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An n-dimensional linear Markov process with parameters o,'~(i=1, ~ ~ ~, n) and n =- Mo, is
considered. Criteria for stationarity of the process and spectral properties of the fluctuations
around the stationary state ~=0 are derived. When the stationary state is a thermodynamic
equilibrium state, the spectra are proven to be monotonic functions of the frequency. Positive-
definiteness of the matrix M3 (o & ) turns out to be the necessary and sufficient condition for
the absence of local maxima in the spectra. A process with Me (0. cF) positive-definite also
has the property that M2 (0. o ) is positive-definite, which guarantees the absence of external
driving forces, and corresponds to a pure relaxation process. M |',0.' o~) positive-definite is
a necessary condition for stationarity. Moreover, it is a necessary and sufficient condition
for the existence of spectra and transport coefficients. Positive-definiteness of M (o. Ct ),
M (0.'e ) and M (+n ) is linked to properties of the excess-entropy production.

I. INTRODUCTION states in the jth level. This gives

We shall derive some properties of fluctuation
spectra ("noise") and the excess-entropy production
during those fluctuations from equilibrium, as well
as from stationary nonequilibrium states of sys-
tems with n-coupled macroscopic variables.

As an example, one may think of an n-"level"
semiconductor with the electron occupancy numbers
of each level as the variables. In the equilibrium
state there are only thermal transitions between
the levels. A stationary nonequilibrium state may
result when we continuously "pump" electrons from
one level to another by means of a steady light
source. Spectra can be obtained experimentally
through a Fourier decomposition of the temporal
history of the fluctuations in the conduction current:
The conductivity is a linear combination of these
occupancies, with the mobilities as coefficients.

The time dependence of the n macroscopic vari-
ables a, (t= 1, . . . , n) of this and many other kinetic
processes is assumed to behave like a Markov pro-
cess and thus to be governed by a first-order dif-
ferential equation in time'

a. = f (a), a = (a„.. . , a„)r .

For the semiconductor example discussed before,
the explicit form of Eq. (la) may be obtained'5 by
assuming that the transition current p, &

from the
ith level to the jth level is proportional to the oc-
cupation a, of the ith level and to the number of
vacancies in the jth level, the "mass-action" laws:
P,&

= y, ~ a, (N, —a&), where N~ is the total number of

= —2 [y, & N& a, —
y&, N, a& + (y&, —y;&) a, a&] . (lb)

In many cases the energy gap between the valence
band, defined as i =n, and the higher levels, de-
fined as i =1 or 2, is equal to the energy of photons
in the optical spectrum. In the case of steady light
absorption there results a cu'rrent U~, for example,
from the nth level to the kth level. One has U„»
= a„qE with q, the quantum efficiency, and F-, the
constant number of incident photons per second.
For all practical cases, however, the net decrease
in a„ is negligible compared to the large number a„
of electrons in the valence band. Hence, one takes
a„=N„and U„» a constant as a result. This is in-
corporated in Eq. (lb) by adding U~ to the equation
for a» and —U~ to the equation for a„.

We solve each model for its stationary state a,
i. e. , f(ao) = 0. We linearized Eq. (la) defining o. (t)
—= a(t) —ao and find

sf (a) (Mi~=—

We now remove any dependent equations and vari-
ables. We therefore obtain a reduced matrix M
with dimension & n, detM & 0, and n = 0 as the only
point where a = 0:
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n = —Mn, detMAO, dime~ n .

In the semiconductor example, a first reduction
would have been the elimination of one a, because
of the over-all charge neutrality of the material.

The solution of Eq. (3) is

(4)

It seems reasonable on physical grounds that M can
be diagonalized by a similarity transformation.
Thus, we assume that

M=c 'Ac with A&& ——d&&A.
&

. (6)

(If M could not be diagona1ized, M would not have
a complete set of eigenvectors and some identical
eigenvalues. In the semiconductor case, for exam-
ple, this is not likely to happen due to the many dif-
ferent submicroscopic perturbations that affect the
relaxation times I/X, . ) The solution of Eq. (4) then
becomes

a (f) =c 'e='ca(0)

or (6)

In order to ensure asymptotic stability of the sta-
tionary solution ao, i. e. , that any orbit finally
comes back or that a(~) = 0, also in the original
Eq. (1b), we require Rek, &0.6 The last condition
does not imply that M is positive-definite. [An ar-
bitrary real matrix A is called positive-definite if
(Ax, x) & 0 for all real x o 0, using the real scalar
product. ] For example, the matrix M for curve II
in Ref. 8 is not positive-definite. Rek& & 0 is not
a sufficient condition for positive-definiteness of
M unless M is symmetric. However, even for an
equilibrium stationary state M need not be symmet-
ric and not be positive-definite as a result.

Fluctuations

Equation (6) shows the smooth return from a
measurable macroscopic initial deviation o, (0).
The return is smooth because a(0) is so large that
we neglected any fluctuations in this case. In or-
der to use Eqs. (1}-(6)for the description of fluc-
tuations we must, as is well known, ' identify n(t)
with an average over some appropriate ensemble
of the fluctuating microscopic variable, at a time
f, after a given initial a(0) = o'0. It is not obvious
in the case where the a~ are caused only by fluctua-
tions that this conditional average a(f) exists and
still satisfies the previous macroscopic Eq. {3).
The last condition is the so-called "regression
hypothesis. " The equivalence between processes
obeying the regression hypothesis and Markov

processes was established by Lax and used to de-
fine a quantum-mechanical Markov process. For
a stationary process, the initial deviations are
determined by a probability distribution P(oo). We
have ( a) =0 and assume the matrix ( ne ), i. e. ,
f(u, o.&) ), to be given. We will only use these
two moments of P(nz).

