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A general theory is presented for sound attenuation and dispersion near the critical point
in the region of frequencies which are much greater than the characteristic frequency of order-
parameter dynamics, but are much smaller than the frequency of sound with the wavelength
equal to the range of correlation of local order-parameter fluctuations. The method used is
the most general version of the mode-mode coupling theory plus the static and dynamic scal-
ing hypotheses and some general properties of time-correlation functions. If we ignore the
small critical exponent o associated with the heat-capacity singularity, we find that the at-
tenuation behaves as f€® and the dispersion (relative sound-velocity change with frequency)
as % where f is the dimensionless frequency and € the dimensionless temperature distance

from the critical point.

1. INTRODUCTION

Owing to the coupling of sound waves with the
order parameter of the phase transition, sound
attenuation and dispersion have become important
probes to gain information on the order-parameter
dynamics of phase transitions. % Since the motions
of the order parameter slow down enormously near
the critical point, strong attenuation and dispersion
of sound are expected near that point as are often
observed experimentally.

On the other hand, many of the recent theoretical
efforts which incorporate the scaling law ideas
have been directed to low-frequency sound attenua-
tion which can be described in terms of ordinary
transport coefficients.® The efforts met only par-
tial successes in accounting for available experi-
ments. *%* The causes for failure may be found
in our ignorance of important mechanisms con-
tributing to low-frequency attenuation® as much as
in possible inadequacy of the theory itself.

Under this circumstance, I have undertaken to
extend the theory to higher frequencies with the
purpose of providing additional areas of confronta-
tion between theory and experiments. Recently, I
presented a theory of sound attenuation and disper-
sion near the liquid-gas transition® which compared
favorably with experiment.” I have also considered
magnetic transitions® and the X transition of liquid
helium.® Quite unexpectedly, a rather striking
similarity was found among these systems in the
following aspect. There exists a region of sound-
wave frequency which is much greater than the
characteristic frequency of order-parameter dy-
namics §, but is much smaller than ck, where ¢
is the sound velocity and &' the correlation range
of local order-parameter fluctuations, because
R, k%, with 6>1 and ¢, at most, approaching zero
very slowly.® In this high-frequency region the
sound attenuation and dispersion behave roughly

in the same way as for the systems considered
above. The method used to reach this conclusion
is the simplest version of the mode-mode coupling
theory and uses the specific forms for the short-
time behavior of order-parameter time-correlation
functions.

In view of the apparent universality of the high-
frequency behavior mentioned above, the problem
was again considered in a general way. Here this
problem will be studied using the most general
version of the mode-mode coupling theory plus
static'® and dynamic scaling ideas.'! Otherwise,
only some general properties of order-parameter
time-correlation functions will be used, and a some-
what refined version of the conclusion given above
will be reached regarding high-frequency sound
attenuation and dispersion.

Section II is devoted to analysis of the complex
sound-attenuation coefficient, followed by Secs. III
and IV, which deal with high-frequency sound at-
tenuation and dispersion, respectively.

1I. COMPLEX SOUND-ATTENUATION COEFFICIENT

We start from the following general correlation-
function expression for the complex sound-attenua-
tion coefficient'? &(w) when the sound wavelength
¢/w is much longer than the range of correlation
of critical fluctuations x:

&(w)=w?(1/V) [; dt(6X(t), 6x1(0))e ™", (2.1

where V is the volume of the system; sX=X -(X),
with X the appropriate flux that describes the cou-
pling of the sound wave with the internal degrees of
freedom that are responsible for the attenuation and
dispersion; and the bracket notation stands for
Kubo’s canonical correlation

4,B)=p" [ (Ae™B) ar , (2.2)
with B=1/kgT and H the system Hamiltonian. ! 2
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For example,
X=(1-®)I7/(kpTcp)"/?

for fluids where I** is the molecular expression
for the xx component of the local stress tensor
integrated over V. @ is Mori’s projection operator
onto the space of hydrodynamical variables, 13 and
p is the mass density where we ignored unimpor -
tant contribution of heat conduction to &(w). !*
Also for Heisenberg magnets,

X=(1-¢,)2 U8, §,,
11

where §, is the spin operator on the ith lattice site,
and @ 4 designates the projection operator onto the
magnetic Hamiltonian. %%

