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if the limit 8/T- 0 is taken.
Now if & = 8T+6 is to be the energy of the bound

state with 8 vanishingly small, we need [cf. Eq.
(8. 88)]

—8mT

in(48/T)

Therefore the equation for 6 is

(CS)

1im f(8 T + 5) = 4/ Uo
5/T 0

1.e. ,

(C8) 2 2m 4
T Tl (48/T) U ' (C10)

4

T ~r 0[4T Go, o(8T+8)] Uo

and we readily obtain the expression connecting

6 with U, in the neighborhood of U0= 2T as

But &/T= —,
' exp[- s/(1 —2T/U, )] (C11)

) 1/2 4T~m

Go 0(8T+ 8) 2K(m)/s (6~r& 0[- —,'ln(48/T)]
This gives the desired threshold behavior of the
binding energy, s/T= 8+8/T.
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Nonlinear effects involving x-ray and optical photons are described with particular emphasis
on the generation of sum and difference frequencies. Efficiencies for sum and difference fre-
quency generation are calculated and found to be large enough to be observable. The expected
advent of x-ray lasers should enhance the usefulness of such mixing techniques in the mea-
surement of excited-state wave functions. Under favorable circumstances, the mixing tech-
nique may provide a means of efficiently tuning x-ray laser outputs.

INTRODUCTION

Although x-ray lasers are not now available,
there exists the possibility of observing and inves-
tigating nonlinear x-ray effects. %e have recently
observed spontaneous parametric x-ray conversion. '

Freund and Levine pointed out that this appeared
to be a feasible endeavor, and also considered
other nonlinear x-ray effects such as x-ray harmon-
ic generation.

Here nonlinear effects involving optical and x-ray
photons are described with particular emphasis on
generation of sum and difference frequencies. If
an x-ray laser is developed, then such processes
could be used to shift x-ray laser outputs by a
small but precise and significant amount. The sum
and difference frequency generation may be de-
scribed as Bragg scattering from an optically in-
duced microscopic charge distribution. Measure-
ments of the mixing conversion efficiency can yield
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detailed information about the excited states re-
sponsible for the microscopic charge distribution
in much the same way that previous Bragg-scatter-
ing measurements have yielded information about
ground- state charge density . The ability to probe
microscopic light- induced charge densities is
unique to radiation of short wavelength such as
x rays. This contrasts with optical measurements,
which can directly measure only macroscopic
quantitie s .

The sum and difference frequency production may
be described as follows: The incident light beam in
a crystal interacts with the atoms resulting in a
microscopic charge density which differs from the
ground-state charge density. The induced charge
density has a periodicity determined by the light
wave vector and the periodicity of the crystal ~ The
incident x-ray beam scatters according to Bragg' s
law from the moving induced charge density, the
output x-ray frequency being up- or down- shifted,
as required by the Doppler process or energy-mo-
mentum conservation.

One could proceed formally in the manner of
Armstrong et a/. ' An examination of their work re-
veals that for light-x-ray mixing one type of matrix
element dominates their expression for the non-
linear polarization. A calculation using those ma-
trix elements, with proper attention given to micro-
scopic features of the nonlinear polarization, would
lead to results equivalent to those in this work.

Only sum and difference generation will be con-
sidered in detail, because other processes can be
treated in a manner similar to that which follows.
The work of Armstrong et al. or Franken and
Ward reveals that the electric dipole approximation
is usually appropriate for the treatment of strong
optical effects, whereas the statement' that x rays
scatter from the electronic charge density is ac-
curate.

Bragg' s law is rederived in a form especially
adapted for application in this work. In Sec. II the
microscopic light-induced charge distribution, re-
sponsible for the Bragg scattering of interest in
this paper, is calculated. After a description of
phase-matching conditions, in Sec. IV a simple
recipe is presented for evaluating the size of the
x-ray optical nonlinear interaction. The effects
of beam intensities, crystal imperfection, colli-
mation, and absorption are included with estimates
of the efficiency of the process. The mixing of op-
tical and x-ray photons can be observed with
techniques available at present.