All previous assumptions together do not neces-
sarily guarantee that P(ao, t) = P(ego, t+ t, ) as is the
case for a stationary process. We prove in Sec.
III that M( a a ) positive-definite is a necessary
condition for stationarity. Moreover, it is a neces-
sary and sufficient condition for the existence of the
time-displaced correlation matrix ( o.~ o.(t) ), fluc-
tuation spectra, and transport coefficients for all
linear combinations of the a, (t). This requirement
implies that Re%; & 0 but not that M is positive-de-
finite.

We define a relaxation process in Sec. IV as a
process for which the matrix M ( n o, ) is positive-
definite. We make a linear transformation to new
variables P(f) such that (P P ) = I, the identity ma-
trix. In this new space of equal variances in all
directions, the impulsive fluctuation "forces" ap-
parently are 0 on the average. Any remaining ac-
celerations P(f), in this space, will either slow
down the return in the direction of 0 as for a dis-
sipative process or will drive 6(f) towards 0, de-
pending on whether M ( o, o,Q is positive-definite
or not. In the last case, some components of P(t}
may become 0 and change sign in the time evolu-
tion of P(f).

Thus, when M'( e a ) is not positive-definite we
expect damped periodic solutions for some linear
combination of the P, (t), iri the case of a complex
X~, or solutions with one 0 (quasiperiodic), in the
case of real X's. Hence, its time-displaced cor-
relationfunction has a negative part and the Fourier
transform of this, the spectrum S(&o), may, as will
be demonstrated, have a local maximum as a re-
sult of this. In Sec.V it is shown that a necessary
and sufficient condition to have a spectral maximum
in a linear combination z(t) = (p, n(t)) = (y P(t}) is
that (M '( aa )p, p)&0. Thus, there are no spec-
tral maxima at all if and only if we have M'( a o.r)
positive-definite. If there are no maxima, the
process also turns out to be a relaxation process
as defined before. It is proven in Sec. II that
processes satisfying time reversibility, i. e. ,
(o. on'(f) ) =( o.o n(-t) ), among which are the
equilibrium processes, do not have spectral
maxima. In Sec. VI we show the excess entropy
production (P(t) to be positive, monotonically de-
creasing, and concave depending on the positive-
definiteness of, respectively, M( o. o. ), M ( o. e ),
and Mz( o, a ). Each of these three properties
restricts the X; to smaller sectors of the complex
plane.
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II. SPECTRA

One defines the time-displaced correlation ma-
trix' as

&t&(t)=-& a2a(t) ) = f da2P(a2) aoa(t)

One easily checks that &t&(- t) = P(t) G.iven a vec-
tor b, every matrix bb is Hermitian and positive-
semidefinite as [b b x, xJ = [btx, b x] under the com-
plex scalar product. Rebb is symmetric and,
moreover, positive-semidefinite under both the real
and complex scalar product. Hence, &t&(0) is sym-
metric and positive-definite. If it were not for the
averaging &j&(0) would only be positive-semidefinite.
From Eq. (4) one finds'

S(~) =2S (~)

when "time reversibility" applies with

S„(~)=- 2Re((M+ j&di) ( a a ))

(9a)

The properties of the spectra now are completely
determined by the properties of M and ( a ar).

Time Reversibility

We defined time reversibility in Sec. I as &t&(t)

=&I/(-t). Hence P =&t&. From Eq. (7b) we see that

S is real now. Also Re&t = Ref. Therefore, [see
Eq. (7c)] the real parts of the two terms in the
right-hand side of Eq. (8} are equal. The spectra
now become

&t&(t)=&aar) e" ' for t&0 &

= 2(M'+ &I)-' M&»') . (Ob)

= e'& ( a a') for t&0 . (7a)

Replacing the ensemble average over oo with the
time average, we rewrite the definition of &t&(- t)
for all t as

+T/2
t&(&-t)= iIm T 'f /, a(u)a(u —t} du,

Te oo

a convolution integral of a(z) with a(- z) . One
defines the spectral noise density S(&d) as

S(&d) =- lim (2/T) ~a(&d) ar(&d)',

with

+ T/2
ar(&o) = f„a(u) e-'""du .

S((u) =g(u) =2 J y(+t) e'/"'dt .
For the &II of Eq. (7a) we rewrite this as

(7b)

with

S(~) = e (~)+g (~)',
(7c)

y(~)-=2J, e~'&aa')e '"'dt. -

After partial integration we find

e(~)= —. &aa ) ——. My(~) .2 T 1j—

It is important to notice that S is Hermitian and
positive-definite whenever stationarity allows us
to define an S or a Q.'

The convolution (or Faltung) theorem of Fourier
analysis connects S and &t (-t) and results in

By ReA, for an arbitrary complex matrix A, we
mean the matrix with elements ReA, &. Using the
nonequilibrium values of M and ( a ar), the matrix
«S(~) may just as well be defined for a nonequilibrium
stationary state. This will be done in Sec. V. How-

ever, then S= 2S„obviously is no longer valid. Ap-
plying Eq. (5), we decompose S, in normal modes:

S„(~)= 2c 'N(&d)c ( a a ),
with

N, /
= 5;/ [X /(X2+ «/ )] .

(10)

Since S is Hermitian it is symmetric now that it is
real. Applied to Eq. (9) this gives, after some
rearranging,

M(a ar)=&» )M',
necessary and sufficient for time reversal.
Substituting &d =0 in Eq. (9}shows this condition to
be necessary. We will now prove that it is suffi-
cient. Put L-=M(a a ), then I, = i,r and
M=1 &a a ) . From this we see that M"&a ar) is
symmetric for all n )0. Therefore, all coefficients
in the series definition of g in Eq. (7) are sym-
metric, QED.