According to the mode-mode coupling idea,
the critical anomaly in &(w) is caused by the break-
up of a sound wave into a multiplicity of critical
modes. Here the critical modes are understood to
be made up of the local order parameter and other
hydrodynamic modes that couple with the order
parameter in such a way as to determine the order-
parameter dynamics self-consistently.!® We de-
note the set of Fourier-transformed density opera-
tors of critical modes by ai- which are arranged in
a column matrix az, where {ag) =0. The multiplicity
of critical modes into which a sound wave breaks
up is then given by a set of products like

4,8, 14

agiag- - g —(agdl- - afy) (2.3)

which we denote by Ak tj‘: . We also use renormal-
ized version of A’s

jn_AEl

which are arranged as a column matrix denoted by
@ . These variables are essentially identical to
the critical dynamical variables introduced pre-
viously. 1

The break-up of a sound wave is then described
by projecting X onto the space of the variables @,
which is formally expressed in matrix notation as'®

5X~(6x,a")- (@, a")t-a. (2.5)

1n coudnty1/2
A 'k‘n ) >

(2.4)

Thus, the anomalous part of complex sound attenua-

tion, which is again denoted as &(w), becomes
dw)=w? [~ ety (t) at (2.6)
¥(t)=(1/Vv)(6x,8")-(a, @) (a(t),a'(0)
-(a,a")!- (@, 5x"). 2.7

This result shows that &(w) can be obtained from
the knowledge of critical dynamics contained in
(a(t),a'(0)) provided we know the coupling of X to
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a which is represented by certain equal time cor-
relations involving X and @ .
We may also write

¥(t)= (), I'(0)),
with

(2.8)

(2.9)

The equal time correlations of the form (56X, G),
where G is an arbitrary operator, have been studied
previously. One finds, for example, for fluids, !*

1=v1'(6x, a')- (@, et a.

- P\ (G)
_ 172 -3/21 (OP) (&G, 2.
(56X, G)=iTp Y 2c"%2C5 (ZT)‘V (aT o (2.10)
and for magnets, 18
5(G)
6X,G)=B' <—'— s (2.11)
T )

where Cy is the heat capacity at constant volume
per unit volume, p the mass density, and B’ re-
mains finite at the critical point.'” In general, one
may write

_prew (XG)
(5X, G)=B'e <8T .

(2.12)
where € = |T - T, /T, is the dimensionless tempera-
ture distance from the critical point, B is a finite
number at the critical point and w is an exponent.
For example, w=%a for liquid-gas transitions,
and w =0 for magnets'” and the X transition of lig-
uid helium.

In the Appendix it will be shown that the weak
scaling law'® yields for (6X, a')

k| (k
(6X, a;",,,’"')=e'”"c(—— , L , vt {vedt),
1 n K k!'

L)

for by Sk (2.13a)
J10- 4, 'k
(0X, a,... k)= wmk:‘nGGkk } Vkmu),
min
for k> (2.13p)

where k&, is the smallest of the wave numbers re-
ferrmg to the local order parameters contained in

e 8 . {k}in (2.13a) is the set of k’s among
these wave numbers which are of the order of «,
whereas k; and k; are much greater than k. Thus
(5X,@'") is a column matrix which again has the
form (2.13) where G is now a column matrix
whose elements are of the form of the functions
G appearing in (2.13).

In the following we shall use the fact!® that the
product of two functions or matrices of type G or
the inverse of such a matrix are again of type G.
Here type G means that it contains only quantities
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like Vk{, Vk®or the dimensionless ratios involving
various wave numbers as well as « (plus directions
of various wave vectors). Then, inthe endwhenthe
thermodynamic limit V-« is taken, quantities like
VES and Vi must disappear. Thus the dependences
of G upon such quanities may be ignored from the
outset.