1. BRAGG SCATTERING FROM INDUCED CHARGES

An incident plane -wave monochromatic x-ray
beam with a vector potential

where c.c. denotes the complex-conjugate term,
induces a current in a medium . The expe ctation
value of the current is J (r, t) = e( v), where v is
the velocity operator given by

v(r, t) = (l/m) [P —(e/c)A, (r, t)], (2)

g~A g g2 A 4~
= -—J(r t)

a~2 2

pter

(4)

where $ js a coordinate measured in the direction
ko and Ao is transverse to ko. If the envelope 80
does not change appreciably in the distance 2v/)to,
then it is appropriate to remove the rapidly varying
components

A= a e ""0'-"0'"+c c

where Mo = koc, so that

88 1 88 2miQ+ 0
g . g(r t)e f(u~t-ho P)

a( c at koc

It is seen that only components of J behaving as
e "0' ' o' contribute significantly to the radiation
Ao. Here & is a unit vector parallel to 80.

A particular Fourier component p~ of the charge
density is associated with a charge w ave:

where m is the electron mass, e is the electron
charge, c is the vacuum value of the light speed, and

P = —tg 'g&V, is the total electron momentum opera-
tor, and the sum is over all electrons. The effects
of nuclei are neglected because of their larger
mass. Here (v) denotes the expectation value of
v at a point (r, t) in space and time.

To calculate J, it is necessary in the optical re-
gion to find the perturbed wave functions g(r, t).
In the x-ray region it is usually the case that the

Az term in Eq. (2) dominates the P term, and the
unperturbed wave functions may be used to calcu-
late an accurate result to first order in A, ~ In this
work the scattering is envisioned as arising from
the temporarily and spatially varying charge distri-
bution induced by light. The light predominately
interacts with the weakly bound outer electrons.
The resultant scattered x-ray intensity due to the

A, term is consequently larger than that due to the
P term approximately by a factor u&, /&os, where &oe

is an optical binding frequency. ' Consequently, to
obtain a first-order result, it is accurate to use
only wave functions unperturbed by the x rays, so
that

J(r, t) = —(e /mc)(AI) = —rocAz(r, t) p(r, t), (3)

where ro = e /mc' is the classical electron radius
and p(r, t) is the electron density at point (r, t) in
the absence of x rays.

The outgoing scattered radiation Ao in a direction
ko is determined by Mmnv ell' s equation
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The solution to Eq; (10) is

tto(z =0) = —iXorocospr8r pr, (qr+, G)

x [n~ —&k (rrr + oo)] '
I s= o ~

it being assumed that the crystal thickness is large
compared to (err + &o) ', and pr is the angle between
the input and output x-ray polarization vectors.
Effectively the range of momentum mismatch al-
lowed for efficient conversion is determined by the
condition I ak I

& &~+ n0. The fractional scattered
intensity is

I no
I' cosPr Xo'r'o(cos io) I pr, (qr + G) I' cosPr

I

twirl'

cospo ak'+[-,'rrr+ no]' cospp

(12)
where the factor cosPr/costIo takes into account
possibly different input and output. beam diameters.
If the beams are not arranged as assumed above,
an analogous calculation can be easily performed.
For an unpolarized x-ray input the averaging of
cos y results in a replacement of —,'(1+cos 2Hz) for
cos'y in Eq. (12), where 28z is the angle between
input and output x-ray wave vectors.

