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charge wave.
It has come to our attention that Freund and

Levine have performed a related calculation. '
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For a special model, it is possible to compute the self-consistent confinement and penetra-
tion of an energetic plasma by an rf field of large amplitude for arbitrary values of the quan-

tity (v/c) (~~/cu), where v is a characteristic electron thermal speed, ~z is the plasma fre-
quency deep in the plasma, and (d (& ~z) is the rf frequency. Previous theories concerning
nonlinear behavior of electromagnetic waves in p'.asmas have required this quantity to be small
compared to unity.

I. unROOVCTION

Previous theories of propagation of large-ampli-
tude electromagnetic waves in plasmas' ' are
based on assumptions that become invalid when the
electromagnetic frequency is much less than the
plasma frequency, &u«&o~ (an overdense plasma).
These assumptions are

(1) vB/c « E, (R«s

(ii) ~»(1/T), (Ref. 1)

where v, B, and E are representative values of
particle velocity, and magnetic and electric fields,
and T is the characteristic time during which a
representative particle samples the scale length of
the fields. The second assumption is clearly nec-
essary for the validity of the multiple time-scale
method, commonly employed in theories of rf con-
finement. ~ Also, it is clearly necessary for re-
placing the Vlasov equation by local (moment) equa-
tions in describing the particle dynamics. 3

In contrast to the present work in which large
amplitude circularly polarized waves are confining
a semi-infinite plasma, Gibbons and Hartle have
considered a case in which large amplitude linearly
polarized waves are propagating in an infinite

plasma. The v&&3 forces are correctly included
there, as they are in the present paper.

Both (i) and (ii) above can be expressed approxi-
mately by the following inequality, valid when
cu «v&.

(v/c) ((u, /&u) «1 .
For plasmas of thermonuclear interest (kilovolt
energies, densities greater than 10" cm '), this
condition becomes violated for electromagnetic fre-
quencies less than i0' sec-'.

The purpose of the present paper is to solve the
problem of self-consistent rf confinement and pen-
etration of a Vlasov plasma under conditions in
which inequality (2) is violated. We consider here
a simple model problem subject to the following re-
strictions:

(a) The incident transverse electromagnetic field
is circularly polarized.

(b) The electrons have no incident energy trans-
verse to the rf wave vector.

(c) The iona are too heavy to respond to the rf
field.

(d) The iona are cold, and therefore adjust them-
selves so as to exactly cancel out the (time-inde-
pendent) electron space charge. [Because of the
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considered geometry, namely, circularly polarized
waves propagating parallel to the density gradient,
the space-charge potential proves to be time inde-
pendent. Further investigations that include the
ions (to be presented in a later paper) have shown

that the present results are approximately correct
provided m «m. and T» T„where m is the mass
and T is the temperature. ]

%'e are presently studying more general problems
including the removal of some of these four restric-
tions.

The electromagnetic fields and the plasma dis-
tribution are solved for in the following. In Sec.
II, we consider a monoenergetic electron-beam
plasma. The results for the monoenergetic plasma
are then extended in Sec. III to a truncated Max-
wellian plasma where we obtain profiles of density,
electric field, and magnetic field.

II. MONOENERGETIC PLASMA

A. Derivation of Nonlinear Equation for the Vector Potential

To illustrate the methods to be used, we first
consider only monoenergetic electrons deep in the
plasma. Suppose the electromagnetic waves are
propagating along the z axis, and that all quantities
of interest depend only on the z coordinat~.

In terms of the vector potential, the fields are

E = —(1/c) a A; B = V X A

and there is no scalar potential 4 because of as-
sumption (d}. Then Maxwell's equation can be re-
duced to

[8'. —(1/c') 8, ]A = —(4z/c) J, (4)

where we have used the Lorentz gauge

A = —(1/c) 8,4' = 0; hence A, = 0 . (5)

(The last condition follows from the assumption that
there is no disturbance deep in the plasma at
z oo)

The equation of motion of a particle of charge
q, mass m, can be written as

v = (q/m) [E + (1/c) v xB]= (q/m c) ( —B,A + v && V &&A)

= (q/mc)(- B,A —V VA+ (v. a, A)z), (6)

(7)

At the "beginning" of the trajectory, deep in the

where the partial space and time derivatives are
evaluated at the current position of the electron,
and the dot either over a symbol or as a superscript
represents the total time derivative.

