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The transient statistical properties of a single-mode laser field are investigated both

experimentally and theoretically. The physical system is a Q-switched He-Ne gas laser
oscillating on the 6328-A transition. The measurements are performed by photon-counting
techniques, using the so-called linear method which enables resolving times to be in the nsec
region. The effects of the photomultiplier and of the attenuators on the statistics are taken

into account. The measurements are interpreted in terms of the available laser theories as
well as in terms of a simple phenomenological model which attributes the statistical spread
to the initial photon distribution, neglecting the stochastic forces in the course of the buildup.

Finally, some of the approximations of the theories are discussed, and the sensitivity of a
transient measurement is compared with that of a stationary-intensity-correlation measure-
ment.

I. INTRODVCTION

In the past few years, much attention has been
focused on the statistical properties of a single-
mode laser oscillator. The problem is very im-
portant for laser applications, since knowledge of
the laser statistics allows one to set an ultimate
limit to the coherence of the laser field, as well as
for fundamental physics, since the very central
questions of nonequilibrium statistical mechanics
are involved here. The stationary-laser statistics
have already been fairly thoroughly investigated
both experimentally and theoretically. Little at-
tention, however, has been paid so far to the time-
dependent statistical properties of a laser. A di-
rect investigation of these properties is of particu-
lar interest, because they cannot be inferred in a
simple way from the steady-state behavior of the
laser. On the other hand, pulsed lasers are very
commonly used and a statistical interpretation of the
experiments can be essential in some cases.

In this paper we make a systematic investigation
of the transient statistical properties of a single-
mode gas laser. Recently these properties have
been the object of some experiments '' which have
been interpreted only on a semiqualitative basis.
Here we present new sets of experimental data in
a working region closer to threshold than in the case
of Ref. 4, thus making possible a quantitative com-
parison with the available theories on the transient-
laser statistics. ' Such a comparison, however,
is not straightforward. The measuring procedures
will therefore be carefully analyzed in order to
compare the outcome of the experiments and the
theoretical approaches.

The experiments reported in Ref. 4, as well as
in this paper, have been performed as follows. A
single-mode laser cavity is switched from a situa-
tion with large losses (low quality factor "Q") to

one with low losses. The switching operation is
fast enough so that it can be considered as "instan-
taneous, " and therefore all times can be referred
to a time origin corresponding to the switching
time. The gain in the laser medium is stabilized
at such a value that in the low-Q case the laser is
below the threshold of oscillation (losses larger
than gain) and in the high-Q case the laser is above
threshold (gain larger than losses). Starting at the
switching time, the laser field undergoes a tran-
sient, eventually reaching a. steady-state situation.

The transient-laser field is a statistical process,
and it can be characterized by the time-dependent
probability distribution for the field inside the cav-
ity. Photon-counting techniques are the most ap-
propriate means to investigate the statistical prop-
erties of an optical field. The experimental photon-
counting distribution measured by a photodetector
outside the laser cavity is affected by the detection
as well as the attenuation process. However, these
features can easily be taken into account in order
to infer the photon distribution inside the cavity
from the measured statistical distribution of pho-
toelectrons. '

When the laser is driven from the initial to the
final state adiabatically, i. e. , through a series of
stationary conditions with increasing gain-to-loss
ratio, at each point one can associate a steady-
state photon distribution which has been investigated
both theoretically~ and experimentally. '' " A
completely different problem is that of tracing the
instantaneous statistical d stribution during the tran-
sient evolution of the laser from below to above
threshold. First of all, such a process is no longer
invariant under time translation, hence ensemble
averages cannot be replaced by time averages.
From an experimental point of view, this means
that each sample in a statistical ensemble must be
taken starting from the same macroscopic initial
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condition, "and therefore the laser must be set to
that same initial condition between two successive
measurements. Furthermore, in the case of a tran-
sient field, each sample must be measured over a
time interval which is much smaller than the build-

up time, so that we can really describe an "instan-
taneous" situation.

Besides switching the cavity losses at constant
gain, the laser transient can be induced by switching
the gain of the lasing mode. This can be done either
by detuning the resonant frequency of the cavity with
respect to the center of the atomic line, or by vary-
ing the population inversion. In the first case, one
could change the cavity length, and hence the mode
position, by an electro-optic device. As far as the
second case is concerned, one should change the

pump strength, but it would take a rather long time
for the population inversion to adjust itself to the
new condition. '

Since most of the steady-state statistical experi-
ments have been performed on the helium-neon

0

laser oscillating on the 6328-A neon transition, we

study the transient on the same type of laser. The
choice of a gas laser, besides the experimental ad-
vantage of stability, makes possible the comparison
with the available statistical theories, which are de-
veloped for the case of atomic relaxation times
much shorter than the cavity damping time. "

Besides the experiments of Refs. 4 and 5, so~e
nonstatistical measurements have been published
on the buildup of the radiation field in a Q-switched
gas laser. Single transients were recorded'8 and
compared with the predictions of the semiclassical
laser theory. ' The interpretation of measurements
of single events is not straightforward, because only
an ensemble average of the output intensity can be
compared with the sem'classical theory. However,
in that case, the agreement was quite good, because
the laser used was well above threshold. When the
oscillator is far from threshold, the main statisti-
cal effect is given by the spread in the initial num-
ber of photons inside the cavity, whereas the effect
of the noise appearing during the time evolution is
relatively small. The result is that all single tran-
sients have approximately the same shape and the
effect of the statistics is mainly a random-time jit-
ter of the leading edge of the transient with respect
to the switching time. The interpretation of our
preliminary experimental results was given fol-
lowing these phenomenological considerations.
Baklanov et al. ' used similar, even if more re-
fined, phenomenological considerations to interpret
their measurements. Their laser, however, was
pump switched; this casts some doubt on whether
the gain-switching process in that experiment was
really much faster than the buildup time of the laser
radiation.