II. LIGHT-INDUCED CHARGE

Light primarily interacts with the outer electrons
of the atoms comprising the medium. The linear
interaction between an electromagnetic wave and
an atom is described by a Hamiltonian operator

3Co+K' =Zo —(e/2mc) (P A+A P), (13)

where P is the momentum operator, and A is the
vector potential. In the case of light, the electric
dipole terms dominate' and we have approximately

3C' = —p E (14)

where p is the electric dipole moment operator. 6

We shall see shortly that the light-induced charge
is in phd. se with the electric field and, therefore,
out of phase with the light vector potential. This
feature allows a simplification of the following
formulas if the light field is described through its
electric field E.

In a material a light wave with electric field

E(r, t) = Er cos(~dr, t —q~ r) (16)

causes the medium to become polarized. The wave
function of an atom at position r, is given by1 &Ie'r ir =exP —,cos}3p +

cos PL cosP g,J

po(r, t)=p, (Q)e """6'"'+c.c. (&)

The solution to Eq. (6), using Eq. (3) with p(r, t)
=prr(r, t), and taking +p(0)=0, is given by

2~ zi' . ll ) e- iokr

0

where M =
I k0I —

I k, + Q I, the momentum mis-
match, is assumed to be small compared to k0.
The process is restricted to small angular direc-
tions, because k0 is a microscopic quantity. It is
assumed that k0 is parallel to k, + Q, I k0I = &0c,
and ~=~, +(dr, . The peaking of the scattering
amplitude described by Eq. (8) near dk =0 repre-
sents the well-known phase-matching condition for
conservation of reduced momentum. The upper
and lower signs refer to sum and difference fre-
quency generation, respectively.

In the case that ~~ = 0, the above result repre-
sents ordinary Bragg scattering satisfying the con-
dition kp=kr +G, where G is a crystalline reciprocal
lattice vector and pr (G) is the time-independent
Fourier component of the ground-state electronic
charge distribution of the lattice.

Of interest here is the case where po(r, t) is
time-dependent because it is light induced. In a
crystal, the light has a macroscopic wave vector
qr, but the associated charge densityy(r, t) has
Fourier components at wave vectors Q=+ ~+6,
where G is any of the crystalline reciprocal lattice
vectors For th. is case, pr. (Q) is the Fourier com-
ponent of the light-induced charge density. Thus
a single light beam may cause scattering in a
number of directions.

The effects of absorption of light or x rays has
not been taken into account. Let k, and q repre-
sent waves entering a crystal face, and k0 a wave
leaving the crystal face. Let a„&~, and n0 repre-
sent, respectively, the associated absorption con-
stants. If the z axis is the outward normal to the
crystal face, then the expression for p should be
multiplied by exp(-,' razz/cosPr, ), and the expression
for A, sould be multiplied by exp(-,' z/incrP,o)sHere.
P~ and P, are the angles that the light and incident
x-ray beam make with face normal inside the crys-
tal. With Q defined to be corresponding quantity
for Ao, Eq. (6) must be modified to include on the
left-hand side a term ——,

'
&go, and on the right-hand

side, J should be multiplied by

to take into account the attentuation of the input
beams. Equation (6), using Eq. (3), becomes

8@ 1 Bg
8g c et

+— + o rro8p= —ivor o[z ttr(z = 0)]

i)'*'(r, t) =rp',"(r)+-,'Er, . Z ~~ pr'(r)

ef ($L ~ x -col, f) - i(~L 1 "cdgte ()
&(e borg r/op (~q +G) (10) if one accepts the tenets of first-order steady-state
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time-dependent perturbation theory in the electric
dipole approximation. The spatial functions y&
are excited-state wave functions with eigenvalues
I'spy of Xp for the atom at r„and qa,

'" is the ground-
state wave function with Xpq~ = 0 for the atom at r, .
The vector dipole moment matrix p& is taken be-
tween states y~ and y&. With no applied magnetic
field, the functions y~ and y& are chosen to be
real. The resultant electron density is given by

p(r, t)=Z, I0"'Cr, t)~', (17)

which may be written as

p(r, t) = p, (r)+ ap(r, t), (18)

where p, (r) is the electron density in the absence of
light, and to first order in E we have