The transverse component of Eq. (6) is

[v, + (q/mc)A] =0 .

plasma where z-+ ~, it is assumed that v, =0,
which corresponds to a plasma with only longitudinal
temperature, and that there is no rf field there.
Then Eq. (7) can be integrated, and reads

v, = —(q/mc)A .
The longitudinal component of Eq. (6) is, using
Eq. (8),

v, = (q/mc}v ~ B,A= —~z(q/mc} B,A

(8)

(9)

We now suppose the rf field to be circularly polar-
ized:

X(z, t) = Ao(z)(cos(- &et+ P), sin(- ~t+ P)) . (10)

Q= const .
Since Eq. (10) implies that

l
A(z, t)

l

-=A = Ao(z) = magnitude of A,
one sees that A depends only on z, so that

v, a, Az = (Az)

Hence, multiplication of Eq. (9) by v, produces

(v', + (q/mc)'A')'= 0 . (14)

Integration of Eq. (14) shows that the total kinetic
energy of each particle is constant. [The results
obtained are also relativistically correct as long as
one uses the increased (constant) mass]:

v,'+ (q/m c}'A' = v', (15)

where v 's the longitudinal velocity of the electron
at the "beginning" of the orbit, deep in the plasma
(z —~}, and it has again been assumed that there is
no rf field deep in the plasma. Equation (15) shows
that

inc ident par ticles:.. 0
reflected particles:

v, &0

(16)
depends explicitly only on z, and not on t.

From Eq. (16), one sees that the turn-around
point for particles incident from deep in the plasma
is given by

A(0) = m.
l v-I /l ql (17)

and we take z = Q at this point.
From Eqs. (8) and (15), one sees immediately

that electrons carry away no net energy from the
field region for this case of circular polarization
and no initial transverse energy. From this, one

In general, the phase p could be allowed to depend
on z. However, it can then be shown that consistent
results are obtained only if P = const (see Appendix

A). Therefore, we shall henceforth take
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=2n [1 —A /A (0)]-' ' (19)

where we have noted Eq. (17). Although the density
becomes infinite for this monoenergetic beam at
the boundary, it is integrable there.

From the foregoing, it is clear that the particle
fluxes on the incident and reflected beams exactly
cancel at each point, so there can be no net longi-
tudinal currents.

The transverse currents are obtained from Eqs.
(19}and (8) as

can draw the following two conclusions:
(i} In order that the particles do carry energy

away from the field region, in the case of circular
polarization there must be initial transverse energy.
Thus, nonlocal conductivity depends on the presence
of transverse energy in the distribution function
deep in the plasma.

(ii) Since the general solution of Eq. (7) is
v~= —(q/mc)A+V, , it follows that a particle that
has been reflected from the field region will be left
with the same transverse velocity that it had upon
entering the field region. Therefore, any energy
gains must be strictly longitudinal. This statement
holds for arbitrary polarization and the plasma
distribution function.

Since particles are conserved on the incident
beam, the continuity equation for this beam holds.
Now regarding v, to be the fluid velocity of this
beam and n its density, one has

n+na, v, =n+n(v, av, )/v, =n+nv, /v, =0 .
Multiplication by v, then gives (nv, ) = 0, so that

a
&

i/a
n=-n v v — A, with v &0 (18)mc

for the density on the incident beam, where n is
the density on the incident beam at z = ~.