In Eq. (7a), we saw that ( a a )'/' is symmetric
and positive-definite. Hence, we may define
(a a ) / . (It is always possible here to write
&aa ) =Q D'/'Q, (aa ) =Q DQ, where D is
diagonal with positive elements and where Q is
orthogonal. ) ( a a ) '/ is positive-definite and
symmetric. We prove that the matrix of eigen-
vectors c ' defined in Eq. (5) may be written as

Solving for g (~}we get the general expression for
all spectra:

c-1 ( a aT)l/2O
7

(12}

S(~) =2(M+j~i) '(a a')+2& a &) [(M+j~l) ']' .

(8)

where 0, is orthogonal and diagonalizes ( a a ) / M
x & a ar)2/2 in the case of time reversibility.

Proof. Wehave(aa ) '/'M(aa )' =(aa ) '/'
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x L(u a ) '/'. The latter is symmetric because
L was symmetric. Hence, it can be diagonalized
by a particular orthogonal O„. Comparison of the
left-hand side after that with Eq. (5) gives Eq.
(12), @ED.

The eigenvectors and eigenvalues of M are real
now as we see from Eqs. (5) and (12). [As men-
tioned before Rek, ) 0 follows from stationarity; see
result (20), etc. ] Equation (12) considerably sim-
plifies the expression for the time-reversible spec-
tra. Using Eq. (12), we have c(o ar) =O, (((, nr)(/z
= (c ) . Substituting in Eqs. (9) and (10) we find

S(~) = 2~8(~) = 4c (N((d) (c ') ' .
In this form it is clear that 8 is symmetric and
positive-definite. We compute the autocorrelation
spectrum for the ith variable itself

S(~)((= 2S„((u)„=4Z, (c ')(,N//(c '), (

-4Z/(c )(/N//((d) . (14)

This is a "positive" combination of the normal
modes which are monotonic functions of (d [see Eq.
(10)]. Therefore, we already see that the spectra
of the &(((t) are monotonic functions of ((/ when time
reversibility applies. One easily proves that all
linear combinations of the n((f) have this property
Also it follows directly [see result (23)] from
the theory in Sec. V.

This refutes the explanations given for some
maxima found experimentally in equilibrium. ' An
equation similar to (14) has been derived earlier
by van Kampen, using the master equation and
"detailed balance. " It has been assumed however
by several authors' ' that the conditions he used
were not applicable to the system considered here.

(y(f)p, q)' & (4 (o)p, p) (y(o)q, q) . (15)

This gives l(g(t)p, p) I & (g(0)L(, L() but not l(g(t)L(, q)l
& l(y(0)p, q) l.

Proof. Take x(u) -=z(u+t) in the definitions
above. x, z, and y are functions of the time
through the variable (r(t), which itself is a stochas-
tic variable in (z(0). Because of stationarity the

III. INEQUALITIES FOLLOWING FROM STATIONARITY

We want to find the cross-correlation functions
and spectra for the following arbitrary real-linear
combinations of the o(;(t), y(t)= (q, n(t)) = q —o(f) and z(t)
=-(o(t), p). Their time-displaced cross-correlation
function is @„(f)=-{y(0)z(t)) =(q &((0) o(t) p)
= q Q(t)p= (q, g(t)p). After Fourier transforming
we find their "cross spectrum" S„((o)= 2f (q, 4((l)p)
&&e/"'dt = (q, S(~)p). Note that in general this is a
complex number. Directly from stationarity we
prove

same distribution P(oo) applies to all. One has
covar (x;y) &var(x) var(y), i.e. , the Schwartz
inequality applied to a new scalar product {x,y)
=—ff' ' ' fx(o(0)y(o(0)P(o(0)do(0. Here it gives (yx)
& (x ) {y ). From stationarity one also sees
(yx) -={y{0)x(0))= (y(0)z(t)) and (xz) = {zz). Sub-
stitution yields {y(0)z(t))z &(yz)(za). Usmg the
definitions above Eq. (15), we find Eq. (15), @ED.
Applying this to our (t((t) in Eq. (7) we find for real
vectors that

M(o o ) positive-definite is necessary
and sufficient for inequality (15) to hold. (16)

Proof. Necessity: We substitute the g(t) in

(L(, g(f) q)z, take q= p and expand for small t(& 0):

I (p, g'p)l = l(p, (u u')p)-f(p, «u o')p)l

If M" {oo ) is positive-definite, then K" is posi-
tive-definite and vice versa, as

(K"r r)=(M"{«') r (&(o ) r)

=(M" {~o')p, p) .

The case with n = 1 is sufficient to prove g(t) & (s, s).
We see that g(t) = —2 (Ke "'s, e -'-s) &0 for s
~ 0, because K positive -definite and detK = detM
((0. Then g(t) is monotonically decreasing, g(0)
=(s, s) andg(t) &0. Henceg(f) & (s, s), @ED. For
negative t one uses (f(-f) = g(f), @ED.