~(r, t) = E(r, t) ~ R(r), (19)

where

which for this case, involving light, reads

ep=(i/4v) ~ ~ E . (28)

Thus only birefringent media can contribute to Eq.
(23) in the G = 0 case, and effectively

Rtf, ,=(i/4ne)~ . (29)

The reason for the previous result Rs. 0= 0 is the
use of the dipole approximation in deriving Eq. (16).
In Eq. (16) the electric field is evaluated at posi-
tion r, which in the dipole approximation is not
distinguished from r„ the atomic site. If one does
distinguish between r and r, in Eq. (16), then a
nonzero result, namely Eq. (28), is obtained.

III. PHASE-MATCHING CONDITIONS

The output intensity of the sum or difference x
rays is peaked when the energy and momentum con-
servation conditions are obeyed:

R(r)=k 'E ' '2 q,"'(r)q,"'(r) .
COg

—hei,
(2o)

p=Vr+Vl, y

~o=k +IG+~

(3o)

(31)
We note that

$ R(r)d'y=o,

where uc denotes integration over a unit cell, be-
cause y& and y, are orthogonal wave functions.
Also we have

rRr dr=1 eN g, (22)

Rs=Nf R(r)e ' ~d'r'
QC

(26)

and Eq. (21). However, there is small mixing
efficiency through the charge prescribed by the
macroscopic Maxwell relation

ep = (I/4v) V E, (27)

where e is the electronic charge, N is the number
of unit cells/cm', and g is the optical susceptibility
tensor.

The vector R(r) may be expanded in a reciprocal
crystalline lattice Fourier sum

R(r) =~56 Rse' '
(23)

where the vectors G are all the reciprocal lattice
vectors. The induced charge ap(r, t) has Fourier
components of the form

p@= e''~~' e""&'e' '
pz, (+qI, +G)+c.c. , (24)

where G is one of the reciprocal lattice vectors, and

pg (+ q~ + G) = Rs E~ . (26)

The total induced charge ap(r, t) is the sum of such
expresssions with various G.

In the nearly forward direction, with G=O, this
equation specifies zero mixing efficiency, because~.p =0 through the general relation

where n is the light refractive index. The ordinary
Bragg condition is G. (G+2R, ) =0, which defines
8~ through G k, = —Gkr»n~a

In the light-mixing case, let 58 be defined by

G k, = —Gk, sin(8e+ 58), (33)

where G is assumed set for the matching condition.
Positive 58 corresponds to G being more antiparal-
lel to k„since 0& 8e & —,'v. To first order in ~~/&u,

as evidenced by Eq. (8). It is almost always pos-
sible for nonzero G to arrange for the above equa-
tions to be satisfied merely by changing the direc-
tion of G. Because (d~ « ~„and l qI. I « tk, 1, the
angles between vectors k„kp, and G are nearly
the same as the angles involved in the ordinary
Bragg-scattering condition, where qJ. =(dl. =0 in the
above equations.

For some applications, and certainly in mea-
surements of light-induced charge distribution, it
would be undesirable to have the output sum or dif-
ference frequency collinear with the scattered
Bragg beam which is at the input x-ray frequency.
Towards this consideration, assume that ql is co-
planar with k, and G, so that kp is also in the same
plane. Let the input light beam travel at an angle
B from the input x-ray beam k, . We shall calculate
to first order in u&~/u&0 the angle that G should be
turned to phase match, and the resultant angle be-
tween kp and a Bragg-scattered direction.

From the above momentum-energy conserving
conditions, using &uz = kzc, w~ = koc, and u~ = qz, c/n,
we have

G ~ (G+ 2k, ) = (qf/n ) s 2k, (q~/n) v 2~ ~ (k~+ G), (32)
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and qz, /G we have

58 = +(qz/G cos8s)(1+ 1/n) . (35)

If instead k& and qL, are chosen to be collinear, then

58 = a (qz/G cos8s) [cos(28s +8) —1/n], (34)

where the sign of B is determined by the statement
that some value 0 & B &-,'m allows qL, to be antiparal-
lel to G. The maximum I58I occurs when 8= —m

+ 28~. For this value of B we have

limation is sufficiently broad to include the varia-
tion in direction of the reciprocal lattice vectors.