Since particles are conserved, the flux on the
reflected beam deep in the plasma must be the same
as the incident flux. But the reflected-beam speed
is the same as the incident-beam speed at z = ~.
Therefore the density on the reflected beam is also
the same as the incident density at z= ~. There-
fore, application of the continuity equation to the
reflected beam again gives exactly expression (18)
for the density anywhere on the reflected beam.
Therefore, the total density at any z must be

N=2n=2n [1 —(q/mcv ) A ] '~

Equation (20) shows that no harmonics are gen-
erated in the current density. All the nonlinear ef-
fects are in the amplitude dependence for a circu-
larly polarized wave.

Substitution of the current density (20} into Max-
well's equations (4) gives

2

Sg A+ ~ (I —(&u~/(u )[1—Az/Az(0)]-'tzjA = 0 (22)

for the amplitude of the vector potential.

B. Solution

Let

z =-(c/~, )&, a(() -=A(&)/A(0), 0= ~/~, . (23)

Then Eq. (22) becomes

a"+ (II —(1 —a ) ' )a = 0, with a(0) = 1, (24)

where prime represents differentiation with respect
to f.

If the rf wave is to vanish deep in the plasma as
has been assumed, then it is clear from Eq. (24)
that 0 is restricted to

@&1 or ~&~, .
Further, it can be seen from Eq. (19) that the

plasma density is given by

ft/N„=— ri = [1—a (I')] (28)

where

N =2n (27)

is the total density deep in the plasma z= ~.
The electric and magnetic fields are determined

from Eq. (1) to be

E = (~/c)A(0)a(f)( —sin(- at+ P), cos( —~t+ P)),
(28)

8 = (~~/c}A(0)a (&)(—sin( —~t+ P), cos( —~t+ P)) .

[a'(g)] —[a'(0)] = —2[1 —a (t)]'~ —0 [a (g) —1] .
(29)

Since E and B are colinear, it is clear that the
Poynting vector -E &B vanishes and no energy flows
into the plasma, consistent with the statement fol-
lowing Eq. (17}.

Equation (24} can be integrated once, and then
reads [with a(0) =—1]

where

A(z, t)
4&c [1—A (z)/Az(0)]'tz ' (2o)

If the fields are to vanish deep within the plasma,
then a and a -0 as P- ~ according to Eq. (28), and

Eq. (29) implies a condition on a (0) at the boun-

dary, namely,

4z2n. q'/m (21)

defines the plasma frequency deep in the plasma.

[a'(0))'= 2- &' .
What is the meaning of this conditions From

(20)
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Eqs. (17), (28), a) nd (30) we calculate the radhation

pressure at the boundary to be

+ ' (a'(0))', I/t'(0)
8v 8wc 8vcs

mes/ s
4vc' q' (31)

e at theThis 'ust states ath t the radiation pressure ai
d b th kinetic pressure deepboundary isis balance y e

E . (30) is the normalizedwithin the plasma. Thus, Eq.
'on of pressure balance.expression

&29, ivesSubstitution of Eq. (30) into Eq. , g'

s 2 2 I/2 1/2 (32)a (0) = —&2[1 ——,'0 a —(1 —a )

been chosen. Thiswhere eth deCaying solution has be
'

n for the amplitude of the vector potential
is valid for arbitrary rf intensi & a e

relativistic) electron en-boundary, for arbitrary (r
nd for all frequencies such that && &~.ergies, an or a

'
en values ofma be integrated numerically for givmay e in

Q = 0} so as to obtain the functionA (analytically for = so a
t'(a)

otential a(t') is plotted inThe normalized vector po en i
Fi . 1. According to Eq. (28), this also gives e

ctr - ' ' O' Also shown are the mag-
d the density variation

ctric-field varia ion.
netic-field variation a (t' an e e

p)-1/s -
r/

that the spatial variations of the
fields and the density are rather insensi sve o

er the wide range + &p-value of co over
ld drops toIn the low-frequency case, the ie r

f t rface value in a distance ofabout one--third o i s su
the field drops to one-When &=0.999 &&, e ie

i d'stance of only aboutthird of its surface value n a i
di to linear theory, itwhereas, accor ng o i3. 5 c +p,

c & . Thus, the nonlinear be-
havior of the plasm ppa a arently leads to e r
s ie inh' ld' g out (smaller effectiv' e skin dept o

redict.radiation anth the linear theory would p

C. Boundary Conditions

iation field on the left of theSuppose that the rad
boundary con 'd consists of a circularly polariz inci
wave an an ud nknown reflected wave'.