This paper is organized as follows: In Sec. II we

discuss the main points of the laser theory, giving
the range of validity of the approximations used.
Since our review of the theory is directed toward
the quantitative interpretation of the experimental
results, we found it useful to include some conver-
sion rules between different theoretical approaches.
In Sec. III we describe the experimental setup, dis-
play the experimental results, and discuss how they
must be manipulated in order to take into account
the effects of the measuring procedures. In Sec.
IV we give a quantitative comparison between the
experimental results and some computer calcula-
tions done with the Scully-Lamb-Sargent theory.
Furthermore, it is shown that a simple phenomeno-
logical model can give most of the quantitative fea-
tures of the experiments. In Sec. V we discuss
the range of the approximations used in the theory
and compare the transient measurements with the
stationary-intensity correlations from the point of
view of experimental sensitivity.

II. THEORETICAL CONSIDERATIONS

A. Review of Available Theoretical Approaches

From a theoretical point of view, laser dynamics
consist of the interaction of a system of identical
atoms (A) and a radiation field (E) in a cavity.
These two systems are strongly interacting through
resonant coupling. Furthermore, there are many
other degrees of freedom loosely coupled to the
above systems and acting 3s a thermal reservoir
(R). The reservoir summarizes the effects of
spontaneous-decay processes, thermal noise in the
electromagnetic cavity, cavity losses, and atomic
collisions.

A complete char3cterization of the laser field is
obtained by knowledge of the reduced-density opera-
tor p for the field. Calling p, the total-density op-
erator for the laser system, p is given by

P T-R, Apt

where Tr~ „denotes the trace operation over the
reservoir and atomic variables.

It is rather easy to trace over the reservoir vari-
ables under some general assumptions on the spac-
ing and range of the reservoir energy levels. As-
suming a dense distribution of reservoir levels over
a frequency band much larger than any reciprocal
characteristic time of the field-atom system (Mar-
kovian approximation), the coupling with the reser-
voir can be treated under the first Born approxi-
mation and is rather insensitive to the model chosen
for the reservoir. The latter is usually modeled
as either a collection of harmonic oscillators' or
as a collection of two-level atoms. '

The joint atom-field operator p„~ =- TrR p, obeys
an equation
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PAP PAP + PAF

Here, the coherent part has the structure of a
Liouville equation

ga P~ = H p~dp

coh

where

H= H~+ H~+ H„p (4)

—=L(a, a') p(&), (6)

is the sum of atom and field Hamiltonian H„and
H~, respectively, plus their interaction H„~. The
incoherent part has the structure of an irreversible
Markovian master equation as already treated in
the literature.

Instead of studying the evolution of the operator
p», one can deal with phase-space density func-
tions which weight projector operators on suitable
complete sets of atomic and field states. ' Such
phase-space densities have the same content of
information as p„~, and should not be confused with
classical probability functions to which they are
equal only in the classical limit.

Both the operator equation and the corresponding
partial differential equation for a phase-space den-

sity lead to severe problems ' not yet.solved. For
instance, the phase-space equation has the structure
of a multidimensional Fokker-Planck equation with
a matrix of diffusion coefficients which is not posi-
tive definite, hence leading to unphysical solutions. "
Furthermore, an exact elimination of the atomic
variables yields an equation of motion for the op-
erator p= Tr„p„F, or for the equivalent phase-space
density, which is nonlocal in time, and thence im-
plies convolution terms with a memory.

In most experimental cases it is not necessary
to deal with all the above complications. A time-
scale consideration drastically reduces the diffi-
culties, destroying the memory effects. In the usu-
al laser devices, the decay time T, of the cavity
field is much longer than the relaxation time T~ of
the induced atomic dipoles. Furthermore, in the
He-Ne gas laser the decay time T, of the population
inversion is of the order of T~, and thus also much
shorter than T~. One can therefore make an
"adiabatic elimination" of the atomic variables.
Limiting our considerations to a single-mode gas
laser, this adiabatic elimination consists of as-
suming that the rather slow variations of the field
occur in a local-equilibrium situation for the atoms.
Under this approximation, both the equation for the
field-density operator and that for the field phase-
space density become "local" in time. To be pre-
cise, the former has the following structure:

—C„p„„+C(n+1) p„., „,, (6)

where p„„=(nlpln) is the probability of having n

photons at time t, A is the unsaturated gain in the
active medium and is proportional to the population
inversion, B is the saturation parameter, and C
represents the cavity loss factor. The relations
between these parameters and measurable quanti-
ties are given in Eqs. (Al)-(A3) of Appendix A.
The first two terms on the right-hand side of Eq.
(6) account for the flow of probability from states
In) to In+1) and from ln —1) to in). The other
terms proportional to the loss rate C describe the
flow of probability from In) to In —1) and from
In+1) to In). Equation (6) is valid not too far
from threshold because the further approximation
( B/ A)(n ) «1 has been used in the derivation. "

Considerations completely equivalent to those
stemming from Eq. (6) can be made in the coherent-
state representation. In such a case, we make
use of the diagonal phase-space density P(o) through
the definition

(7)

The function P(o) can be formally obtained by writ-
ing p in terms of the field operators a, a in anti-
normal order and then replacing the operators by
the corresponding c numbers a, &*.~7 An equation
for P(&) can be derived from Eq. (6). The equation
for P(o.) can also be obtained by directly performing
the adiabatic elimination on the generalized Fokker-
Planck equation for the atoms plus field phase-space
density. ' The equation can be written as

—+mdiv (d —
~

o~ ) nP=qg P . (6)

Here the differential operators div and V2 refer
to the complex variable n=x+iy =re'" and can be
performed either in Cartesian or polar coordinates.
Equation (8) was first derived by Risken by a

where L(a, a ) is a time-independent operator that
includes the effects of the active medium as well as
the dissipation mechanism, and a and a are the an-
nihilation and creation operators for the single-mode
laser field. This corresponds to a Markovian be-
havior of the single-field system. As shown in Ref.
2, there are several possible approaches to the
laser problem, but all of them eventually have to
use the abovementioned approximation in order to
arrive at an equation of motion which can be solved
and compared with the experiments.

Using the photon-number representation, Scully
and Lamb~'9 give the following equation of motion
for the diagonal-matrix elements of the density
operator:

dp„„
[A —B(n+1)](n+1) p„„+[A —Bn] np„, „,
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heuristic approach, and it has been given here using
his notation. In order to give a meaning to the co-
efficients appearing in the above equation, we com-
pare it with the standard Fokker-Planck equation
for a classical harmonic oscillator undergoing
Brownian motion. If n is the complex amplitude
of the harmonic oscillator, y the damping constant,
and r(f} the stochastic force having a Gaussian
statistical distribution with zero average and a
stationary-correlation function given by

——ydiv aP=qV' P .BP
Cg Q (10)

Comparing Eq. (8) with (10) we see that there is a
modification only in the drift term, Pd playing the
role of a damping constant with a, negative sign
(difference between linear part of the atomic gain
and cavity losses) and —PI a 1' that of a nonlinear
correction to the previous linear term. The dif-
fusion coefficient q can have a similar interpreta-
tion as in the linear case.