Thus we spht up I defined by (2.9) as I= 2 I,
where a~ ' of (6X, @') appearing in I; contains
wave numbers of the local order parameters whose
minimum is k. [@’s contain the local order param-
eters as well as the densities of other conserved
quantities which together determine the character-
istic frequency (2. 22) below.] Here it is convenient
to write

=141 (2.14)
with
R<K R>k
=2, =X I. (2.15)
£ i
Then, one has
F() =8 @) +E<@) + ¥ @)+ <@, (2.16)
where
(@) = (I0), P(0)'), ete. (2.17)

Let us now investigate the properties of each
term in (2.16). First consider ¥“(¢). Here (2.13a)
is written in the matrix form:

(6x,a<")=€¥"1G<, (2.18)

where @ is a part of @ where &, < x,and an ele-
ment of the row matrix G* has the form (2. 13a).
Then one has

(a,a"™ = 6¢

’

1
W« () = — 2(w-1)5"<H7< <,
Oy
(2.19)

where G< is a part of G< where k,m equals k and
205 is the sum over the k such that k< k, and

Z@)=(a (t),a1(0) (@, ") (2.20)

describes tlme development of the variable @ such
that Z(0)=T, a unit matrix. Now, we have

Z:E =(Vx3) (2 )3 k3. ,

and (@,@") and its inverse matrix are of the type
G. Therefore, assuming that (2. 19) reduces to a
finite value in the thermodynamic limit in which
Vk® drops out, we obtain
«(4) = 2(w-1)-3v (< N
Y= () = L2 [Tak [“dl g%(d), (2.21)

where g5;(2) is a dimensionless  function of time;
L, is a finite constant; and [¢ dk is the integral over
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the ksuch that k<«. Upon integration over f, (2.21)

further reduces to

V() = 2 [akzi0), (2. 22)

where g-f(t) is a function of time that remains finite
at t=0.

Next, we consider ¥”(#) which, using (2.13b), can
be written in a form similar to (2, 19):
v (1) =

2(w-a)z Z>k'pl'bc> (a a ) (t) 'G>IT)

(2. 23)

where G is a part of the row matrix G in which
ki, €quals k and the elements of G” have the form
of G given by (2. 13b). Then, using (2. 13b) and
noting that (@, @)™ is of type G and that

Vv
Tio =g dEeoe,

and assuming again that (2. 23) reduces to a finite
value in the thermodynamic limit, we find

V(D) = L2 [Pk [P dl ks k17 g2 (),

(2. 24)

where k&, is the smaller of £ and /, g I(t) isa
dimensionless function of time, and L, is a finite

constant. Performing integration over 1 (2. 24)
becomes
v (1) = 2@ 7 dk kg3, (2. 25)

where §i>(t) is a function of ¢ that remains finite
at t=0.

Next, we take up ¥<>(¢), which we write in the
same way as (2. 19) and (2. 23) as follows:

YO() = o 2 °Z ZRP’ G- (@, @M= - 63
(2. 26)
In a manner similar to that used before, we find

that (2. 26) has the following form:
YO = Ly [“ak a1 1767 (/)7 fk/K)gE (D),

(2.27)

where g;7(f) is a dimensionless function of time and
L, is a finite constant, The factor (I/k)™ arises
from the fact that in the arguments that lead to
(2. 27) the factor 3 in the integrand can be 17 or
more generally «™*(I/k)”". So far, » is arbitrary.
To proceed further with the analysis we now
introduce the dynamical scaling hypotheses for the
functions g’s that describe the order-parameter
dynamics. Namely, for <« and />« we assume

&5(0) = #ut, k/x), (2. 28a)
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FAORY v (2. 28b)
857 (D =g (ut, Qft, /), (2. 28¢)

where ©, is the characteristic frequency of the
order-parameter dynamics given by

Q,=k0dk/K), 6>0 (2.29)

and @ is the asymptotic form in the critical regime
k>, where

Q¢=DE, (2. 30)

with D =d(«).

Now, for k<<, g*> becomes g*”(Q,¢, =, k/k) for
t~;tand g¢>(0, Qt, k/k) for t~(25)™. Thus, ef-
fectively g¢” takes the form

&(Qet, 5t k/K) = g1(Qut, k/K) +gQ5E, R/K).
(2.31)

First, consider the contribution from g; to (2. 27).
The integration over 1 converges at large ! when

p+7r>3. (2.32)

We require (2. 32), since otherwise fluctuations
with microscopic wavelengths give important con-
tributions to ¥ and hence to the sound attenuation;
in this work we are solely concerned with the cases
where the critical fluctuations of semimacroscopic
wavelengths dominate the attenuation. Thus, in
the integral over ‘1, major contributions arise from
! ~k, where we should take for p the strong scaling
value p= (1 - @)/v. Then we discover that this con-
tribution to ¥¢> takes precisely the same form as
(2. 22) with & replaced by a different function of
time which still has the form (2. 28a). Next, we
consider a contribution from g,. After integration
over E, it takes the following form (write k instead
of 1):

r-(l-a)/v
i

This differs from ¥”(f) [Eq. (2. 25)] by the presence
of a factor x™™1"*)V/p™*  Using (2. 32), we have

2w (2R k7 (8. (2.33)

Kr-(l-a)/v/kr 3'?'(1-0()/v/k3-2ﬁ.