—&t+ k ))A(z&0 —=
/ -=A =A (cos(- ~t+ksz), sin(-

+A„(z, t);

k& =- (u//c) ~ (33)

Since the vector potential in vacuum yum obe s the un-
the reflected wave must havedriven wave equation, e re

the form

(34)X„(z, t)=X„(z+ct) .
There is noTh 's no loss of generality in supposing the

as we havephase of e incp th ' ident wave to be known, as
ured withdone in Eq. (33}. All phases may be measured

ct to the phase of this wave at z = 0.respec o e
ds on the vacuumThe electric and magnetic fiel s

side are then given by

E(- —c-'S, A(= (u//c)

1.4

1.2—

1.0

0 0.8
0
C0

0.6
0
0
I 0.4

0

(9)&

i'(0) )

999)L

ja'(.9)
/

o (.999)

0
—3 I

0

FIG. 1. Plots of
Efy-a, B~ a', and g = (1
—a) vs 0 =Npz/c
for a monoenergetic plas-
ma. Numbers in 'paren-
theses give values of
+ = ~/p. The normal-
ized density is g. A11

curves indicate only
relative variations of
physical quantities.

a(0)
4 5

Values of f

o(.9)
t

6 10
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x A, (- sin(- &dt+ k»z), cos( —&dt+ k»z))

1—c 9,

B,= v xA(= ((u/c)
(s5)

x A, (- cos( —&dt+ k,z), —sin( —&dt+ k»z))

+ (- s, A„, a, A„) .

+ A(0)[cos(~t —P), —sin(&dt —p)) (s6)

and, since A„(z, t) can depend only on the combina-
tion (et+ kzz),

A„(z, t}= —A&[cos(~t+ k»z}, —sin(&st+ koz)]

+ A(0) [cos (~t+ k»z —&t&), —sin(&dt+ k»z —
&t&) ] .
(37)

Matching magnetic fields at z= 0 yields

—(~/c)A, cos~t - a, A = (&d~/c)A(0)a (0) sin(&ut - P),
(s8)

(&/(&}cA, sin«&t+ 8,A„,= (&u&/c)A(0)a (0}cos (&dt —&t&) .

Substituting Eq. (37) into (38) yields the two condi-
tions

—2~A, cos&t

At the boundary z =0, E must be continuous. Also
the plasma density there is not singular enough to
produce surface currents, so B is also continuous
at the boundary. Matching the vector potential
(electric field) at z = 0 gives

A„(0) = —A, [cos&dt, —sin&at]

termine the reflected fields from Eq. (37}.
The actual incident electric and magnetic fields

required for equilibrium are found from Eqs. (35}
and (42} to have the amplitudes

IE, I
= ~ ' = IB, I, independent of ~. (43)

mIv I{d,

qadi

The amplitudes of the total E and B fields at the
plasma boundary are determined from Eqs. (17),
(28), and (30} to be

mlv I&d ~-( )~
mlv

IqI
'

IqI

(44)

One sees that when « ~~ the electric field is much
smaller than the magnetic field in the plasma. Then
Eq. (31) indicates essentially a balance between
kinetic and magnetic pressure, in contrast to the
usual rf confinement pictures.