We could generally derive that the existence of an
S((d} is necessary and sufficient for inequality (15).
Here we only prove it for our particular g(t),
through result (16):

M{& o ) positive-definite on real vectors is
necessary and sufficient for S(~) positive-definite
under the complex scalar product. (17a)

& ((uo') p, p}';
certainly not if not M{a o ) positive-definite.
Sufficiency: we substitute our (II(t) in Eq. (15}and
rearrange it for t) 0 to read

({o or) -(/z e-((t (o ~r)(/R s)R & (r r)(s s ) q

with

r=-(o~')'"p, s ={oo')'"q
because {(x (( )'"was symmetric and positive-defi-
nite. We further rewrite it as (r, e Z's) & (r, r)
&&(s, s)?, with K -=(a &( ) '/zM{a ((( )'/'. Schwartz's
inequality show that the left-hand side is & (r, r)
x(e "- s, e z's). The inequality then is certainly
true if we can prove

(s, s) & (e x(s, e K's)=g(f) .
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Proof. Before and in Eq. (Vc) we found S(~)
= y (~) + g (~)' and [Sf, f ] & 0 for f & 0 . Hence we

have

2Re[j f, f]&0,

1.e. )

2Re[(M+j~I) '(n n )f, f] &0.

Vfe nom need

A- H positive-definite is equivalent to AH posi-
tive-definite when H is Hermitian and A an arbitrary
matrix. (IVb)

This can be seen from

[A 'Hb)b]=[h, H Ah]= [H 'h, Ah]= [d, AHd],

with h =-A ~Hb and d —= H 'h. In our case then we
have, equivalently,

Re[(M+ j&uI)(nn )f, fl

= Re([M(nn )f, f]-j~[(nn )f, f])

= Re[M(nn )f, f] & 0 .

One easily checks that this is so, if and only if,
M(nnr) is positive-definite on real vectors, QED.

We now change to the variables used in the proof
of result (16):

p= —Kp with p(t) -=(nnr)-'~'n(t),

K= (nn') '"M(nn')"', and (pp ) = I
(18)

K has the same eigenvalues X, as M and is positive-
definite as we found in the proof of result (16}. The
reason that M(nn ) should be positive-definite is
more apparent in P space. If K was not positive-
definite there would be a Po, and a neighborhood of
Po, for which (~3o, Po) = —(KPO, Po) & 0. All multiples
of vectors in this neighborhood have this property.
So there is a "cone" in p space where the conditional
average P(t) always moves away from 0. In P space
the fluctuations are isotropic because (PP ) = I.
Hence, in a first approximation, fluctuations away
from the P(t) orbit are equally probable in all direc-
tions as for a "random-walk" process. A random
walk all by itself already has a finite probability
of "drifting" off to infinity and a smaller one of
doing so while staying within a given cone in space,
in particular the cone where (P, P) &0. In this cone
the conditional average does not move back to 0.
Because of the "drift" property of the random walk
this is not consistent with stability of the stationary
point 0.

In thermal equilibrium moreover, K is sym-
metric as we can see from the formula under Eq.
(12). Therefore K"=O„A"0„, with 0 defined in

Eq. (12), and K" symmetric and positive-definite
for all n 0, whenever time reversibility applies.
Hence M "(nn ) is symmetric and positive-definite
as we saw in the proofs of results (11) and (16}.

Introducing the fluctuations through a Langevin
source term $(t) in the right-hand side of Eq. (3)
rather than specifying (nn ), one finds (see the
Appendix}

M(nn )+(nn )M = —'S ((o)= ==B= 2D =k(L+ L ),
with 8 the matrix of second-order Fokker-Planck
moments, D the matrix of diffusion constants, and L
the matrix of 'Gnsager coefficients" when it exists
(see Sec. VI). :5(t) t-urns out to be the time-dis-
placed correlation matrix of $(t). All of them are
positive-definite by definition. These relations and

M(nnr) positive-definite thus allow us to define all
these transport coefficients. For the semiconductor
case the matrix (nn ) can now also be derived
from the "mass action" laws as there exists an ex-
pression for the = (see the Appendix} and M could
be found from Eq. (lb).

IV. RELATION PROCESSES AND DAMPED PERIODIC
SOLUTION

From Eqs. (3) and (18) we find the accelerations
of the conditional averages:

~ =M n, P=K'P. (19)

The eigenvalues of M~ and K~ are fX, ] and do not
necessarily satisfy Rek~ & Q. Moreover, K might
not be positive-definite. A relaxation process is
defined here as a process with M2(nn ) positive-
definite. If K is not positive definite, there is a
cone in P space with (P, P) & 0. The conditional
average P(t) has an acceleration component towards
0 there. In this space all velocities P have a com-
ponent towards 0 and the fluctuation "forces" aver-
age out to zero. Accelerations of the conditional
averages then come from external driving forces.
(Decelerations are due to friction or dissipation. )
In that case one would rather introduce one fluctua-
tion source term (Langevin) into the second- or
higher-order equations than one into each first-
order equation as we do here (see the Appendix).
An example of this is the fact that one introduces
"noise" into the second-order equation for the elec-
tric "LRC" (or harmonic) oscillator so as to pres-
serve the formal relation i —= dq/dt

K positive-definite and K positive-definite each
impose additional restrictions on the domain of the
X, in the complex plane as we mill see from the fol-
lowing:

K" is positive-definite in the real plane defined
by the complex eigenvectors e, and e, , if and
only if Rek~/

~
Imk,"

~

& cot($0); with n = 0, 1, 2, 3,
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cos(g )-=(a, b)/ l at', a -=e
&

+ e &*, b -=(e
~

—e &~)/j,

such that la l = lbl and Os. g, &-,'v.

(20)

Proof. e, is an eigenvector of K and K". Hence
ye,. and y*e~~, with y arbitrary-complex, are also
eigenvectors. We choose y such that la) = Ib ( and
K"e;= (R+ jJ)e with J&0. Then K"a=Ra —Jb and
K"b= Ja+ Rb. We want (K"(j'a+gb), fa+gb) & 0 for
all f and g t0. Working out the quadratic equation
in f and g we find the conditions

R /J —(a b) /(I aI (a b) ) R'0 QED .