Comparison of Eq. (6) with (8) gives the following
relations between the sets of macroscopic param-
eters A, B, C, and P, q, d (see Appendix A):

A=4q, B=2P, (A —C}/8=d .

The parameters A and 8, as well as q and P, are
defined in terms of the population inversion in the
active medium, the dipole moment of the laser
transition, and the atomic relaxation times. Slight-
ly different microscopic models have been used in

Refs. 19 and 28. Relations (11) can be derived di-
rectly from the microscopic definitions of the pa-
rameters only if one takes into account these dif-
ferences (see Appendix A). The parameters built
from a microscopic model cannot be considered
quantitatively satisfactory. For instance, gain and
losses are not uniformly distributed inside the cav-
ity as is assumed in the above theories. The main
significance of Eq. (11), however, is that one can
always describe a single-mode laser not too far
from threshold with three "effective" parameters,
which can be determined by measurements without
relying on specific models.

B. Moment Equations

An explicit expression for the photon distribution
has been derived from Eq. (6) only in the steady-
state condition. ' The transient statistics can be
described by giving the time evolution of the mo-
ments of the photon distribution. The average pho-

(r (f}r(0))=4q6(f),

then P(o 0) pf), the conditional probability that the
amplitude a be measured at time t, given the am-
plitude ~ at the time t = 0, obeys the following equa-
tion

ton number (n) =P„' Qnp„„ is found, from Eq. (6),
to obey the equation of motion,

d(n) 2

dt
= (A —C)(n ) —B(n ) +A . (12)

The main features of Eq. (12) are that (i} the time
derivative of (n) is different from zero in the vacu-
um state (( n ) = 0), owing to the source term A

which describes spontaneous emission; and (ii) the
motion of (n) is coupled to the second moment ( n );
similarly the motion of ( n ) will be coupled to the
third moment, and so on. Therefore, one has to
deal with a hierarchy of moment equations. Nu-

merical results can be obtained by truncating this
hierarchy, dealing in this way with a. closed set of
differential equations.

Equation (12) should be compared with the result
of the semiclassical theory, "

d(n) 2

dt
= (A —C)(n) —B(n) (13)

This is a closed equation for (n), which neglects
fluctuations and requires a nonzero initial condi-
tion. In Sec. IV we shall show that our experimen-
tal results can be well fitted by using Eq. (13) asso-
ciated with a statistically defined initial condition.
This procedure can be easily handled by an analytic
approach. In Sec. IV we present, also, a more
elaborate fitting using a truncating procedure ' at
the tenth moment. The resulting nine coupled equa-
tions are solved by a computer.

III. DESCRIPTION OF EXPERIMENT

A. Experimental Setup

As discussed in Sec. I, the switching system
which induces a transient in the laser oscillator
must be much faster than the transient duration it-
self. This duration can be as short as a fraction of
p, sec whenever the atomic-population inversion is
much higher than the steady-state inversion at
threshold. If we want to span a large range of in-
version values, it is therefore inconvenient either
to switch the pump, or to switch the losses by a
mechanical chopper. We have found it convenient
to use an electro-optic shutter by inserting in the
cavity a Kerr cell. This can be used in two ways,
either to switch the losses as a regular shutter, or
to switch the gain by changing the mode position
with respect to the center of the gain line. In the
first case, the axis of the Kerr cell (line normal
to the two plane electrodes) must be oriented at 45'
with respect to the polarization vector of the elec-
tric field in the cavity. In the second case the axis
must be parallel to the polarization vector. A
comparison between gain and loss switching has
been carried out in Appendix B, where we show that
the second method is better for two reasons: (a)
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FIG. l. Experimental setup.

because it requires a smaller voltage pulse applied
to the cell electrodes; and (b) because it is less
critical with respect to the onset of a second mode.

A scheme of the measuring apparatus is shown

in Fig. 1. The laser cavity is 45 cm long with a
nearly confocal configuration. The active medium

is a helium-neon mixture in the ratio 7: 1 with a
total pressure of 1.2 Torr. The capillary dis-
charge has a length of 25 cm and a diam of 0. 2 cm.
The laser oscillates on the 6320-A transition with
a single transverse mode in the TEMpp configura-
tion. The measurements were performed with a
single axial mode; that is, the pump power was
kept below the threshold for the onset of a second
mode. The position of the mode with respect to the
gain line is controlled by a piezoelectric tuner as
described in Ref. 32.

In order to minimize the insertion losses, the
Kerr cell has been built with end windows at the
Brewster angle. The Kerr cell is filled with ortho-
dichlorobenzene and the glass windows chosen to
match its refraction index. Use of the more com-
mon nitrobenzene was avoided because this liquid
has about 2% losses over 1 cm at the laser wave-
length against less than 1'7() for orthodichloroben-
zene. The Kerr constant of the orthodichloroben-
zene is 42. 6 esu against 325 esu for nitrobenzene.
However, at the pump levels used, a phase retarda-
tion of only a few degrees between the two orthogo-
nal components of the light field in the cell is suffi-
cient to cut off the laser oscillation. This retarda-
tion is obtained with a field of 10 kV/cm. The ge-
ometry of the electrodes and the voltage pulser are
designed in such a way that the rise time of the cell
to full transparency is less than 4 sec.

