, sin-,'6„+sin28, sin-,'6, cos-,6„.
The following simple relationships are derived
from the above equations

+ sin5, sin5, sin28, sin(28, —28, ) . (9)

It is now convenient to obtain a relationship be-
tween the measured angle 2P and the parameters
in Eq. (4). We recall the fact that 2P= 28, +5s.
Then the tangent of 2P can be expressed as a func-
tion of the tangent of the angle (28, +-,'5„)and the

tangent of the angle —,'6„byusing the identity for
the tangent of the sum of two angles as follows:

A~+ 83 +. C~+ D (6)
tan2P = tan(28, + 5s) = tan[(28, +-,'5s}+-,'5„]

tan-,'5s = C/A,

tan(28, +-,'5s) = D/B,

cos'-,'6, =A'+ C' .

(6)

(6)

tan(29, +~5s)+tan~5s
1 —tan(28, + —', 5s) tan-,'5s

The terms on the right-hand side of this equation
can be expressed in terms of A, 8, C, and D by
substitution using Eqs. (6) and (7}to obtain

If A and C are expressed in terms of the param-
eters 8g 6g& 8p& 6g& 83 and 6~ on the left-hand side
of the matrix Eq. (4), the relation (6) cos —,'5, =A~

+C can be used to derive the following, using ap-
propriate trigonometric identities:

cosg~

D/B+ C/A AD+ BC
1 —DC/AB AB —DC

The variables A, 8, C, and D are expressed in
terms of the parameters 6„6~,6„8„and8, lead-
ing, after lengthy algebra, to the following:

sin5, [cos28z sin(28, —283) + sin28~ cos(28~ —28g)cos5, ] + cos5~ sin28, sin5g

+{cos5,sin53 sin28z sin(283 —28&) —[sin5, cos53+ cos5, sin53 cos28z cos(28~ —28~)] cos5q

+ [sin5, sin5, cos(28, —29&}—cos5, cos5, cos28z] sin5 J tan2I8 = 0. (10}

Equations (9) and (10) were then solved simultane-
ously on the Cornell IBM 360/65 computer to give
the parameters characterizing the crystal itself,
that is, 8~ and 6& .

The orientation of the sound propagation directions
relative to the c axis of a given crystal were ob-
tained from the optical measurements of 6, and 8z
for that crystal in the manner described below.
The optical retardance 6 represents a phase shift
between the plane-polarized ordinary and extraor-
dinary rays, which have orthogonal E vectors. The
retardance 6 for a uniaxial crystal varies from
a maximum for light prnpagation perpendicular to
the optic axis to zero for light propagation along
the optic axis. The value of 6 for an arbitrary
direction of light propagation is given in terms of
the difference between the ordinary and extraordin-
ary refractive indexes (n, —no} for this propagation

direction and path length by the equation

5 =(2v/X)(n, —n )d .

The angle P between the c axis of the crystal and
the light path (see Fig. 9) was calculated from Eq.
(11). This equation was derived'0 from the velocity
surfaces of a uniaxial crystal and the condition
fn, -npl «1:

[n, —n, ]
[n, -n ] 5

The maximum retardance 6 ~ was calculated from
the known value of In, —npf, for hcp solid He and
from the known length of the optical path through
the chamber.

Since Vos et al. have shown that (n, —no) ~ & 0,
the c axis of an hcp helium crystal coincides with
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Seam

Horizontal
Direction

/

/

Direction

FIG. 9. This figure shows how the c-axis orientation
is related to the axes of the chamber corresponding to
the sound propagation directions.

the slow axis for the special case of light propaga-
tion perpendicular to the c axis. It can also be
shown in general that for light propagation in an
arbitrary direction, the slow (optic) axis of the
helium crystal coincides with the projection of the
e axis on a plane perpendicular to the light propaga-
tion direction. ' Thus from the calculated value of
8~, the orientation of the fast axis of the helium
crystal relative to the known orientation of the fast
axis of the first window, we find the angle o, which
measures the orientation of the projection of the
c axis on the plane perpendicular to the light beam
relative to the horizontal.

Using these values of f and 0, the angles AH and
cp~ between the e axis of the crystal and the direc-
tions of the horizontal and vertical sound paths
were calculated from the equations

cosy~ = sing cosa,
(12)

cosy„=sinit) sina,

the c axis. This result is obtained by Zenera~

for a Hooke's law solid with hexagonal symmetry
and is also discussed by Musgrave'~ and Gillie et
al. We follow the latter authors in applying this
result to solid helium. The limited amount of
scatter in the data of Fig. 10 experimentally justi-
fies the assumption that the sound velocities de-
pend solely on y.