In contrast to nonzero G cases, measurement of
the light-induced charge density when G = 0, given
by Eq. (28), will yield only information obtainable
from measurements made purely in the optical re-
gime. Mixing in the forward direction may be en-
hanced by processes other than considered here, '
but the intensity of such scattering is small com-
pared to that utilizing nonzero G.

IV. MIXING EFFICIENCIES
(35)

58 = + (qz/G cos8s) (cos28s+ 1/n),

58 =+ (q~/G cos8s) (cos28s —1/n),

if k, and q travel in the same sense of direction,
and

In previous formulas, the quantity not known

precisely is the induced charge density

p~ (~ q + G) = Rs E, . (42)
(3V)

if the beams travel in opposite directions. The
sign of cos28~ determines which case results in a
larger I 58 I.

The sum or difference frequency x rays travel
in a direction 28~+58'from the input k„where

58'=+ (qL/k, cos8s) [ is8n/sn +is(n8s8+)] . (38)

The maximum I
58'

I occurs when B =
& g —9~, i. e. ,

when the light travels nearly perpendicular to G.
In general, the optimum angle 8 is dependent on
particular experimental designs and intentions.

The range of angles in the input that can be mixed
by a perfect crystal is determined by

nk&-,'(nr+ n~),

because larger hk results in small ~ given by Eq.
(12). If the range of nk in the input is primarily
determined by the finite source collimation, then
nk = k, 84 sin28s. Equation (3S) then determines
a small angle ~4 of order 10 rad, for values
&, = &o=-,', sin28~ =0. 5, and k, =5&10. Thus, we
feel justified in assuming that, with today's x-ray
sources, the input x-ray beam will be collimated
in the Bragg plane to an angle larger than b4.
Under such conditions, the "integrated intensity, "
defined by S, = fS(nk) d4, where S is given by Eq.
(12) is of interest. Using ak =kz sin28sd@, it fol-
Tows that

X~r~ 1+cos q cosp,3 2 2

I 2(or + a~) sin28 cosP~
Rs' &z . 40)

If &~+ &o is dominated by x-ray absorption varying'
a,s Xo, then S, decreases slowly as X~'. The num-
ber of output mixed x-ray photons N~ is given by

No = Sr', (41)

where N, is the number of input x-ray photons/rad.
The collimation perpendicular to the Bragg plane
is assumed to be consistent with the phase-matching
condition. If the crystal is not perfect, Eq. (41)
still applies, ' under the condition that the input col-

One may calculate a microscopic charge p
through the use of lNmovell's microscopic relation

p =[v (X E )]/e, (43)

where g is the microscopic material linear sus-
ceptibility, and E is the microscopic field. On a
microscopic scale both g and E fluctuate over
atomic diameters. Since we are interested in the
Fourier component of p at wave vector G, the
gradient operator in effect multiplies ~E by G.
Thus one may write

I R51 = sGX/e, (44)

where s, generally a fourth-rank tensor, is a
dimensionless quantity, whose elements vary from
very small values to roughly 10 '. In fact, a, com-
parison of the formula for Rs, and the usual formu-
la for optical linear susceptibility reveals that

E,[p,&o,/(~& &u~)]f„,d'-re, (r)e ' '~qr, (r)
Z,[p,~,/(co', —~', )]f„,d'rq, (r)(Gr, )q, (rl

'