Insertion of a Kerr cell inside the He-Ne laser
cavity raises some problems. An investigation of
several interesting phenomena has been reported
with cells containing polar as'well as nonpolar
liquids. Transients with time constants of some
seconds have been observed, and interpreted by
taking into account very small changes in the re-
fractive index of the liquid due to heating by absorp-
tion of laser light. This, however, plays a negli-
gible role in our experiment for the following rea-
son: We have used a duty cycle of 200 Hz, that is

very fast with respect to the time constant of a
thermal transient. Hence, the liquid in the cell is
sensitive to the time average of the laser power.
The over-all result can be explained by comparing
the steady-state region of our transients (with no

voltage on the cell) with a consistently dc situation
(cell inserted without any voltage). In the two situa-
tions above, the average behavior of the laser (cav-
ity losses, field spatial distribution) is different,
because the average power is different. However,
there are no further transient eff cts besides those
occurring in the first few seconds after a series of
measurements is started. Furthermore, it is very
important to control the cleanness of the liquid. If
dust particles remain in the liquid, they are strongly
agitated by the application of the field, and give
rise to spurious effects.

As far as electrical disturbances are concerned,
the fast discharge on the Kerr cell gives rise to a
large induction pulse which triggers plasma. oscil-
lation in the laser tube. An accurate electrical
shielding was accomplished by putting the Kerr cell
in a copper box. With no shielding, large oscillat-
ing disturbances affect the transient intensity at a
frequency of the order of 10' Hz. The effects men-
tioned above can appreciably influence measure-
ments done very close to threshold. Indeed, ex-
perimental results taken at a pump parameter a
~ 15 (see Table I for the definition of a) were un-
reliable for lack of stability.

B. Conduction of Experiment

The experiment is carried out as follows. Pump
and cavity parameters are chosen in such a way as
to have the laser above threshold with the optical
shutter open (no voltage on the Kerr cell). Starting
with the optical shutter closed, the Kerr cell is
switched on by a trigger pulse at the instant t =0.
The laser field undergoes a transient buildup from
an initial statistical distribution, corresponding to
the equilibrium between gain and losses far below
threshold, up to an asymptotic condition above
threshold. At the instant t = 7 we perform a photo-
count measurement for a measuring interval T of
50 nsec, very small compared with the buildup
time. Once a steady-state condition has been
reached, an amplitude-stabilizing operation is per-
formed by sampling the laser output and comparing
this with a standard reference signal, following a
procedure already described. This is equivalent
to "prepazing" an identical initial state for a suc-
cessive measuring cycle. After the sampling, the
shutter is switched off for about 10 msec. This
is long enough time to let the laser field decay
completely, but short compared with the time scale
of. the slow drifts in the cavity length or in the
atomic pumping. At the end of this interval the
shutter is again switched on, and the cycle of opera-
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FIG. 2. Experimental statistical photocount distribu-
tions obtained with different delays with respect to the
switching time. The solid lines join the experimental
points which are not shown, to make the figure clearer.
All distributions are normalized to the same area. The
three figures (a)-(c) correspond to three different experi-
mental situations (see Table 6.
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tions described above is repeated. This way an
ensemble distribution of macroscopically identical
events is collected.

By successively varying v, the time evolution of
the photocount distribution p(m, T, r) is obtained.
Experimental results for three different sets of
laser parameters are shown in Fig. 2. The mea-
sured distributions must be corrected for some un-
avoidable background light through the mirrors of
the cavity. This light is due to laser modes which
are below threshold in the "on" operation. In the
operating condition, it gives an average number of
about 0. 2 photoelectrons in 50 nsec. This back-
ground light depends on the mode spacing; there-
fore it becomes negligible with a shorter cavity
(see Ref. 11).

Furthermore, to avoid dead-time problems on
the small measuring interval T, we use the linear
method; that is, the current pulses from theSg 32.

photomultiplier are not standardized, but sent di-
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rectly to an integrating capacitor. The statistical-
charge distribution measured on the capacitor is the
convolution of the photocount and amplitude distri-
butions associated with the single-photoelectron
response. Both the background light and the single-
photoelectron amplitude distribution (see Fig. 3) are
evaluated from independent measurements with the
same apparatus. The moments of the photocount
distributions are computed by assuming that the
background light is uncorrelated with the laser
light, and by using the formulas given in Ref. 32 for
the linear method.

2%10

~ 1.5&10

O
C3 10

0.5&0

C. Experimental Results

The average photocount number ( m ) and the as-
sociated variance( nm2) =(m') —(m) are re-
ported as functions of the time delay in Fig. 4 for
three different pumping conditions a, 5, and c. %e
may distinguish a first region, where ( m ) in-
creases rapidly because of the stimulated-amplifi-
cation process, and the variance grows much larger
than if going slowly through a succession of station-
ary conditions. This is explained as an enhance-
ment of the initial spread in the photon distribution,
due to linear amplification by stimulated emission.
Once a large amount of electromagnetic energy has
been built inside the cavity, the field-atom inter-
action is no longer a linear process. In this re-
gion the curve of ( m ) has a point of inflection and

eventually reaches a saturation value, while the
variance goes through a maximum and then de-
creases to an asymptotic value appropriate to the
stationary distr ibution.

IV. DISCUSSION OF EXPERIMENTAL RESULTS

A. Comparison of Experiment and Theory

The photon distribution inside the laser cavity
can be computed fromthe experimental photocount
distribution, once the conversion factor g between
photoelectrons emitted by the photocathode surface
and photons in the cavity is known. g is given by

(14)

where c is the velocity of light, (9, the output-mir-
ror transmittance, 0, the attenuating-filters trans-
mittance, 83 the photocathode quantum efficiency,
I. the cavity length, and T the measuring time in-
terval of a single sample.

The factorial moments F„' of the photocount dis-
tribution p(m, T, r) are related to the factorial
moments F„of the photon distribution P(n, r) by
the relation

(n) =(m)/q, (16)

( nn' ) = (( am' ) —( m ) )/t7'+ ( m ) /q . (17)

Equations (16) and (17) have been experimentally
verified (see Ref. 9). These equations show that
the relation between variance and first moment is
conserved in the detection process only if p(n, r)
is a Poisson or a Bose-Einstein distribution.

This fact can be given a physical meaning by the
following considerations. In a problem where one
pays attention only to the first and second moment
of a statistical distribution, that distribution can be
approximated by a Gaussian one having the same
first two moments. In the case of an optical field,
this can be considered as the linear superposition
of a coherent field with an average photon number
S and a Gaussian field with zero average and an av-
erage photon number N. Such a superposition cor-
responds to a displaced Gaussian distribution having
an associated photon distribution with first moment
and variance given, respectively, by

Fa= tF
From the above equation the following relations be-
tween first moments and variances are easily de-
rived:

10 20 30
1 unit= 1.6~10 electrons

40

(n) =S+N,

( nn2) =S+N (1+N)+2SN .