These results clearly show the anisotropy indi-
cated in the earlier sound velocity results of Vignos
and Fairbank' and Lipschultz and Lee . The data
are in fair agreement with the phonon spectrum,
extrapolated to low k vectors, obtained by slow-
neutron scattering from hcp solid He at a molar
volume of 21. 1 cm'/mole at Brookhaven National
Laboratory. '

The velocities are plotted as a function of sin~y
in Fig. 11. The curve corresponding to the longitu-
dinal mode has a shape which is very similar to a
corresponding curve obtained by Wanner and
Franck~e at considerably higher densities. These
investigators also used optical birefringence to ob-
tain the orientations of their He crystals. The
angular dependence of the sound velocities obtained
in our measurements agrees qualitatively with the
theoretical predictions of Gillis, Koehler, and
Werthamer. '

A knowledge of the magnitude and the angular
dependence of the sound velocities of solid helium

550—

500-

450-

rn/sec

which were obtained in a straightforward manner
from Fig. 9.

250=

III. RESULTS AND DISCUSSION 200-

The sound velocities for hcp He' were measured
at pressures close to the melting pressure at 1.32

K corresponding to a molar volume of 20. 9V cms/
mole. ' The longitudinal- and the two transverse-
mode sound velocities as a function of the angle ff()

between the sound propagation direction and the c
axis of the crystal are shown on a polar plot in Fig.
10. The hcp crystal symmetry-implies that the
sound velocities depend only on the angle between
the c axis of the crystal and the direction of the
sound path, and not on the azimuthal angle around

200 250
m/sec

450

FIG. 10. Polar plot of the various sound velocities as
a function of angle p, the angle between the sound propaga-
tion direction and the c axis of the helium crystal.
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or

pv& = c», pvz —
p ic» c,~ j, pv+2 c«

and along the z or c axis, g = 1 and

of the phase velocity relative to the x, y, and z

axes, respectively, where z is the direction of the

c axis of the crystal and x and y are in the basal
plane. The absence of l and m in this equation in-
dicates that the velocities depend only on the angle

between the direction of propagation and the z axis,
and that the velocity surfaces possess circular sym-
metry about the z axis. The three solutions to this
cubic equation are labeled K~, H~„and K~ corre-
sponding to the quasilongitudinal, pure-transverse,
and quasitransverse modes, respectively.

For a quick determination of some of the elastic
constants, it may be noticed that in the basal plane
with @=0

I I I I I I I I I I

O. I 0.3 0.5 O.T 0.9
Sin $ or

Hei=0, Hl, =h, Hg~ =0,

FIG. 11, Plot of the sound velocities versus sin y for
hcp solid He at molar volume 20. 97 cm /mole.

a= cii —c« A = Css —C«

C = Cii —Cip —2C44, H= Pv —c«y2

d —Cis+ C«y

the determinantal cubic equation for the velocity
surface becomes

permits a calculation of the elastic constants.
Musgrave has written a comprehensive review
of methods of calculating sound velocities in terms
of the elastic constants in crystals of various sym-
metries obeying Hooke's law, and his notation and

procedures are used extensively in the discussion
of these results. We assume these methods are
applicable to solid helium. The form of the veloc-
ity surfaces in crystals of hexagonal symmetry
may be described in terms of five independent elas-
tic constants: cii ia is css and c«. Using
Musgrave's notation, with p equal to the helium
density and

2 2= 2
T1 c«, pvL, = c»& pv1 = c«

Thus the velocities along the c axis and in the basal
plane allow determination of c», c,2, c», and c«.
The constant c,s may then be found by taking the
data at some intermediate angle and solving the
cubic equation for c,s.

In obtaining the elastic constants from the re-
sults, we have used a method which made use of
all of the data in a somewhat more systematic way.
The cubic [Eq. (13)] has three solutions for H and

consequently three solutions for v3. One solution
yields the values for the velocity of a purely trans-
verse mode T, . The other two solutions consist
of mixtures of transverse and longitudinal modes.
One of the solutions is preponderantly longitudinal
and consequently is called a quasilongitudinal mode,
labeled L. The other solution is preponderantly
transverse and hence is called a quasitransverse
mode, labeled T&.

The cubic can be factored into a, linear term for
T, and a quadratic term for T~ and L, leading to
the following equations:

Hz ——,'m c=02
7

H'- [n'h+ (1 —n') (a+-,'c)]H'

+(1 —n~)[(1 —n )~ ac+n [h(a+ ~c) —d ])IH

,'n (1 —n') —c(ah—d ) =0, (13)

where the (I, m, n) correspond to direction cosines

+T~, I, (m'a + n'h} Hr, , l, + m n (ah —d ) = 0 . (15)

Because of the circular symmetry around the z axis,
we set l=0 so that 1 —n in Eq. (13}is replaced by
m2.