Writing A, =
l X, I

e' we see that K positive-definite
restricts all eigenvalues to the sector of the right
half-plane with I yj & $0& —,

'
m as the other real X&'s

are positive for a positive-definite K. Hence
Rek, &0 follows from M(onr) positive-definite. A
"relaxation" process, i.e. , K positive-definite re-
stricts the same eigenvalues X, to a sector with
I+I & z $0& —,

' v guaranteeing R, /I J, I &1. In the next
paragraph the spectra are proven to be monotonic
if K is positive-definite. It will result in j yl

3/0&6 v guaranteeing R, /I J, I &W3 for this type
of process. This class of processes apparently
is a subset of the "relaxation" processes here in the
plane defined by e, and e, . This may be incor-
porated in the general theorem:

If M'(ncF }positive-definite,

then M (a a ) positive-definite.

P~oof. We prove that if K is not positive-definite
then K is not positive-definite. If a matrix A is
not positive-definite, then (A+A ) has an eigen-
vector with a negative eigenvalue as

(Aq, q) = Q(A+ Ar)q, q)

with 0 orthogonal, =&=5,&t'„and r=Qq. (Numer-
ically this often is a fast method to determine
whether a matrix is positive-definite. ) Then under
our assumption there exists a p with (K + Kr )p
= —p,p and p, &0. Applying K once again we find
(K p, p)+(K r, Jr= —p(Kp, gp&0 with r=K p. This
is only possible when (Ksp, p) & 0, QED.

These accelerations in P space when K is not
positive-definite will result in (quasi-) periodic
solutions for a certain linear combination of the
P, (t) as discussed in Sec. I. This combination has
a negative part in its time-displaced correlation
function and a local maximum in its spectrum, as
we will see.

V. CRITERION FOR LOCAL MAXIMA IN THE
NONEQUILIBRIUM SPECTRA

We limit ourselves to maxima in the nonequili-
brium autocorrelation spectrum S„(~)of any real
linear combination z(t) = (p, a(t)). Using the results
above inequality (15) we find

S„(~)= 2(S„(&u)p, p) for z = (p, n(t)), (22a)

with S„defined in Eq. (9). We can use the nonequi-
librium S„only to determine the autocorrelation
spectra. We now prove the following:

The variable z(t) = (p, o(t)) generates a local
maximum in S„(&u} if and only if (M (no' )p, p} & 0.
There is no linear combination of the o, (t} with a
spectral maximum if and only if M'3(no'r) is posi-
tive-definite.

Proof. Sufficiency: We have S„= (M'+ &u'I) '

&&M(oo ) [see Eq. (9)], using the nonequilibrium
values of M and of (aa ). Note that (M +sr I) ' is
real also. We find

dSgg" =2(S,'(~)p, p) =-8~((M + ~ I) M(» )p, gp

We have S„(0)=0 because S„(~}is even. Hence,
if S,', would be positive for small & 0, there would
certainly be a spectral maximum. For small (d

we have

&„4&)=—8~(M '(oo )p, p) as ~-0. (22c)

Therefore, a sufficient condition for at least one
maximum would be (M (oo )p, p) &0. Necessity:
S„(~)only has a maximum if S„(&u) is not negative-
definite for all w &0. This means that there only
is a maximum if (M + ~ I) M(noz) is not positive-
definite for u»&0. Result (17b) for a real scalar
product and a symmetric H shows A(nn ) positive-
definite to be equivalent to A '(oa ) positive-de-
finite. Hence we only have a maximum if
M-'(M + HI) (oo ) is not positive-definite for all
(d&0. We write this out as

M'(aa )+ 2&v'M(un')+ ~'M '(nor) .

S„(~)= g&, S(&u)p) = (p, Re(S)p)+ j(p, Im(S)p) .

We prove that Im(S) is an antisymmetric real ma-
trix. S was Hermitian by definition. Hence S = S
= (Sr)* and ImS = (1/2j)(S —S*)= (1/2j)(S - S ). There-
fore, we have [ImS] = —ImS, QED.

As a result we have (p, Im(S)p) =0 and the auto-
correlation spectrum S (&u) = (p, Re[S(m)]p) is real
as it should be by definition.

For our general nonequilibrium S, we write the
expression in Eq. (8), He[8(&u)]=S„(~}+S„(~),with
S„defined in Eq. (9), using however the nonequilib-
rium values of M and (oo ). We have (p, (S,+ Sr)p)
= 2(p, S„p) and thus
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if a linear combination of the a~(t) has a
spectral maximum, the slope of the spec-
trum is positive from (d = 0+ till the first
maximum. (24)

The experimental nonequilibrium maximum in the
Cd-Se photoconductor of Ref. 8 is found at = 0. 005
Hz. Most of the spectra for Au-Si-4 in Ref. 10
with maxima certainly do not have positive slopes
for small ao. This may be attributed to additional
"1/f noise" or a maximum at even lower &u.

We show that P„(to) &0 for a certain to, is a
necessary condition for the existence of a maximum
in S„(&u). The necessary and sufficient condition is

f dt(P(t)t'p, p) & 0

as we may see from the expression for (S"(0)p,p)
found by two partial integrations of Eq. (7b).