(45)

where P& in Eq. (45) refers to the component of p&

parallel to the light electric field, and r, is the
component of r parallel to the macroscopic induced
polarization. In the limit of small G, s formally
reduces to the cosine of the angle between G and the
induced macroscopic polarization. In practice, the
available vectors G are, of course, determined by
the crystalline structure, and the smallest vector
G is often approximately equal to an inverse
atomic radius. The numerator in Eq. (45) is,
therefore, typically smaller than the denominator.
This compares with the x-ray Bragg-scattering
result that outer electrons do not contribute much
to the Bragg- scattered intensity. Consequently,
values of s should be expected to range from 10 ' to
10 to nearly 0. If the states involved in the opti-
cal transitions are states of definite parity, then,
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if the electric field and the vector G are perpen-
dicular, then s =0. Generally, s is smaller than
usual under such conditions.

To estimate a value of s, consider solid hydro-
gen, taken to be in a simple cubic lattice structure.
The dominant transition is taken to be the 1s-2p
transition and the wave functions those of the hydro-
gen atom. The light is polarized along G. The
size of 6 is taken to correspond to the density of
liquid hydrogen, 0.07 gm/cm, so that G=2. 2
x10' cm '.

For arbitrary G, Eq. (45), upon the use of stan-
dard hydrogen wave functions, in this case reduces
to

s = 1/[1+ (-', Ga,)']', (45)

where a0=0. 51x10 cm is the Bohr radius. The
above value of G, therefore, results in s=0. 27.
It is important to notice that if 6 or ao had been
chosen to be twice the above value, then a value
of s =-0. 03 would have been obtained. Since the
mixing efficiency goes as s and the time to do an
experiment for a given signal-to-noise goes as s~,

the change of Goo by a factor of 10 would have in-
creased the time to do an experiment by 10 . The
critical dependence on Gao of mixing efficiency
will, however, allow fairly accurate efficiency
measurements to yield considerably more accurate
measurements of effective radii similar to ao.

Equation (45) predicts zero mixing efficiency un-
der certain arrangements of input angles and po-
larizations. For example, by varying the light
polarization, one can go through a zero of mixing
efficiency.

Choosing values of X0=10 cm, a large value of
or+ oto= 1 cm ', G=~vx108, X=1/+r, and a possibly
pessimistic value s = 0. 05, then S, = No/N, = 2. 5
&& 10 ", if a light input of 1 W/cm' is used to uni-
formly illuminate the x-ray spot region. A con-
ventional x-ray tube dissipating 2 kW emits about
2&&10" characteristic photons/sec into a hemi-
sphere, so N, = 1. 5&& 10' /rad sec if the beam is
collimated to 1' in the direction perpendicular to
the scattering plane. For an input I.aser power of
100 W spread over a 0.01 cm~ x-ray spot size,
then the number of scattered photons No should be
approximately 4 X 10 /sec. This number can be
increased, for example, through the use of a higher
brightness x-ray source. However, the signal
rate to scattered x-ray background rate is also
determined by the degree of perfection of available
crystals, and a greater scattering efficiency would
be desirable.

By use of a high-power pulsed laser source,
emitting light during a total time T each second, the
quantity S, and therefore the ratio of output mixed

photons to background scattered photons may be
increased during the time of the laser pulses. By
not observing scattered background x-ray radiation
when the laser pulse is off, one increases the sig-
nal count rate to background count rate. In this
way, one may obtain greatly increased signal/
noise ratios as long as the average light power is
not severely reduced.

The number of mixed x-ray photons, under such
conditions, is proportional to the input x-ray Qux

during the time of the laser light pulse. The rest
of the x rays are wasted. Hence, in addition to
using a pulsed laser and gaining a factor 1/~T
in signal/noise, one should use a pulsed x-ray
source, and gain a similar factor 1/T in net out-
put signal. For example, under the previously
assumed conditions, with an average laser output
of 1 W and an average x-ray tube electrical input
of 20 W, with T =10 8 sec, then No=0. 4/sec.