Using the known velocities for the various crys-
tal orientations and the above equations, the re-
duced elastic constants, that is, the elastic con-
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TABLE I. Elastic constants of hcp solid helium-four,
molar volume 20. 97 cm3/mole.

Reduced
elastic

constant

c33

c44

c12
cj3

Value
(cm2/sec 2)

2. 12 xlD
2. 90 x10
6. 52 x10
1.11 x10
5.49 x10

Systematic
uncertainty

from
+4% in se —sp

+ 0. 2S%
~2. 0%
+0. 9%
+ 0.59%
~3. 1%

Total
uncertainty

+1%
+4%
+2%
~2%
~ 12%

stants divided by the density, were calculated. The
least-square technique used was to first fit the T,
data to Eq. (14) and solve for c and c44. Then,
using these values of c«and c, the T, and L data
were fitted to Eq. (15), and the remaining fit
parameters a, h, and (ah —d ) were obtained. An

initial estimate of the reduced elastic constants
was found by using an unweighted least-squares fit.
Then a better fit was obtained by employing a tech-
nique recently developed by Gerhold. ~v This tech-
nique minimizes a weighted sum of the square of
the perpendicular distances from the data points
to the parametrized curve. The fit was programmed
on the Cornell IBM 360/65 computer and the results
are shown in Table I. The solid curves dragon in
Figs. 10 and 11 are calculated from the values of
the elastic constants obtained from the fit param-
eters of the least-squares fit.

In the last column of Table I, the estimated maxi-
mum uncertainty from all sources is listed. This
includes the random error calculated from the
scatter of the data and possible systematic errors
in the values of In, —no} ~, the measured lengths
of the sound paths, the optical measurements, and
the values of window retardance. It should be noted
that c» has a larger uncertainty than the other
elastic constants. The reason for this larger uncer-
tainty becomes apparent from a consideration of the
magnitude of c» relative to the other elastic con-
stants and the method of calculating c» from the
fit parameters. The third column of Table I
gives an estimate of the uncertainty in the values
of the elastic constants resulting exclusively from
the uncertainty quoted by Heybey and Lee for
In, —n~l ~ of + 4% for 6326-A light passing through
a crystal of hcp He with molar volume 20. 97 cm'/
mole. The uncertainty in the elastic constants
comes about as a, result of the uncertainty introduced
into the angular dependence of the sound velocities
produced by this uncertainty in I n, —nol . Since,
according to Eqs. (11) and (12), cosy„and cosy»
are proportional to [(n, —na)/(n, —no) ~]'i', a, 4/o
uncertainty in (n, —no) ~ would lead to 2% uncer-
tainty in cosy„and cosy„. This uncertainty is used
to estimate the systematic error in the elastic con-

TABLE II. Comparison of values of the Debye temper-
ature of hcp solid He .

Measurement e ('K) V(cm /mole) T(' K)

Calculated from these
results by Strauss
{R f. 28) 26. 0 20. 97 1.32

Calculated from
these results by
Wanner and Franck
(R f. 29)

Edwards and
Pandorf (Ref. 31)

25. S7

24. 3

20. 97

20.93

1.32

1.25

Edwards and
Pandorf (Ref. 31)
extrapolated to T= 0 26. 35

Ahlers (Ref. 33) 23. 4

20. 93

20. 9 =1.45

Heltemes and
Swenson (Ref. 32) 24. 6 + 0. 6 21.04 1.45

stants with the help of Eqs. (14) and (15). It should
be noted in Fig. 11 that the scatter in the longitu-
dinal sound data is considerably larger than that for
the transverse data. Since the transducers used in
the experiment were shear transducers, the longitu-
dinal sound signals were rather weak, resulting
in greater difficulty in determining the arrival time
of the longitudinal sound pulses as compared with
that of the transverse pulses.

The knowledge of the elastic constants obtained
in this experiment allows a calculation of the Debye
temperature. Calculations have been performed by
Strauss and by armer and Franck using our ex-
perimental data. The former author, using the method
of Fedorov, obtained a Debye temperature for hcp
solid He at a molar volume of 20. 97 cm'/mole of
26. 0 'K. The latter authors obtained a value of
25. 8'7'K by direct numerical integration. These
values of the Debye temperature are to be compared
with the Debye temperature obtained from the
specific-heat measurements performed by Edwa, rds
and Pandorf, ' Heltemes and Swenson, and Ahlers
on solid He with molar volume appropriate to our
experiment. Comparisons between the various val-
ues of Debye temperature are given in Table II.