(16)

(19)

FIG. 3. Statistical distribution of the total electric
charge collected on single-photoelectron pulses at the
output of the photomultiplier. A RCA 7265 tube is used,
with a total voltage of 2700 U; the voltage between the
cathode and the first dynode is 300 V. The focusing-
electrode potential has been adjusted to optimize the
signal-to-noise ratio.

The variance is made of three terms. The first
and second are, respectively, the variances as-
sociated with the two component fields. The third
2SN is an interference term that will be absent in
the two-limit cases in which either S or N are zero.
The disappearance of the interference term is suf-
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FIG. 4. Evolution of the mean value (m) and variance
(Dm2) of the statistical distribution P(m, T, z) as

functions of the time delay w, Dashed lines represent
an interpolation of the experimental points. The three
figures (a), (b), and (c) correspond to three different
experimental situations (see Table I).

ficient to conserve the relation between first mo-
ment and variance in the detection process. In-
deed, Eq. (17) is equivalent to the following relation
between the variances of the photocount and photon
distribution:

( am') =)I'(o.n') +)I (1 —)I)(n) . (20)

and for a zero-average Gaussian field (Bose-Ein-
stein photon distribution, S =0), it becomes

( hm ) =)lN(1+)iN) =(m ) (1+( m ) ) . (22)

Both relations (21) and (22) are independent of )I.
In our case 8, = 0 5&( 10 6)z = 2 5&( 10 83 5

&(10 z, &=2. 1&(10 . The estimated relative error
on g is +10%.

For a coherent field (Poisson photon distribution,
N =0), Eq. (20) becomes

( am') = qS=( m ),
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The points presented in Figs. 5 and 6 have been
computed from the experimental data of Fig. 4,
using Eqs. (16) and (17). The main differences be-
tween the plots of ( hn') and ( hm~ )versus time delay
are (i) The ratio between the peak and asymptotic
value is much larger for photon than for photocount
variances, and (ii) the peak of the photocount vari-
ance is shifted toward a larger time value with re-
spect to the peak of the photon variance. The solid
lines in Figs. 5 and 6 represent theoretical results
computed from the theory of Scully, Lamb, and Sar-
gent with a proper choice of the parameters in order
to best fit the experimental points. The approxima-
tion used in deriving Eq. (6) implies the condition
(8/A)(n) «1. This condition is fulfilled in the three
experimental conditions studied in this paper.

Best-fit parameters A —C, B, and C are pre-
sented in Table I, together with Risken's param-
eters P, q, d computed from Eqs. (11). The dif-
ference A —C = 2Pd is the reciprocal of the time
constant related to the exponential buildup of (n)
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TABLE I. Numerical values of the laser parameters
corresponding to the three experimental cases a-c. A,
B, and C are the parameters used by Scully and Lamb
(Ref. 19); P, q, and d are Risken's parameters (Ref. 28)
and have been computed by Eqs. (11). a= (P/q)' d,
Risken's pump parameter.

C a q P

(1p sec ) (1p' sec ') (sec ') (10~ sec ') (sec ) (10 ) a

+0(&

(nA(T) ) = J n (r, no)i)(nQ) dna . (26)

Using Eq. (26), one obtains for the first two mo-
ments

The time-dependent kth moment of the photon dis-
tribution is given by

P. 95
b 1.25

1.75

1.67
1.67
1.67

2. 20
2. 24
2. 13

4. 199
4. 206
4. 219

1 ~ 10 0 43 22
1.12 0. 56 29
1.065 0. 82 42

d(s) =1,-(A~). [1 —H(z)]

(&) ) = (A c&~ [1+ z —(2+z) H(z)] (23)

Here it has been assumed that ( n ) = 0 at r =0
From an experimental point of view, the photon
number in the oscillating mode is not zero at the
switching time; precisely, it is A/(C' -A), where
C' are the cavity losses in the low-Q case. In our
case, this number is of the order of 1. For time
delays short with respect to the time constant (A
—C) ', the photon number increases at the constant
rate A. Therefore, provided that C' —A» A —C,
the theoretical transient, which starts with zero
photons, has a time lag of (C' -A) ' with respect to
the experimental transient. This effect is too small
to be detected in our experiment '; that is, we can
assume with a good approximation that at 7 = 0 the
oscillating mode is in the vacuum state.

n0
no) -(A-C)v I -(A&&v]d8 +no L1 —e (24)

Here d= (A —C)/B is the asymptotic value of n for
large 7. and no is photon number inside the cavity
at the switching time t =0. We assume that no is
distributed around an average value no with a Bose-
Einstein distribution, which in the limit for no» 1,
can be written as

t) (n, ) = (1/&), ) e-"o'"o .

B. Phenomenological Considerations

We want to discuss here a simpler alternative
approach to the statistical description of the laser
transient. This approach is basically phenomeno-
logical and represents a development of the con-
siderations used in Ref. 4 to interpret our earlier
results.

When the laser is not very close to threshold, all
single transients are observed to have the same
shape with small amplitude fluctuations. The sta-
tistical character of the process is mainly revealed
by a random jitter in time, as was already said in
Sec. I. Therefore, it seems a good approximation
to assume that a single transient can be repre-
sented as a "deterministic" evolution from a sta-
tistically defined initial condition. The evolution
will be described by the semiclassical equation
(13), whose integration gives

and hence,

(nn ) = (A-c) T [z(1 —H(z)) —H'(z)] (29)

In the above formulas we have called the time-de-
pendent quantity z,

e-

[1 z-(A&) v]

and mean by H(z), the following funct!.on of z

e~
H(z) =z e' —dy .