(2.34)
If we use the strong scaling hypothesis where
p=(1-a)/vand 3v=2- «, (2.34) becomes (k/k)¢,
which is smaller than unity for o >0. In this case,
(2. 33) can be ignored compared with ¥”(f). Even
when the strong scaling does not hold, we shall
assume that at most k™ ‘1"*?" /" does not exceed
the order unity when % and k are expressed in the
unit of inverse microscopic distance.!® ¥ <(¢) can
be taken care of by noting that ¥<(f) = ¥<>(= )*.
The results of the analysis of this section are
now summarized by stating that ¥(¢#) has the fol-

-p<K
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FIG. 1. A higher-order diagram.

lowing general form:

w(1) = 0 [k k% (k/K) g5 (8) + L2

x "k k¥ g (1), (2. 35)

where the dynamical scaling hypotheses give for
2
&gi(t)

g =g(Q,t,k/0), g(t)=g(Qf1), (2. 36)
with 2, and Q¢ given by (2. 29) and (2. 30), re-
spectively, and L is a finite constant. We can fur-
ther require that g,2(0)=1, and g(=)=0.

Corresponding to (2. 35), @(w) can be split as

(2.37)

Equations (2. 35)—(2. 37) are then sufficient for
finding the high-frequency behavior of sound attenu-
ation and dispersion in the critical region.

a(w) = &) + & (w).

III. SOUND ATTENUATION
By (2. 36) we have

Ref etetg (D dt= Ref dr e”g<<941, E)
0 0 w K

=g kB
=F (Qk,,(), (3. 1a)
- - c
Ref e'“tgl(w dt:Ref dre'’g (9—&7> ,
0 0 [5))
= F’(;’—c) (3. 1b)
Y

Thus the sound attenuation coefficient a(w)= Rea(w)
is

alw)=a’(w)+a“(w), (3.2)

K
. k w k
<o) E2(«;1)’[ z<__> <<u _) )
a‘(w)=w | de k) F 8, x) (3. 3a)

i k= F (Q%) :

k

ot>(w) - LwEZ(w-a)
3

(3. 3b)

Now, in the high-frequency region w > ,, in the
integrand of (3. 3a), the condition w > &, is always
satisfied. Thus we must examine F<(y, x) as

y=  where

F<(y.x)=Ref dr e'"g< (I-, x) . (3. 4)
0 y
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The functions g< and g” are determined by the dy-
namics of critical fluctuations in a complex way,
and, in general, explicit expressions for them
cannot be obtained. However, we know certain
general properties of these functions. For example,
for large y, we can expand g¢(t/y, x) as

g/y, x)=1=-Q )T/ y)*+---, (3.5)

where Q’(x) is some function, u is some positive
exponent, the normalization condition g<(0, x)=1
has been used, and --- stands for higher powers
in 7/y. Thus we find for y > 1

Fiy,)=Qx)y™* ++-, (3.6)

where Q(x) is the same as Q’(x) apart from a nu-
merical factor.?® Thus we find for w > &,

k>0

a <(w) =€2(w-l)*8wuv0’01-u'(03~u0

1
x [ dx 0 flx)Q(n) [dlx) ), (3.7a)
where k= kq€”.
Turning now to a’(w), we find by (2. 30) and (3. 3b)
that

a)(w) = €Z(w-@whﬂ-zp)IOLD(Zp-a)/O

xf; dxx*®F>(x%), ask-0. (3.70)

Assuming the integrals in (3.7) are finite, these
results are summarized by introducing the dimen-
sionless frequency f=w/w,, where w, is some mi-
croscopic frequency such as

a <(w)oc f!-u (2(10-1)*(30540);‘,

a)(w) o« f1¢(3-2p)/0€2(w-a) .