The agreement between the Debye temperature
calculated from these results and the specific-heat
data is good, especially since the optical modes do
not contribute to the Debye temperatures obtained
from our acoustic data. At absolute zero, the op-
tical modes are unpopulated and hence they do not
contribute to the specific heat. The Debye temper-
ature of Edwards and Pandorf extrapolated to ab-
solute zero gives a value of 26. 35'K. The agree-
ment between this value of the Debye temperature
and the values obtained from the present work is
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indeed excellent.
Strauss has also calculated the velocity of sec-

ond sound from our elastic constants to be 156 m/
sec in the isotropic approximation, again using the
method of Fedorov. This result is to be compared
with the experimental value 125 m/sec obtained
from the work of Ackerman and Guyer by extra-
polating their data to a molar volume of 21 cms/
mole.

IV. CONCLUSION

In this work, measurements have been reported
of a complete set of sound velocities, longitudinal
and transverse, for a large number of crystal ori-
entations, allowing calculation of the elastic con-
stants of hcp solid He for the molar volume 20. 97
cm /mole. The method of determining the orien-
tation of the c axis of the hexagonal crystals by
means of optical birefringence was successfully
applied. A large number of samples were investi-
gated due to the relative ease of growing large
helium crystals from the superfluid phase of liquid
helium. Extending these measurements to higher
densities would be more difficult, since this would
require crystal growth from the nonsuperfluid
phase of liquid helium. Although such a technique
is highly developed, the time required to grow a
crystal is quite long, and since a large quantity
of data must be collected to obtain elastic constants,
a great deal of time would have to be devoted to con-
duct a comparable investigation at higher densities.
Such an investigation is now in progress at the
University of Alberta. The optical birefringence
method should be applicable to investigation of

other orientation-dependent properties of solid
helium such as thermal conductivity measurements
where interesting anisotropies have recently been
observed. ' Competitive methods of determining
crystal orientation are neutron diffraction~ and
x-ray diffraction. @ The neutron diffraction meth-
od is not applicable to He3 because of the large
inelastic neutron scattering cross section. The
optical birefringence method cannot be applied to
the bcc phase since crystal symmetry precludes
the possibility of double refraction in this phase
of solid helium. The x-ray method is applicable
to all isotopes and phases of solid helium, and
hence is the most general method for obtaining
crystal orientation. Measurements of sound vel-
ocity as a function of crystal direction have re-
cently been reported for bcc solid He as well as
hcp solid He in which the crystal orientations
were obtained using x-ray diffraction.
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A kinetic theory has been proposed by several authors with the goal of eliminating the
divergences which appear in the density expansion in nonequilibrium systems. Here, it
is shown that for a two-dimensional simple gas the theory presents a new divergence, re-
sulting from the fact that correlations propagate over long distances as a result of hydro-
dynamic transport. This divergence is discussed explicitly for a gas model: the Mvcwell
model. It will be indicated why the kinetic theory for a perfect Lorentz gas does not exhibit
this new divergence.

I. INTRODUCfION

Near the perfect-gas state, equilibrium quantities
of a classical Quid can be calculated by means of
the virial expansion. In the same manner, nonequi-
librium quantities such as viscosity or thermal con-
ductivity can be expanded in powers of density.
One can also develop the collision operator of the
kinetic theory in powers of the density n. In the
lowest order in n, one finds the Boltzmann kinetic
equation, then the Choh-Uhlenbeck equation, ~ etc.
This second approximation in n implies an explicit
solution of the three-body problem, so that any cal-
culation to this order would be difficult. However,
it has been shown that the shear viscosity of a gas
of hard disks, at the Choh-Uhlenbeck order, leads
to a diverging integral, and that presumably the
same difficulty arises with the next higher order

of density for a gas of hard spheres.
A theory has been proposed~ with the goal of

eliminating these divergencies: The transport co-
efficients are developed in powers of the density.
Summing in each order the most divergent contribu-
tions, one is led to a renormalized Choh-Uhlenbeck
collision operator, called the "ring-collision opera-
tor. " This operator brings into effect the collective
dynamics for calculation of the long-range correla-
tion. In Sec. II we derive this ring-collision opera-
tor in a manner slightly different from those given
previously. 3

The Green's function for the linearized Boltzmann
equation appears in the ring-collision operator. In
the general case, one cannot find this Green's func-
tion explicitly. Nevertheless one knows its proper-
ties for those disturbances which propagate at long
range, i.e. , in the hydrodynamical limit. The