(30)

(31)

We note that the ratio r between the variance and
the square of the mean photon number is a function
only of the variable z, that is,

( ~') z(1 —H) —H'
(n)' (1 —H)' (32)

r' = (A —C) ' ln(d/noz ) . (33)

The model used here assumes an average num-

Equation (32) gives, therefore, a universal function for
the laser transient. The ratio r is plotted as a
function of z in Fig. 7. As one can see, r goes
from zero for small values of z (large times) to 1
for large values of z (short times). The behavior
of the quantity r can be better understood if one re-
calls that, within the approximation (n )» 1 used
in our treatment, r coincides with the second-re-
duced normalized-factorial moment. '""

After a few time constants, the term e '"~"in
the denominator at the right-hand side of Eqs. (27)-
(29) can be neglected. Therefore, (n)/d, (n')/d,
and ( hnz)/dz can be considered as functions of the
variable z only. The maximum of the variance oc-
curs at a value z =0.4. The average number of
photons, variance, and ratio r corresponding to
this value of z can be easily computed. The results
are reported in Table II together with the experi-
mental values. The agreement is good.

Using the definition of the variable z, one can
also compute the effective delay r corresponding
to the maximum in the variance. From Eq. (30)
one would obtain a value + given by
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The considerations made above have also been
used to determine the points reported in Fig. 7
from the experimental results. The fit with the the-
oretical curve is satisfactory, except for the region
of high z (short times), where the approximations in-
volved in the phenomenological approach become too
crude. One could improve the treatment of this region
by introducing the following consideration: The "ini-
tial" photon distribution is effectively built up in
the first few instants after the switching on; there-
fore, the highest values of n~ are influenced by the
saturation term. The distribution p(no) shows de-
viations from that of Bose and Einstein for high
values of no. In the region of high z', the agree-
ment with experimental results and with the more
refined Scully-Lamb theory could be greatly im-
proved by putting a cutoff in the distribution P(no).
However, the resulting improvement would not add
very much, because the main aim of the phenomeno-
logical approach is to describe the relevant region
of the transient, and this is already achieved with a
good accuracy, a.s shown by the data of Table II.

0,01
0.1

I

1000 Z

FIG. 7. Plot of the relative variance (bn )/(n) vs
z= (d/n ) e A-c& [1-e A-c&

t . Large values of
z correspond to small delays, and small values of z to
large delays. The solid line represents the results of
the phenomenological model discussed in Sec. IV.

ber no of photons at the initial time. Therefore, the
delay r differs from 7'„by an amount given by the
time interval ht taken to build up Ho photons in the
laser cavity starting from the vacuum state. This
additional delay is computed from Eq. (23) which
gives an exact description of the average transient
for short times. A value nt = (A —C) ' ln2 has been
derived by choosing nn=A/(A —C). There is some
arbitrariness in this choice, but the final result is
not critically dependent on the value of no, provided
that the choice is consistent with the assumptions
made in the phenomenological model. Table II
shows that the computed values of r lie very close
to the experimental ones.

V. CRITICAL REMARKS ON RELATIONS BETWEEN
EXPERIMENTS AND THEORY

In the previous sections we have presented a
series of statistical measurements on a transient
single-mode laser, and shown a good agreement
with the laser theories. We have furthermore
shown that the experiments can be rather accurately
interpreted by a simple phenomenological theory,
which consists of considering only the initial sta-
tistical spread and neglecting the fluctuations along
the time evolution. The following two questions de-
serve further discussion: (a) The theories are fully
developed for simple models. Is it possible to per-
form experiments in working conditions where some
of the usual approximations fall down? (b) In a lin-
ear system the fluctuation-dissipation theorem re-
lates the time-dependent response (first-order av-
erage of a given parameter of the system) with the
stationary fluctuations (correlation function for the
same parameter). Therefore, a transient experi-
ment and a stationary-correlation experiment carry
the sa,me amount of information. Can we make a
similar assertion for the laser, which is a nonlin-
ear system?

(")Jd
Theor TheorExpt Theo r ExptExpt Theor Expt

TABLE II. Comparison between experiments and the phenomenological model discussed in Sec. IV. v „ is the delay
corresponding to the peak value of the variance (4n ) of the photon distribution inside the cavity. The values (n) and

2 0!
(4n ) reported in the table are taken at the delay r . d is the asymptotic value of (n) for large delays.

(Dn )Jd (n.n')g(n)' (nsec)

0. 581
0.581
0.581

0. 568
0. 588
0. 557

0. 0567
0. 0567
0. 0567

0. 0596
0 ~ 0585
0. 0618

0. 168
0. 168
0. 168

0. 185
0. 169
0. 199

74. 5
61.0
47. 6

73
60
47
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A. Approximations and Theory

Both the master equation (6) and the Fokker-
Planck equation (6) have veen developed for a reso-
nant interaction of a single-mode field with a homo-
geneously broadened atomic line, and within the
Markov approximation (adiabatic elimination of the

0

atomic variables). In fact, the neon 6328-A transi-
tion is Doppler broadened, hence there is a natural
selection of a homogeneous packet around the fre-
quency of oscillation of the lasing mode, and the
resonance assumption is justified for a wide range
of mode positions near the center of the Doppler
line.

As far as the type of line broadening is concerned,
the atomic gain to be introduced in the equation of
evolution for the average photon number n (from
here on for simplicity we leave out the angular
brackets () ) would be given by

g„(n) = A/[1+ (B/A)n]

for a purely homogeneous line, and by

g&(n) = A/[1+ (8/A) n]'~

(34)

for a purely inhomogeneous line. ' Here A and 8
are the parameters already used in the master
equation (6). In the cubic approximation, ' the
quantities above are given by

g„=A —Bn (36)

,. g= -A-,'( nf)f. (3&)

Since we do not assign A and 8 by their micro-
scopic definitions, but rather evaluate them from
the measurements, it is not possible to distinguish
between Eqs. (36) and (3V), the factor —,

' being in-
cluded in the a posteriori definition of B. There-
fore, the experiments reported in this paper, which
have been performed on a laser not too far from
threshold, cannot give information on the homo-
geneity of the atomic line broadening.

The situation is different for the measurements
reported in Ref. 4. First of all, some of the laser
parameters reported in Table I of Ref. 4 had not
been computed correctly, because at that time we
were not aware of the considerations later developed
in Ref. 9, and used in Sec. IVA of this paper.