Furthermore, it is not difficult to show that the
reflected vector potential has the form

A, = A, [cos(~t+ k»z —2&t&), —sin(&et+ k z —2&t&)] . (45)

III. EXTENSION TO LONGITUDINAL TEMPERATURE

A. Equation Governing the Vector Potential

The extension of the previous results from the
case of an incident monoenergetic electron beam to
an incident distribution of beam energies is perfectly
straightforward. Let u= Iv, I be the magnitude of
the incident velocities deep within the plasma, and
dn be the incident density for particles in the ve-
locity range (du) around the velocity u. The total
density is the sum of the densitites of each incre-
mental beam du, and one has, from Eq. (19)

=A(0}[-&icos(&dt —&t&)+ &d~a (0) sin(&dt —&t&)],

(s9)

2+A& sin+t=A(0}[&d sin(&dt —&t&)+ ~~a'(0) cos(~t —&t&)] .

From either of Eqs. (39) one finds

(dn/du) du

J«„&~,&
[1- (qA/mcu} ]' '

f(u)du
[1 —(qA/mcu) ](qA /mc)

(46)

tan&t& = (&d~/&d)a (0}, A(0) = 2A, cos4& (40)

tan@ = —((2H/~2) —1)'~2,

For the monoenergetic-beam plasma one obtains
from Eqs. (30) and (17)

for the density at any point z, where f(u) = dn/du is
the velocity distribution of the incident particles.
The significance of the lower limit of integration is
that only particles with high enough incident energies
can penetrate the vector potential to reach the
point z.

If we define a normalized velocity distribution by
or

cosy= (1/v2 }&d/&d, ,

(41) F (u) =f(u)/ j f(u}du,

where
and

%le I 5~ I

tqI&

Knowing A, and P one can, of course, also de-

N&..= J f(u)du,

then Eq. (46) becomes

F(Q)du
[1 ( A/ c )2]& /2

(qA /mc)

(47)

(48}
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where

(48)

U=1QP Q=Os1 x Qmax

is the total density at z = ~, since the density on

each incremental reflected beam equals the density
on that same incident beam at each point.

From Eq. (8), the current density at point z is

J= f dn(z)qv, = —(q A/mc) f dn(z)

= —N(z) (q'A/mc), (50)

where dn(z} is the total density at the point z (in-
cident+ reflected) due to the incremental beam du.
Substitution of Eq. (48) into (50) produces

4~c (,~/, ) 1 —~A mcu

0
0 124

FIG. 2. Relative values of electric field (a), magnetic
field (s'), and density n vs t = tuJcz for a truncated Max-
vrellian plasma. The parameters on the curves are
O=(u/(u~ and U=ug/uq.

where &u~=4sÃ~ /m. Again, no harmonics occur
in the current density. Although longitudinal ther-
mal effects have been exactly included here, the
transverse current density nevertheless depends
only on the local value of A (or E). The are no
nonlocal effects in the conductivity.

Expressions (48) and (51) are valid for arbitrary
incident distribution functions. Equation (51) is to
be substituted into Maxwell's equations (4). Again,
the arguments outlined in Appendix A can be used
to show that the phase P, in A= A(cos(- &et+ Q),
sin( —&et+ P)), is independent of z. Then Maxwell's
equation (4) becomes

tor potential A(z).
To make further progress, the distribution func-

tion of the incident particles must be specified. We
shall choose a Maxwellian, truncated at a maximum
velocity u for reasons which will shortly become
apparent.

-(u /14 )~F(u)= (),~s f( / )
e "~" '; 0 u u . (58)

Here, ur represents a thermal speed, and erf( }
denotes the error function

(d (d F(u) du 2 T2
()

d7' .

(52}

which involves again only the magnitude of the vec-
With this choice of F(u), the integral that appears

in Eqs. (48), (51), and (52) becomes

U=l(40 0=(45xQ ..

FIG. 3. Relative values of electric
field (a), magnetic field (a'), and den-
sity g vs f=cu&/cz for a truncated
Maxwellian plasma. The parameters
on the curves are 0 = co/~& and U=u~/
Qz ~

0
0

I I I I

4g tQ) M) le 124
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U 1L0 0 L99lf& sugar vector potential within the plasma.