(3. 8a)
(3. 8b)

If we use the strong scaling p=(1 -a)/v, the
ratio becomes
a(w) ,_(ia) uralvd,
a’(w) \'f
which is much smaller than unity since f> € (the
high-frequency condition).
Thus the high-frequency sound attenuation is now
given by

d(l:.))oc €2(u,'-cxt)fh(:!-zp)la; (3' 9)
a(w) o Ewradplialy if p=(1-a)/v,
v=2-qa. (3.10)

If we use the fact that the low-frequency sound
attenuation is

a(w)= A(€w?, A(€)x vV, (3.11)
we can eliminate wand write (3. 10) as
a(w) o A(€)e?-aftralv, (3.12)
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Furthermore, if =0, then w=0 for liquid-gas
transitions, or magnets, or the A transition of
helium. In this case, we find

alw)cx f€°. (3.13)

The results obtained here agree with those ob-
tained for the cases of liquid-gas transitions, ®
magnets, ® and the X transition in helium.® The
method used here is more general than the previous
calculations and does not depend upon the particu-
lar approximations or the specific forms for time-
correlation functions of critical fluctuations.

IV. SOUND DISPERSION

Sound dispersion can be studied in essentially
the same way as attenuation was. If c(w) is the
sound velocity at the frequency w, the sound dis-
persion is given in terms of Ac= c(w) - ¢ as

A_c=(£c_) +<A_C)
c c /¢ cl/s

= (¢/2w) Im(a (@) + as (w)). @4.1)

Equations (2.6), (2.29), (2.30), and (2. 35)-(2.37),
then yield

K
Ac) _. Z(w-l)/ 2 (B Lcfw R
(c)<‘zC€ iy () H (g 5) @2

<ATC) - %cea(""“’f (ﬂekz-szH><_S_’l%> , (4. 2b)
> [ k
where
Hy, x)EImf dt e'’g¢ (3 x), xS 1 (4.32)
0
B (y)=Im [ dr e"g><;7). (4. 3D)
)

For 1<y, g%(t/y,%)=1+---, and therefore,

HY(y,x)=1+--+, y>1. (4.9
Thus, for high frequencies w > Q,, we find
1
(Ac/c)¢=5ce ""l"a"x?,"_]; dx x*f(x), (4. 5a)
(Ac/c)y = Loedtira) ,(3-29)/0  Pf2p-3)18
« 2-2ppy>(,. -0
x L(Dlw)l/odxx H? (x™). (4. 5b)

If we consider the fact that for 3 -2p <0, the lower
limit of the integral of (4. 5b) cannot be replaced
by zero as k- 0 since H>(»)=1, we obtain

(AC/C)<OC c€2(w-1)*3v 0, (4. 6a)
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(Ac/c)yac cetwadpla-2nio
o cez(w-l)’3Vf0, (4. Gb)

Here we have used the fact that for 3 - 2p <0 the
fluctuations with &> « are unimportant, and hence
(4. 5b) cannot be used, and (Ac/c), ~(ac/c);. For
3-2p=0, (4.5b) gives an additional factor
hl[K(D/w)w] , which we have dropped since we
consider the theory not refined enough to justify
including it. The ratio of the two contributions is

(AC/C)< /(AC/C)> ~€2(a-1)¢3vf-(2p-3)16’ 3 - 2[) >0
~ %0, 3-2p<0. (4.7

When the strong scaling p=(1 -a)/v and 2=3v+a
hold and further a =0, we obtain

3-2p>0
3-2p<0.

Ac/cx €0, (4. 8)

For the case of liquid-gas transitions where 6=3
and w=%a, the results (4.6) agree with our pre-
vious calculation® except that in Ref. 6 the scaling
law relation 2=3v + @ was always assumed, which
is expected to break down if the strong scaling does
not hold.

It is interesting to note that (4. 6) can be also de-
rived using the Kramers-Kronig dispersion re-
lations, which are

© ’ ’
alo) (2 pf do’Aclwfe 4.9)
w c - T (ru —/o)m
Aclw)  cw o do'_alw)
c 2 S (w0’ —w)zu'z (4.10

In view of Eqgs. (3. 8a) and (3. 8b), the integral in
(4. 10) converges at large lw’!. Thus for high
frequencies w, we may take |w’ < lw! in (4. 10).
Now, contributions to (4.10) from small o’ <&,
are proportional to « since a(w’)x w’? for small
w’, and turn out to be small. Thus the major
contribution to the integral in (4. 10), where a(w’)
is replaced by a‘(w’), comes from w’~%,, where
we can use (3. 8a) for a‘(w’) because the low-fre-
quency and high-frequency forms for a(w’) should
match at ' =Q,. Therefore, we find