According to Eqs. (12) and (45), a large mixing
efficiency may occur in a perfect crystal at the
phase-matched condition hk = 0 under ideal and
special conditions. If x-ray lasers provide a suf-
ficient flux/cm rad of x rays, then light x-ray
mixing can be used to efficiently tune the x-ray
laser output.

CONCLUSIONS

Especially under short-pulsed conditions, opti-
cal x-ray photon mixing should be an observable
effect, and potentially useful for investigating
microscopic light-excited charge densities. X-ray
lasers will extend the potential of such investiga-
tions, and the process itself may be used to tune
x-ray laser outputs. The formalism exemplified
here can be extended to other related effects, such
as down-converting two x-ray beams to form opti-
cal photons, or mixing of two optical photons with
one x-ray photon.

A comparison between the treatment given here
for x-ray light scattering and the various terms in
the nonlinear polarization of Armstrong et al.
reveals that there are other types of matrix ele-
ments not considered here which may become
important in special circumstances. At low x-ray
energies, the electron-photon cross section be-
comes modified because the electrons are bound.
At high x-ray energies, relativistic effects should
be considered.

This type of treatment may be extended to de-
scribe the interaction of other probes which inter-
act with the outer electrons of optically driven
material. For example, if instead of an x-ray
cross section ro, the electron-electron cross sec-
tion was used, the calculations above would describe
electron beam energy up- and down-shifting by
electron-Bragg scattering from an optically-induced
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charge wave.
It has come to our attention that Freund and

Levine have performed a related calculation. '
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For a special model, it is possible to compute the self-consistent confinement and penetra-
tion of an energetic plasma by an rf field of large amplitude for arbitrary values of the quan-

tity (v/c) (~~/cu), where v is a characteristic electron thermal speed, ~z is the plasma fre-
quency deep in the plasma, and (d (& ~z) is the rf frequency. Previous theories concerning
nonlinear behavior of electromagnetic waves in p'.asmas have required this quantity to be small
compared to unity.

I. unROOVCTION

Previous theories of propagation of large-ampli-
tude electromagnetic waves in plasmas' ' are
based on assumptions that become invalid when the
electromagnetic frequency is much less than the
plasma frequency, &u«&o~ (an overdense plasma).
These assumptions are

(1) vB/c « E, (R«s

(ii) ~»(1/T), (Ref. 1)

where v, B, and E are representative values of
particle velocity, and magnetic and electric fields,
and T is the characteristic time during which a
representative particle samples the scale length of
the fields. The second assumption is clearly nec-
essary for the validity of the multiple time-scale
method, commonly employed in theories of rf con-
finement. ~ Also, it is clearly necessary for re-
placing the Vlasov equation by local (moment) equa-
tions in describing the particle dynamics. 3

In contrast to the present work in which large
amplitude circularly polarized waves are confining
a semi-infinite plasma, Gibbons and Hartle have
considered a case in which large amplitude linearly
polarized waves are propagating in an infinite

plasma. The v&&3 forces are correctly included
there, as they are in the present paper.

Both (i) and (ii) above can be expressed approxi-
mately by the following inequality, valid when
cu «v&.

(v/c) ((u, /&u) «1 .
For plasmas of thermonuclear interest (kilovolt
energies, densities greater than 10" cm '), this
condition becomes violated for electromagnetic fre-
quencies less than i0' sec-'.

The purpose of the present paper is to solve the
problem of self-consistent rf confinement and pen-
etration of a Vlasov plasma under conditions in
which inequality (2) is violated. We consider here
a simple model problem subject to the following re-
strictions:

(a) The incident transverse electromagnetic field
is circularly polarized.

(b) The electrons have no incident energy trans-
verse to the rf wave vector.

(c) The iona are too heavy to respond to the rf
field.

(d) The iona are cold, and therefore adjust them-
selves so as to exactly cancel out the (time-inde-
pendent) electron space charge. [Because of the