B. Solutions

08

0
0 2.0 4.0 8.0 10,0 12$) 148

First, it is clear that if a-0 as f- ~, the equa-
tion becomes a"= (1 —Qz)a, so that the rf field will
not penetrate deep into the plasma provided 0 & 1.
%e shall assume «1, or & & ~.

Equation (56) can be integrated once, starting at
the plasma boundary, $ = 0, where A(0) = mcu / I q I,
so that a(0) = 1. The result is

FIG. 4. Relative values of electric field (a), magnetic
field (a'), and density q vs f = cu&/cz for a truncated Max-
wellian plasma. The parameters on the curves are
0 =e/cu& and U=u~/u~.

E(u)du

JI (1 —(qA/mcu)')' "
(qA/mc)

[a'(f)l'= [ '(o)]'- e " «
2 erf

2 2
+(1 —a)& (5&)

The expressions for the fields given by Eq. (28)
remain valid provided we interpret A(0) = mcu /I q I.
In order that the electric and magnetic fields vanish
deep within the plasma f- ~, one must have a-0
and a'-0 there. In this limit, Eq. (5V) reduces to

2Uz erf(U(1 —a )' )
erf(U) (54) [a'(o)]'= r- &', (58)

where

a =
I ql Almcu and U= ulur . -(55)

It is important to notice that one must have
a 1 in any region that can be reached by the par-
ticles [see Eq. (16)], i. e. , anywhere in the plasma.

One now substitutes (54) into (52), multiplies
through lq I/mcu to change A to a, and works
with a normalized distance variable f' -=(&u~/c)z.
Then (52) becomes with & -=~/~~

where

' e erf(U(1- x)'") „
erf (U}

As before, for the monoenergetic beam, Eq. (58)
is a normalized statement of pressure balance.
To see this, multiply by &a~A (0)/c and use the ex-
pression for the fields given by Eq. (28}. The re-
sult is

a "+0 a=ac erf(U(1 —a)'~')/erf(U) . (56)
[E (0)+B (0)]/8v=(-,'mN u )r. (6o)

This is the sen-consistent equation that governs the
The right-hand side of Eq. (60) can be recognized
as the plasma pressure by noting the identity

U=& Q=(hlxO „

FIG. 5. Relative values of
electric field (a), magnetic
field (a'), and density q vs
5 = co&/cz for a truncated Max-
wellian plasma. The parame-
ters on the curves are 0= &/w&
and U=u~/uz.
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U= Q=OQ x Q~„

712
FIG. 6. Relative values

of electric field (a), mag-
netic field (a'), and dens-
ity n vs t = vJoz for s
truncated Maxwellian
plasma. The parameters
on the curves are O=(d/
~, and V=~„/u, .

0
0

U

x e dx=erf(U)(f) (61)
lowing differential equation for the vector potential

and by recognizing that the pressure is proportional
to f uzf(u)du.

Since I decreases with increasing U, it is clear
from Eq. (5&) that pressure balance cannot hold
for given fl = &u/~z if u„ is too large. The physical
meaning of this seems to be as follows. According
to Eq. (16), it is the presence of the vector poten-
tial itself that is directly necessary to stop the
fastest particles. If the vector potential is indeed
made large enough to stop particles of maximum
initial velocity u, corresponding to the condition
a(0) = 1, then it can happen that the resulting elec-
tromagnetic fields become too large to maintain
pressure balance with the average thermal particle,
as indicated by Eq. (58). Thus, if u is too large,
the steady-state situation can no longer prevail,
and the fields must push the plasma towards in-
creasing values of z.

Substitution of Eq. (58) into (57) produces the fol-

2(,)z
', erf (U(1 —x)' ) z~ ( )erf

From this equation, we numerically find solutions
such that a'(f) &0.