<Ac(w)) ,z_C_f d(_u'_a<(w')~ca<(ﬂ)
< o'~

c 2 T 9]

K

o« ciz( w-U*(!i«uB)vg;u ,

which is identical to (4. 6a) since 2, €. Next,
we consider the integral (4. 10) where a(w’) is re-
placed by o« (w’). If 3-2p =0, then major con-
tributions to the integral come from lw’|~ Il
and Eq. (4.10)~ ca’(w)/w ~ c€?w-a)f3-20/6  1f

3 -2p<0, major contributions are from w ~,;

@ takes the same form as & <in this case, and
Eq. (4.10)~ca‘(w')/w’~ce2®-1)%"  Thege re-

KYOZI KAWASAKI

|

sults agree with (4. 6b).

Finally, we note that for 3 -2p<0, Ac is very
simply related to ¥(0). In this case, main con-
tributions to the integral (4. 5b) come from
x~Kk(D/w)"® or critical fluctuations with &~k
and (Ac/c); come from critical fluctuations with
k<k. Thatis, the critical fluctuations with & of
the order of k or smaller whose characteristic
frequencies are much smaller than w give major
contributions to

Ac/c=1tew fo“' ¥(f) sinwt dt . (4.11)

Furthermore, in ¥(0), which is given by (2. 35) as

¢(0)= €V M dk Kf(k/ k) + L [ i k2,

(4.12)

the fluctuations with 2> k are unimportant because
the integral in the second term converges at k=,
Thus we can totally ignore high-frequency com-
ponents in ¥(f) in (4.11) and in ¥(0), which allows
us to replace ¥(f) in (4. 11) by ¥(0) to obtain

Cc—C AcC ¢

e "¢ ¥

-557(6xah- @an’(a,5x"), (4.13)
where ¢, is the sound velocity at high frequency.

In this manner, when 3 - 2p<0, high-frequency
dispersion yields information on the strength of
coupling between the sound wave and critical fluc-
tuations which do not involve relaxation times.
Furthermore, if we combine this with low-frequency
attenuation divided by w?,

aw)/w?= A= [T V() dt=¥(0)r, (4.14)

we find for the relaxation time 7 defined by (4.14):

A

T=m. (4.15)

This relation looks the same as that pointed out by
Bennett. %! However, in Bennett’s case 4c was the
anomalous change in the zevo-frequency sound
velocity near the transition which involves the full
interaction of the sound wave with order-parameter
fluctuations without the projection operator (1 -@)
or (1 -®,) (see Sec. II). Since in our case Ac and
A both involve the same 6X, we believe that our
relation (4. 15) is theoretically more satisfactory,
although it is less general and may not be as con-
venient in practice.

V. DISCUSSION AND CONCLUDING REMARKS

In Secs. II-IV we considered in a rather general
way the problem of sound attenuation and dispersion
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in the frequency region, which is much greater
than the characteristic frequency of critical fluc-
tuations.

The method used was a combination of scaling
law ideas?? (both static and dynamic) and mode-
mode coupling in its most general form, where,
however, we assumed that there exists only one
kind of characteristic frequency spectrum £°d(k/x)
that dominates the problem.

The most interesting result is that high-frequen-
cy sound attenuation and dispersion behave roughly
in the same way for various different systems [see
(3.13) and (4. 8)]. This may be understood very
crudely as follows.?® If there is only one order-
parameter relaxation time 7, sound attenuation and
dispersion are written as!

(ct-c?) Wt

alw) = 2¢® 1+(wm? (5.1)
2 _ 2 2
c(w)z—c‘z:gfllr?;)i—)wzi— , (5.2)

where c,, is the infinite-frequency (“frozen”) veloc-
ity. However, this picture is oversimplified, and,
in fact, we have a whole spectrum of 7;! which
goes as k%d(k/k) instead of a single 7', As long
as we are in the region w< 13! =«%(1), most ;!
are greater than w, with the average at 73!, and
attenuation and dispersion behave as though there
were a single relaxation time 7=17,. On the other
hand, for w> 7;!, most of the relaxation times are
much greater than w™, and the corresponding re-
laxation processes cannot effectively contribute to
attenuation and dispersion (“frozen”). Thus, there
remains only a small contributing part of the spec-
trum which satisfies 7;'!2w. Thus, we may esti-
mate high-frequency attenuation and dispersion by
replacing 7 by w™ in (5, 1) and (5. 2) to obtain

ac(w)/c=(c - c?)/2c3,

which agree with (3. 13) and (4. 8).