VI. RELATION WITH EXCESS-ENTROPY PRODUCTION

One expands the linear laws [(see Ref, 11, Chap.
5] a = L(SS/8 a), with S(a) the entropy of the system,
for small deviations from the entropy maximum:

S'S(u)
& = —Lse with s, =-—

8 o.' 8Q
(as)

The middle term is positive-definite; see result
(16). According to result (17b) the third term is
positive-definite also. Therefore, the first term
M'(o.'o.r) is the decisive term which dominates for
small ~ & 0. According to result (17b) again, there
only is a maximum if M '(aa ) is not positive-de-
finite, @ED.

From the derivation it is apparent that the second
derivative at + =0, i.e. , ~S"(0)= —SM '(aar), com-
pletely determines the presence or absence of max-
ima at any co. A negative ith diagonal element in
M '(o.nr) apparently means a maximum in S«(~),
the spectrum of a,(f), due to the coupling with the
other a~(t)'s. Maxima are always the result of cou-
pling effects because for a single variable process
we have M'(aa ) =X'(a) & 0. From result (21) we
see that every process which is not a relaxation
process, as defined in Sec. IV, has a spectral max-
imum for some linear combination of its variables.

When time reversibility applies we found K= K ~

and K" positive-definite for all n & 0. In that case
M'(aa ) and M'(aa ) were shown to be positive-
definite. Hence, equilibrium fluctuations are a re-
laxation process and

there is no linear combination of the a, (t) with
a spectral maximum in the case of thermody-
namic equilibrium.

(23}

From S,',(0) = 0 and result (22c) it is obvious that

As a result s is symmetric and positive-definite.
Comparison with Eq. (3) gives

(25)M=Ls ~

Inverting S(a) =k InP(a) and expanding it one arrives
at

(acr) =ks '.

k 'p =((aa ) a, Ma)=(P, KP)20. (ae)

The minimum excess-entropy production is 0 as a
result of the entropy maximum and stationarity.
The 6' serves as a Liapunov function of stability
theory. It is also equal to Onsager's dissipation
function because -k((aa ) 'a, h) =(L 'i, 6). '~ Its
time derivative is

——=-(KP, KP)-(K P, P).1 da' 2

kdt (30)

If time reversibility applies we have K positive-
definite and d(P/dt & 0 at all moments during the time
evolution of p(t) or a(t) Hence . 6'(t) decreases
monotonically to its equilibrium value 0 then. Its
second derivative is

1 d'6
=+ 3(K P, KP) + (K P, P} . (31)

The first term on the right-hand side is always pos-
itive. If time reversibility applies K is positive-
definite also and +(f) is a concave-monotonically
decreasing function during the time evolution of
P(t). Hence (Kp, p) has potential-like properties
here.

For a nonequilibrium stationary state one often
still finds the two proportionalities expressed in
Eqs. (25) and (27).""One may easily define a
nonequilibrium entropy from (a aQ in the neighbor-
hood of the stationary state using P(a)
«exp[--', ((o.'o' ) '&, &)]. The problem however
is to find a general nonequilibrium entropy from
which one could get the stationary state ao and the
same P{&)

For our fluctuations here we never used higher
moments than the second one. Replacing the P(a)

Therefore, (acr) is indeed symmetric and posi-
tive-definite in equilibrium here and L= M(aa )/k.
Thus L is positive-definite because of stationarity.
Our L here is equal to the L under Eq. (11), apart
from Boltzmann's constant. Hence, in equilibrium
Eq. (11) holds and expresses the Onsager relations

L = L, when time reversibility holds. (28)

The change in entropy during a deviation from n =0,
i. e. , the excess entropy, here is ~ S-=S(a) —S(0)
= ——,'(so. , a) which is «- —,'k((ao. r) 'g, a). We then
find for the excess-entropy production 8 =dhS/dt-
using Eqs. (16) and (1S):
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by the above-mentioned Gaussian distribution has
no effect on any previous results. ' It makes Eq.
(2'1) a tautology and allows us to define an L for a
nonequilibrium stationary state, through Eqs. (3)
and (26), as suggested directly from Eq. (25) by
Ref. 1.

Whatever name one gives to (K p, p) outside equi-
librium it still retains many of these potential-like
properties. For our relaxation processes (P(t) still
is a monotonically decreasing function as we see
from Eq. (30). When K is not positive-definite
6'(t) need no longer be monotonic. At the end of
Secs. I and IV we saw that "K not positive-definite"
resulted in damped periodic solutions. Some of
those might indeed give temporary increases in
tP(t) if (KP, P) were a potential. One might even"ex-
plain" the maxima in the spectra by noticing from
Eq. (31)that, for example, d6'/dt may have a local
maximum, or come close to that, if K is not posi-
tive-definite. This would disturb the monotonic
rate of change of + and result in an overrepresenta-
tion of some frequencies in the Fourier decomposi-
tion of P (t) and u(t) as compared to the case that
K is positive-definite.

VII. THE SEMK.'ONDUCTOR EXAMPLE

Charge neutrality gives &„= -p& 1 &; hence M„
= M&& -M&„and g& 1M&~ = 0, for the M and M defined
in Eqs. (2) and (3). M has the same eigenvalues as
M plus &n=0. If the transition current P;& is an in-
creasing function of a„a decreasing function of a&

and of no other a„as for the "mass-action" laws,
one easily checks from Eqs. (1b) (first part) and
(2) that

slgnM;g = stgnM„& 0 (t & j)

Mf) &0 .
Therefore M is "sign symmetric" and

A= -M +max, (M„) I

is non-negative, i.e. , all A, , & 0. From the theory
of positive and non-negative matrices" and g &M„
= 0 we find that all &, lie within a circle with radius
equal to maxM;; and center at mmdlf;„. hence Re~;
& 0. Wessels and van Vliet' proved this differently.
Carrying one of their arguments one step further
one finds

(M )(q= Z (Mo M~()+M(g & M((

TrM & QMp &n '[TrM]p

with Schwartz's inequality. Using TrMp =/X, and
TrM =/X, this would be obvious for any matrix with

real eigenvalues. It now also applies to the com-
plex eigenvalues of a sign symmetric M and its re-
duced version M. Therefore, one has for the M

of the semiconductor case:

n-1 1 n-1 2

X~P & — Q X;, dimM= n —1.
1=1 n /=1

(32)

We assumed the regression of our parameters a;
from fluctuations o(0) back to the stationary state
a=0 to be governed by o.'=-M o. The u(t) here stand

for a conditional ensemble average of the actual
values of the parameters at a time t after a given
initial ao at t = 0. Usually, the process is believed
to be stable when M has positive eigenvalues X, or
ReX & 0. This is indeed so for the solution a(t)
= e "-~~ of the differential equation. However the
stochastic properties of the process, i.e. , the
probability distribution P(a p, t), determine the ex-
8 tence of such conditional averages and the over-
all stochastic stability of the process as a result.
In Sec. III, we showed that the required stationarity
of P(ap t) i. e. , P(ap, t+t, )=P(np, t) for all t and

t„results in the requirement that the matrix
M(nar) should be positive-definite. Therefore, not
every combination of M, with Rek&0, and a posi-
tive-definite covariance matrix (o.o, r) is allowed in
a model of stationary process.

In Sec. II we saw that M"(onr) forathermalequi-
librium process is positive-definite for all n 0.
In the Appendix we show that M (ao, ) ispositive-de-
finite for a nonequilibrium process when the prob-
ability distribution of the fluctuations in the z; con-
sists of sums of Poisson distributions, i. e. , shot-
noise in the transition currents.

The rest of the paper is concerned with the power
spectra of the fluctuations, the "spectral noise
density" S (&u). In Sec. V necessary and sufficient
conditions to find a local maximum in the spectrum
of any quasilinear Markov process were derived.

Applied to the three-level semiconductor this gives
2(R' —J ) & —,

' (2R)' or ( R/J'
(

& v 3. From above Eq.
(21), we see that the periodic orbits, when the X's

are complex, certainly do not guarantee maxima in

any spectra because of the damping, also expressed
by Eq. (32).

Realistic nonequilibriurn examples have a separa-
tion between the three levels which is large com-
pared to kT because the largest separation is of the

order of the optical energy hv. With level 2 in be-
tween 3 and 1 and pumping from 3 to 1, the currents
due to &», y», and y» then are negligible. It fur-
ther restricts the M, and shotnoise " (see the Ap-
pendix) Either rjp ~r)3 «r23» r23 ~r$3 ~r)2 is
essary for A, complex. Numerically we have only
found R/~ J~ & 4. 8 in this case.

VIII. SUMMARY
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APPENDIX: LANGEVIN SOURCES; FOKKER-PLANCK
MOMENTS

In practice it is often easier to introduce the
fluctuations by adding Langevin-source terms;

a = - Ma+)(t) with &Q = 0. ( A1)

We take the (-jabot)-Fourier transform of Eq. (Al)
and find S(~) using its definition'8:

S(~) = (M+ j&oI )
' S ((o)[(M +j&oI ) '] ' .

Equating this to the S found before, in Eq. (8), we
get

St((o) = 2M&a a ) + 2&an ) M (As)

Wang and Uehlenbeck already proved the right-
hand side to be equal to 4D, the matrix of diffusion
constants which is equal to 2B, the matrix of sec-
ond-order Fokker-Planck moments. '3 The relation
with D may be found here from

M(aa ) = f, &n(0+)a(t) )dt.

We have to use 0+ rather than 0 as the expectation
value of a(0)a(0) does not exist because a(t) is
nondifferentiable at t= 0. Our S(&u ) in Eq. (8) is the
sum of two Cauchy distributions of (d and does not
have any moments beyond the first. Therefore,

&n(0)n(0)') = j (u'S((o)df

It turns out that the absence of spectral maxima in
any linear combination of the a, depends on posi-
tive-definiteness of M~&aar). Therefore, the fluc-
tuation spectra of an equilibrium process are mono-
tonic functions of the frequency &a (Secs. II and V).
This implies that experimental spectra exhibiting
these maxima may not be explained by means of a
quasilinear Markov process.

A process with M (aa ) positive-definite is de-
fined as a "relaxation" process in Sec. IV, because
of the absence of accelerations towards the station-
ary state a= 0, i.e. , other than the stochastic ones.
Also we prove there that a process with only mono-
tonic spectra, i.e. , M'(aa ) positive-definite, is
necessarily a "relaxation" process, i.e. , Mm&aar)

positive-definite.
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positive-definite and symmetric, as the correlation
matrix of the $(t). Thus we have St=2:". Using
Eqs. (26} and (27) we find

:"=M(na )+(aa ) M =~S~= 2D=B~k(L+L ),

(A4)

a form of the so called "A theorem. " We now find

(an ) and make the connection with the rest of the
paper. Using M in its diagonalized form Eq. (5)
we rewrite Eq. (A4) and get

T
( r) -1E with Es & (c " c )i~X]+X~

(A5)

We have E = E and positive-definite only under
the complex scalar product. It also shows that
(aa ) is uniquely determined by a given symmetric
positive-definite = and M with Re&&&0. That the
&anr) thus found is positive-definite indeed is more
easily seen from '

Tt
&nar)= g" e -"' " e " 'dt .