In Figs. 2-10, plots are shown of the numerically
obtained profile a(f) (proportional to electric field),
la'(f) I obtained from the square root of (62) (pro-

portional to the magnetic field), and ri(f) =N(f)/N,
the normalized density profile obtained from Eqs.
(48) and (54). According to the foregoing discus-
sion, the plots are restricted to values of 0 and
U such that the right-hand side of (58) is positive.
The maximum allowable value of 0 is plotted vs U
in Fig. 11.

The numerical results show that the fields always
damp out in the plasma within a few (c/&o~)'s. This
is even true of the case U= 10 if one notes that the
effective plasma boundary for this case occurs not
at )=0 but around )=10. The position )=0 merely

U=LD 0=089x Q

FIG. 7. Relative values of elec-
tric field (a), magnetic field (a'),
and density g vs g =~&/ez for a
truncated Maxwellian plasma. The
parameters on the curves are
0 =~/(up and U=g~/gq.

0-
0
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U = 01 Q=OJ xQ

FIG. 8. Relative values of
electric field (a), magnetic field
(a'), and density g vs 4 =~&/cz
for a truncated Maxwellian plas-
ma. The parameters on the

curves are Q=~/~& and U=Nutur.

0
0

I

2J) 4,0

represents the place where the highest-energy par-
ticles are stopped, and these have a very low den-
sity for 0=10.

C. Boundary Conditions

(40) and (64) that

A(0)WI 1 mcur ~p
2A 2 Iql

for uu»ur ~ (65)

The procedure of matching the fields at the boun-
dary is identical to that used in Sec. IIC, utilizing
Eqs. (40) and (58).

For the phase shift, one finds

2 2 1/2
tang=- (I/O —1) =- z, —1 for u„»ur,2 1/2 0+T

+ Qg

0 (dg~cosf =
VI +pQg

for u„» ur . (64)

One finds, with A(0) = mcu„/Iq I, and from Eqs.

(63)

where, obviously, (~~ur/~u„) & 1 for stable solutions,
or

For the reflected vector potential, one finds
from Eqs. (37) and (40)

A„=A, [cos(k, z+ ~t —2P), —sin(k, z+ &ut 2Q)], —

(66)

and for the total vector potential one has

A(z & 0) =2A, cos(koz- Q)

&[cos((ut- g), —sin((ut- y)] .

Thus, if the position of the plasma boundary can
be measured, perhaps with movable metal probes,
the phase (t can be found by measurement of the
position of the nearest node of A(z & 0) or E(z & 0).

The amplitudes of the incident electric and mag-

40
U=N ~ =Qe5x ~max

FIG. 9. Relative values of elec-
tric field (a), magnetic field (a'),
and density p vs f=~&/cz for a
truncated Maxwellian plasma. The
parameters on the curves are
n=~/(u~ and U=u,„/u~.

0
0
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u=og 0=a.99xQ

FIG. 10. Relative values
of electric field (a), mag-
netic field (a'), and density
g vs f=&/cz for a truncated
Maxwellian plasma. The
parameters on the curves
are Q=u/~& and U=u~/uz.

0
0 20

I

4f)

netic fields are found from Eq. (64) to be

(o) Z(f) l u

c 20 2 lq l

(66)

Note that the incident intensity required for a steady
state is independent of frequency.

The amplitudes of the total electric and magnetic
fields at the boundary can be obtained from Eqs.
(28) and (67) as

for u„»u~. (69)

Comparison of Eq. (69} with Eq. (44} shows the

following. For a monoenergetic beam, one has
IEI « lal at the plasma boundary when ~ « ~~.
However, for an incident Maxwellian velocity dis-
tribution, one can have any ratio between IEI and

IBl at the boundary, even when ~« ~~. The ratio
of the fields depends on the ratio ur/u .

IV. SUMMARY AND DISCUSSION

~max

Q2
0

FIG. 11. The maximum value of & vs U:

ErfgJ(] Q i/2)
lllkx 0 Erf (g)

No stable solutions exist for p &Q because pressure
balance fails.