There appear to be some experimental indications
to support this sort of behavior, 2 but further ex-
tensive experimental study is clearly desirable.

a(w) ~w(ck - c?)/c,
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APPENDIX

Here let us discuss properties of equal-time cor-
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relation functions of long-wavelength fluctuations,
and in particular derive (2. 13). In all the cases
studied, the critical dynamical variables'® consist
of the products of Fourier components of the local
order parameters denoted by o7, which in certain
cases also include Fourier components of noncrit-
ical conserved variables denoted by i, where we
always take (o3) ={p3)=0. Thus, it is enough to
consider a correlation like

(A1)

which is abbreviated as (¢™u"). Elsewhere!® it has
been shown that use of the scaling law ideas!® gives
(A1) the following effective form?®:

(03 ce 0y, u;l---u;,,),

-mx K—[n/Z MG,

(e™u") =k (A2)

where d is the dimensionality of space; and
x=5(d+2-1), [n/2]=n/2 for even n and n/2 - 1 for
odd n; and G is some function of Vk?, ¢;/k, and
k;/k. (We always use the same symbol G whenever
such a function appears.)

First, since @ consists of the variables like
o™u"—(o™u") which are properly normalized so
that the canonical correlation (2. 2) of a variable
with itself reduces to unity, we see that!®

(@, a" =Gy+x*2G, , (A3)

where the G’s are infinite matrices whose elements
have the forms of G.

Next, let us turn to (8(c™u")/87)s. In general, it
is expected from (A2) that

Al n
(0(0' 73 >) :€-1K-me-(nIZJdG. (A4a)
s

oT
However, the situation is different if all q’s are
much greater than k. Here (o™u") approaches its
asymptotic form at 7., which no longer depends
upon k, as follows:

<omun> - q;mxk;[n/Z 1

X G(Vﬂ, Vk'{ , {Ei/kj}’ {CT{/QJ}, {E,/q,}),

which is analogous to the first term of the asymp-
totic behavior of (030.3) as k=0, that is,

(A4b)

A K(l-a)/u
<O [ >: L +Ag 7= + e
1Y~ qz-n q np ’

(A5)

with A; and A, independent of k and q. Here p is
a new exponent which is equal to (1- a)/v if the
strong scaling holds, but it may differ from this
strong scaling value. !° An analogous expansion
of (¢™u") then will be found by assuming the cor-
rection to (A4) corresponding to the second term
of (A5) of the following form:

g B2 (o (A6)
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where G is of the same type as that appearing in
(A4), which no longer contains k. Namely, we have

(a(o™um) /aT) s = €% ™ P k™21 G, (A7)
We also note that
([o"u"=Co™um ], [0 pm = (o) ] )12

=k™ k™M2G for all q; ~«,

=q™ k72G for all ¢; > «. (A8)

KYOZI KAWASAKI

3
Therefore, we finally find that
(6X,81) = v W22 ¢ for a)] g, ~k,
=g RF 2N G for all ¢, > k.
(A9)

If we ignore the terms with odd » which are small,
we finally obtain (2. 13).
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Bose-Einstein Condensation in Two Dimensions
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It is proven that for Bose-Einstein condensation, in the sense of quasiaverages, condensation
into any one-particle state is forbidden at nonzero temperatures in any two-dimensional sys-
tem, whether under rotation or not, regardless of the external potential, so long as the par-
ticle density is bounded everywhere. The proof is based on Bogolyubov’s inequality.

I. INTRODUCTION single-particle state. A theory of superfluid flow, 2

as well as of the A transition, 3 has been constructed
based on London’s® prediction.

It has generally been assumed that the fraction of
particles in the zero-momentum state is equal to
the quasiaverage! |(¢(¥))I1? (superfluid order

Because of the work of London, ! superfluidity
has been associated with Bose-Einstein condensa-
tion, which, for homogeneous systems, means
macroscopic occupation of the zero-momentum