0
(A6)

Equation (A6) is easily proven by partial integration
or by diagonalization. Essential for convergence
is Rek, &0, which is so for the semiconductor model
(see Sec. VII).

We notice that M (aa ) positive-definite is equiv-
alent to A E positive-definite, which provides the
connection with the previous paragraphs.

van Vliet and Blok' assuming one-particle tran-
sitions per interval dt only, expressed the elements
of B in terms of the P,&. This assumption (see Ref.
16}is the same as used for obtaining a Poisson
distribution. [Here for the "1sec('(t)" the currents
are expressed in number of electrons per second. "]
Thus, we obtain "shot noise" in the transition cur-
rents as a first approximation. And as a result
we have

Pg Py&

(a negative correlation because a current P,z causes
an increase of a& and a decrease of a,) and

i j ~ pfI pal '
oaf

Note that the dimension of " is n —1. The previous
equations allow one also to compute the noise from
the mass-action laws. Therefore, this = has the
properties

does not exist (f=~/2v).
It is obvious from Eq. (A3) that S~ can only be

independent of (d, i.e. , white noise sources only.
So Eq. (7b) only allows = 6(t), with a constant:",

n-1Z:o= 2(p,„+p"„,}&0.
)~1

Using this and again applying the theory of non-



FLUCTUATION SPECTRA AND QUASITHERMODYNAMICS. . . 1133

negative matrices'~ this time to [-:-+max, (:- «)I ],
we find that all eigenvalues of = are positive.
Our = is positive-definite indeed because = = =

Therefore, M (nor) is positive-definite in this case
as required in Sec. III [use first part of the proof
of result (21)].

*Research supported in part by U. S. Air Force Office
of Scientific Research Grant No. 68-1416B.

K. van Vliet and J. Fasset, Fluctuation Phenomena

in Solids, edited by R. Burgess Q.cademic, New York,
1965).

~N. van Kampen, 5'luctuation Phenomena in Solids,
edited by R. Burgess (Academic, New York, 1965).

3M. Lax, Rev. Mod. Phys. 3~2 25 (1960).
4M. Lax, Phys. Rev. 172, 350 (1968).
~A. Wessels and K. van Vliet, Physica 43, 286 (1969).
J. LaSalle and S. Lefschetz, Stability by Liapunov's

Direct Method (Academic, New York, 1965).
The remark in Ref. 1. on the positive-definiteness of

M is an oversight [K. van Vliet (private communication) J.
8A. Wessels and S. Kruizinga, Phys. Letters 20, 243

(1966).
9It is assumed everywhere that each of the variables

n» has a stochastic character. This is not the case, for
example, when not all » are coupled to external systems

or "baths" [i.e. , P(0.») =5(0.») or $»
——0 for some iJ. In

that case one has to substitute "positive-semidefinite"
in all results that require or prove some matrix to be
"positive-definite. "

M. Colligan and K. van Vliet, Phys. Rev. 171, 881
(1968).

I. Prigogine, Thermodynamics of Irreversible Pro-
cesses (Wiley, New York, 1965).

2L. Onsager and S. Machlup, Phys. Rev. 91, 1505
0953).

~3P. Glansdorff and I. Prigogine, Physica (to be
published.

~4F. Gantmacher, The Theory of Matrices, Vol. 2

(Chelsea, New York, 1960), Chap. 13, Secs. 2 and 3,
theorems 1 and 3, Eq. (37), and note under Eq. (49).

~'M. Wang and G. Uehlenbeck, Rev. Mod. Phys. 17,
323 (1945).

~6K. van Vliet and J. Blok, Physica 22, 231 (1956).

PHYSICAL REVIEW A VOLUME 3, NUMBER 3 NARC H 1971

Binding of Two Closed-Shell Atoms on a Solid Surface*f

Amitabha Bagchi
Department of Physics, University of California San Diego, La Jolla, California 92037
and Department of Physics and Materials Research Laboratory, University of Illinois,

Urbana, Illinois 61801
(Received 3 November 1970}

The interaction of two noble-gas atoms on a solid surface is studied with a view to finding

conditions under which they form a bound state. Two limiting models for the surface are con-
sidered —a flat surface which constrains the atoms to move in two dimensions and imposes no

further restriction on their motion, and a surface consisting of a periodic arrangement of po-
tential wells separated by large barriers, to which the tight-binding method is applicable. A

curious feature of the result for the binding energy is shown to be a consequence of the fact
that the problem is two dimensional.

I. INTRODUCTION

Experimental work by Dash and collaborators'
on He' and He adsorbed on a solid surface has
opened up interesting questions on phase transitions
and the formation of a condensed state in the two-
dimensional film of a noble gas. The major forces
that operate on such a film adsorbed on a surface
are the attraction of the substrate and the muiual
interaction of the closed-shell atoms. The attrac-
tion of the solid constrains the atoms to move largely
in two dimensions parallel to the surface. Any pos-
sible phase transition, on the other hand, can come
only from the mutual interaction of the atoms them-
selves. This interaction is modified by properties
of the substrate, its geometry for example, which

may help or hinder the formation of a condensed
state.

The study of the behavior of two inert atoms on a
surface may be regarded as a useful preliminary
step to an eventual exploration of the many-particle
system. Such a study is interesting for two main
reasons. First, if two closed-shell atoms form a
bound state on a surface, it would strongly suggest
the possibility of the film of such atoms having a
condensed phase. Second, the information gathered
from a study of the two-inert-atom system may be
used for computing bulk thermodynamic parameters,
as for example in a virial expansion. For the two-
inert-atom system, interesting questions relate to
the existence of a bound state and the magnitude of
the binding energy. In this paper we study theprob-