Furthermore, in order to derive the parameters
A, 8, and C from the experiments, one must al-
ready assume a specific broadening, and hence
make a choice among the gain relations (34)-(36).
Precisely, in the measurements of Ref. 4, the re-
ciprocal of the time constant of the initially ex-
ponential buildup and the asymptotic average num-
ber of photons in the cavity are higher than in the
cases reported in this paper. Therefore, one is
not sure a Priori that the cubic approximation is
still valid. We have performed a check of validity

by using the theoretical results obtained here in

Sec. IVB, and based on only scaled quantities (i. e. ,
independent of the parameters). The experimental
values of the ratios (n) /d, ( hn~) /d', and

( nn2) /( n )' are reported in Table III for the iwo
cases denoted as I and II in Ref. 4. Deviations from
the theoretical values given in Table II are within
the estimated experimental errors. Therefore, the
cubic approximation is still acceptable, and has
been used to compute the laser parameters also
reported in Table III. Of course, our interpretation
relies on the fact that the above-mentioned ratios
are no longer independent of the laser parameters,
when the cubic approximation is not used. We have
checked this point by inserting the gains g„and g,
given in Eqs. (36) and (37) in Eq. (13) and applying
the method described in Sec. IVB. One obtains a
detectable difference in the values of the scaled
parameters with respect to the cubic case for a
pump parameter taoice the maximum value reached
in the experiments of Ref. 4. We do not have, how-

ever, experimental data for such a high pump value.
We conclude with two further comments on the

approximations used. As far as the Markov approx-
imation is concerned, deviations would appear for
pump values so high that the transient buildup time
is comparable to the atomic relaxation times. Our
fastest buildup time is in the p, sec region, whereas
the atomic relaxation times are in the nsec region;
hence, the Markov approximation is valid in the
present experiments as well as in the previous ones.

As far as the phenomenological model of Sec. IVB
is concerned, one may wonder why the initial sta-
tistical spread is so much more important than the
effect of a stochastic force in the equations of mo-
tion. A heuristic answer is that any further fluctua-
tion introduced after the initial instant would take a

TABLE III. Correct values of the parameters A, B, C, and a for the measurements reported in Ref. 4. The
quantities appearing in the first three columns are computed from the experimental results to check the validity of
the cubic approximation and should be compared with the theoretical values appearing in Table II.

(n) /d

0. 533
0. 561

(Dn ) /d

0. 0639
0. 0533

0. 227
0. 170

(n) =d
(10')

9. 96
5 ~ 76

A-C
(10 sec )

2. 18
1.17

C
(107 sec )

1.7
1.7

B
(sec )

2. 19
2. 03

503
280
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time of the order of the buildup time before being
influential, hence most of the transient can be cor-
rectly studied by taking into account only the initial
fluctuations.

B. Transient- versus Stationary-Intensity Correlations

The photon number, or intensity, correlation
function R(r) =(n(7')n(0) ) of a stationary single-
mode laser has an initial value R(0) =(n(n —1) ), and
an asymptotic value R(~) =(n)3, where averages
are evaluated on the single-time photon distribution.
In general, the decay from the initial to the asymp-
totic value can be described as a series of expo-
nential terms, whose time constants and relative
weights are dependent on the three laser param-
eters. Somewhat above threshold (pump param-
eter a & 10) only one of the exponential terms is pre-
dominant, because in this case the laser equations
can be linearized around the equilibrium position.
The decay time 7, of the intensity-correlation func-
tion is given, within this approximation, by 7,
= (A —C) ' = (2Pd) '. All the quantities R(0), R(~),
and v, are measured in a transient statistical ex-
periment, as has been shown in this paper. The
drawback of an intensity-correlation measurement
on a stationary laser" is that the time-dependent
part of the correlation function becomes very small
with respect to the constant part when the laser is
very far away from threshold. To be precise, the
ratio [R(0) —R(~)]/R(~) is proportional to a, where
a is Risken's pump parameter (see Table I).
Therefore, the signal-to-noise ratio becomes quite
small, making the measurement more difficult.
This is not the case in a transient experiment,
where the precision in the evaluation of 7; is not
affected by an error in the evaluation of R(0) -R (~).
An open point is whether one can derive the exact
intensity- correlation function from the transient
behavior, and not simply its single-exponential ap-
proximation. This means taking the full nonlineari-
ty of the problem into account. We are still in-
vestigating this point.
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APPENDIX A: RELATIONS BETWEEN COEFFICIENTS
OF MASTER EQUATION AND FOKKER-PLANCK

EQUATION

The relations (11) between the parameters used

by Risken and those used by Scully and Lamb can
be computed without deriving the Fokker-Planck
equation (8) from the master equation (6) and suc-
cessively comparing the coefficients. The alterna-
tive method presented here is based on the com-
parison of the expressions for three measurable
quantities, which are derived from the known sta-
tionary solutions of Eqs. (6) and (8). We have
chosen the average photon number ( n ), the ratio
between the variance ( an~) and the average photon
number, and the decay constant r, of the intensity-
correlation function. 4 All these quantities are
evaluated, for sake of simplicity, somewhat above
threshold where a quasilinearization of the laser
equations is a reasonable approximation. Since the
same approximation is performed on both treat-
ments, there is no loss of generality for the final
result. The following expressions hold:

( n ) = (A —C)/B = d, (A1)

( ~ )/( n ) = A/(A —C) = 2q/Pd,

7', = (A —C) = 2pd . (A8)

Let us consider a Doppler-broadened gain line
(gas laser). The linear gain A(s ') as a function of
the frequency v is given by

A(v) = A, exp — ' (In2)'~'
DPD

where Ap is the gain at the center frequency vp and
b, vD is the width at half-height. Let C represent the
losses in the laser cavity. The threshold condition
C =A2 defines the frequency range Av~ in which
laser action is possible (see Fig. 8). If single-mode
operation is required, a sufficient condition will be
hvr - Avo, where hvo = c/2L is the frequency dif-
ference between two adjacent axial modes of the
laser cavity. In Fig. 8 we have denoted by v„and
A, respectively, the frequency and gain of the las-
ing mode, and by v~ the threshold frequency.

Using the above equations, relations (11) are im-
mediately derived.

The laser parameters A, B, C and P, q, d are
defined in terms of microscopic quantities, respec-
tively, in Eqs. (87)-(89) of Ref. 19 and in Eqs.
(VI. 12. 24), (VI. 12. 25), and (VI. 12.31) of Ref. 46.
These definitions are not exactly consistent with
relations (11), because the two microscopic models
are slightly different. They become consistent if
the following assumptions are made: (i) The popu-
lation inversion is coincident with the population of
the upper level of the laser transition; and (ii)
transverse atomic relaxation times are equal to
longitudinal atomic relaxation times.