The standard treatment of rf confinement of

plasmas requires the quantity (v/c) (u&~/(v} to be
very small compared to unity. We have shown that,
at least for circular polarization, rf confinement
of plasmas should be possible even when this quan-

tity is very large compared to unity. This regime
is of thermonuclear interest.

We have computed electromagnetic field and

plasma density profiles for the case of an electron
plasma with no transverse temperature. Our meth-
od of computing the currents by means of the initial
or incident distribution function seems to be es-
sentially the same as Levin's. ' We note from the
numerical results that the fields generally decay
significantly from their surface values within a
few (c/(v~)'s of the edge of the bulk plasma.

Also, we note that one can obtain some informa-
tion about the plasma interior from measurements
made only outside the plasma. First, one measures
the phase shift Q which then gives the product
(I)" /A from Eq. (64). Knowing this product, one
then measures the incident intensity to find A(0)
or u from Eq. (65). Knowing u, one then returns
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to the product (I}'i /0, = &uz/v & [known function of

(u„/ur)] to obtain a relation between N and ur.
Thus, the density and temperature (of the full Max-
wellian) deep in the plasma must correspond to
some point on the curve of N„vs u&.

Finally, we compute the incident rf power density
that is required to confine a plasma that begins to
be of thermonuclear interest. For the density, we
choose n= 10"cm ' and for the temperature,
T = 10 keV= 10 K. The electron thermal speed then
becomes ur= 6x10z cm/sec, and the electron Plas-
ma frequency proves to be (u~= 2& 10" sec '. As-
suming that most of the tail of the Maxwellian dis-
tribution is confined (u„»ur), Eq. (68) then gives
the magnitude of the incident electric field, namely,
IE, I = —,

' muz &uz/IqI = 1000 statvolt/cm = 3&& 10' V/cm.
The Poynting vector gives the incident power den-
sity as 8= (c/4v)E~&=25& 10'zerg/cmz/sec = 250
MW/cm'. (We note that this calculation applies
only to a hot-electron plasma, the cold heavy

ions being confined mainly by the electron space
charge. )
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APPENDIX A: PROOF THAT THE PHASE IS SPACE
INDEPENDENT

The arguments that led to Eq. (22) can easily be
generalized to include a z-dependent phase. In-
stead of (22} one finds

Equation (A2) implies that a, (Aza, &g = O„or

A28, f = const independent of z. (A2}

But, since A is assumed to vanish deep within
the plasma (z-~), the constant must be zero.
Hence

8 Q=Q so p zs independent of z. (A4)

Thus (Al) reduces to Eq. (22). The fact that P
is constant is important in this case since this is
generally not true. For example, if one considers
the classical skin problem for a conductor one
finds a nonconstant phase.

APPENDIX B: DISTRIBUTION FUNCTION

Although not utilized specifically here, it is fre-
quently necessary to have available an expression
for the distribution function in order to compute
such phenomena as wave stability.

The Vlasov equation states that the velocity dis-
tribution function F(v) is constant along the orbits.
For a plasma with a longitudinal temperature and
zero transverse temperature, the incident distri-
bution function deep in the plasma can be written

F.(u) =f. (u, ) 6(u, ),

where u is the velocity vector deep in the plasma,
and we can, for example, set f (u, } equal to a
truncated Maxwellian. Here 5(u, } is the two-di-
mensional Dirac 5 function.

The velocity distribution at any other point, where
the velocity is denoted by v, can then immediately
be written down as

2 Cd (dp
2 2 A

azA —A(az Q) + ~ A = ~ [1—Az/Az(0}]112 | (Al)

and, simultaneously,

F(v) = F„(u) =f (u, )6(u, )

where v is related to u via the orbit equations.
Thus, we can immediately write

(H2)

2(a,A)(a, Q) +Aaz P = 0. (A2) F(v) f ([v', +(qA/mc) ]' '}5[v,+(qX/mc)] . (B3}
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