APPENDIX B: COMPARISON BETWEEN LOSS AND
GAIN SWITCHING
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g Vg Ve

FIG. 8. Top region of the Gaus-
sian gain line as a function of the
frequency. C =A& represents the
threshold gain, and &, is the gain
at the center frequency.

Denoting the voltage required to change the optical
length by —,

'
h V„~„ the voltage Vo required to bring

the laser to threshold is

v~ vr
V

Eve Eve A —C
(B3)

bvo " bvo 41n2bvT C

V„&, is obviously a function of the electro-optic co-
efficients of the material and of the geometry of the
arrangement.

Instead of switching the gain as described above, one
can Q switch the cavity in the following way: The
x axis is chosen to form a 45' angle with the di-

The faser can be switched off by using an electro-
optic device inside the cavity. Let z be the direction
of propagation of the light inside the electro-optic
material and n the index of refraction of the ma-
terial. By applying an electric field on the materi-
al, one can change n, (index of refraction for light
polarized along the x axis) and n, . If the x axis is
chosen to be coincident with the direction of polar-
ization of the laser light, one simply changes the
length of the cavity. Therefore, the mode position
is displaced with respect to the center of the atomic
line. In order to bring the laser to threshold, the
displacement has to be equal to v„—v&. If A is
much closer to C than to Ao, one obtains

dA A-C av~ Ave
dv C 41n2 b, vz

'
" "T

rection of polarization of the optical field propaga-
tion along the z axis. In this case, by applying an
electric field to the electro-optic material, a phase
retardation is introduced between the two compo-
nents of the optical field along x and y. This gives
rise to a component of the optical field with a po-
larization perpendicular to that of the incident light
beam. For this new component, losses are much
larger because of the Brewster windows inside the
cavity. Therefore, the total effect will be to in-
crease the losses of the cavity. It is easy to show

that the voltage V+ required to increase the losses
by A —C, that is to bring the laser to threshold, is

Vo = V„g ~ (A —C)/m Ave . (B4)

Comparison of Eqs. (83) and (B4) shows that Ve is
much smaller than V~, taking into account that C is
always much smaller than hv~. More precisely,
the ratio between the two voltages is

where we have assumed hv~ = b, vo.
Furthermore, one should note that a gain switch

is more critical than a Q switch. Indeed, if the
mode spectrum is shifted by a rather large amount,
the mode adjacent to the lasing one can be brought
above threshold.

We must finally notice that in the case of Q
switching we exploit the difference of the refractive
index between two perpendicular directions of po-
larization, due to the induced orientation of aniso-
tropic molecules. The main effect will be a rota-
tion of the polarization without increase in the op-
tical length. However, at higher orders, there
might be a small shift in the mode position due to
distortion, besides orientation, of the molecules.
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An n-dimensional linear Markov process with parameters o,'~(i=1, ~ ~ ~, n) and n =- Mo, is
considered. Criteria for stationarity of the process and spectral properties of the fluctuations
around the stationary state ~=0 are derived. When the stationary state is a thermodynamic
equilibrium state, the spectra are proven to be monotonic functions of the frequency. Positive-
definiteness of the matrix M3 (o & ) turns out to be the necessary and sufficient condition for
the absence of local maxima in the spectra. A process with Me (0. cF) positive-definite also
has the property that M2 (0. o ) is positive-definite, which guarantees the absence of external
driving forces, and corresponds to a pure relaxation process. M |',0.' o~) positive-definite is
a necessary condition for stationarity. Moreover, it is a necessary and sufficient condition
for the existence of spectra and transport coefficients. Positive-definiteness of M (o. Ct ),
M (0.'e ) and M (+n ) is linked to properties of the excess-entropy production.

I. INTRODUCTION states in the jth level. This gives

We shall derive some properties of fluctuation
spectra ("noise") and the excess-entropy production
during those fluctuations from equilibrium, as well
as from stationary nonequilibrium states of sys-
tems with n-coupled macroscopic variables.

As an example, one may think of an n-"level"
semiconductor with the electron occupancy numbers
of each level as the variables. In the equilibrium
state there are only thermal transitions between
the levels. A stationary nonequilibrium state may
result when we continuously "pump" electrons from
one level to another by means of a steady light
source. Spectra can be obtained experimentally
through a Fourier decomposition of the temporal
history of the fluctuations in the conduction current:
The conductivity is a linear combination of these
occupancies, with the mobilities as coefficients.

The time dependence of the n macroscopic vari-
ables a, (t= 1, . . . , n) of this and many other kinetic
processes is assumed to behave like a Markov pro-
cess and thus to be governed by a first-order dif-
ferential equation in time'

a. = f (a), a = (a„.. . , a„)r .

For the semiconductor example discussed before,
the explicit form of Eq. (la) may be obtained'5 by
assuming that the transition current p, &

from the
ith level to the jth level is proportional to the oc-
cupation a, of the ith level and to the number of
vacancies in the jth level, the "mass-action" laws:
P,&

= y, ~ a, (N, —a&), where N~ is the total number of

= —2 [y, & N& a, —
y&, N, a& + (y&, —y;&) a, a&] . (lb)

In many cases the energy gap between the valence
band, defined as i =n, and the higher levels, de-
fined as i =1 or 2, is equal to the energy of photons
in the optical spectrum. In the case of steady light
absorption there results a cu'rrent U~, for example,
from the nth level to the kth level. One has U„»
= a„qE with q, the quantum efficiency, and F-, the
constant number of incident photons per second.
For all practical cases, however, the net decrease
in a„ is negligible compared to the large number a„
of electrons in the valence band. Hence, one takes
a„=N„and U„» a constant as a result. This is in-
corporated in Eq. (lb) by adding U~ to the equation
for a» and —U~ to the equation for a„.

We solve each model for its stationary state a,
i. e. , f(ao) = 0. We linearized Eq. (la) defining o. (t)
—= a(t) —ao and find

sf (a) (Mi~=—

We now remove any dependent equations and vari-
ables. We therefore obtain a reduced matrix M
with dimension & n, detM & 0, and n = 0 as the only
point where a = 0:


