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calculated values which are close to the measured
values for dss(T, P)i.
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As a model of a helium monolayer a system of hard-core bosons of mass m and diameter
a constrained to motion in two dimensions is considered at absolute zero. In the low-density
limit, the ground-state energy per particle and condensate depletion are found to be EjN
= —2xRtn/mlnnat and no-— lln+1/1 an)n, where n is the areal density of the system. The ex-
pansion parameter —1/lnna2 is approximately equal to unity for real helium monolayers.
The variation of the above results with temperature is discussed for a system of finite size.

INTRODUCTION

The recent spate of experiments' on adsorbed
helium monolayers has occasioned the investigation
of several models of such systems. One simple
model which has received little attention consists
of a system of hard-disk bosons constrained to
motion in twodimensions. Except for the restric-

tion on the dimensionality, this model ignores the
effects of the substrate and the weak attractive
interaction between particles, thereby displaying
the consequences of the hard-core interaction.
Once these are well understood, the remaining
interactions can be introduced. As the first step
in the above program, the ground-state energy,
condensate density, and excitation spectrum of a
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system of hard-disk bosons of diameter a are cal-
culated below in the limit of low densities and at

the absolute zero of temperature.
It might be objected to that such a calculation,

which is predicated upon the existence of a Bose
condensate, can say little of the properties of the

system at finite temperatures in light of the fact
that the infinite two-dimensional boson system pos-
sesses no condensate at any finite temperature. '
However, we are concerned with a model of a real,
and therefore finite, systemof helium. In such a
model, a finite fraction of the bosons occupies the

lowest-energy single-particle state for tempera-
tures less than and of the order of To/iniq, where

To is the condensation temperature in three dimen-

sions and N is the number of particles. For some

recent experimental configurations~ this tempera-
ture is typically of the order of 0. 1 'K.

CHOICE OF DIAGRAMS

~e first consider an interaction U(r) with a well-

behaved Fourier transform U- and of range a. With

0 and m, theparticle mass, set equal to unity, the

dimensionless expansion parameters are

$ = Uo, P=na

where n is the areal number density of particles.
The parameter P is assumed to be small. %'e fol-
low Beliaev' in classifying the diagrams and con-
sider various contributions to the anomalous self-
energy Zoz. The first-order contribution is shown

in Fig. 1(a) and has the magnitude

Z02(p) =noU;

The only nonzero diagram in second order is shown

in Fig. 1(b). The magnitude of this contribution is

&O2 (p) ~ nof U; U;;G (q)G ( —q)d jdq

where

Go(q) = (q'+ p —e, +f5) ',

The value of the chemical potential p. may be taken
to be the lowest-order contribution to g which is
noUO. Assuming that U; is essentially constant for
qa & 1 and negligible otherwise, the magnitude of
the above contribution is found to be

ir - ———
ai

(I 1i iP h

0 b C

FIG. 1. Some diagrams for the anomalous self-energy
&2p, The dotted lines represent interactions and the solid
lines represent propagators G .

It is to be noted that this contribution depends on

the density parameter P, which is not the case in

three dimensions. In third order we may compare
the contribution of the diagrams shown in Figs. 1(c)
and 1(d). These are

Zoz(p) ceno f dtldq U;Go(q)GO(-q)

x ddt dt, Uf U;;G'(f)G'(- f)

~ Z&'»(p)(& lnP()'

and

F,'„(p)~jdqdq U U -G-(-q) IG (-q)]

Again it should be noted that Zz~ depends on P. As
this parameter is small, Z02 is larger than Zo& as
expected in that the latter arises from the scatter-
ing of three particles, a less likely process, in
the low-density limit, than repeated scattering of
two particles.

From the above analysis, it can be seen that the
choice of diagrams to be summed is not as straight-
forward in two dimensions as in three. In three
dimensions, only the so-called ladder diagrams
are independent of the small parameter P, while
all other diagrams vanish with vanishing P. There-
fore the sum of the ladder diagrams gives the first
term in the expansions of all quantities in terms of
the density. In the calculation of the properties
of the two-dimensional system below, we choose
to sum the ladder diagrams. That this is the cor-
rect choice is demonstrated as follows.

The sum of the repeated interaction of two parti-
cles yields an effective interaction which will be
shown to be density dependent. In particular, in
the limit of small-momentum transfers, less than

a, the effective interaction has a (lnP) ' depen-
dence. This is to be contrasted with the behavior
of the effective interaction in three dimensions
which, in the same limit, is equal to a nonzero
constant. Returning to the evaluation of the dia-
grams of Fig. 1 and replacing the bare interaction
by the effective interaction, which amounts to re-
placing $ by (lnp) ' in Eqs. (1)-(3), one finds the
following results: First, diagrams a, b, and c,
which are now the same diagram, as the effective
interaction is the sum of all repeated interactions,
are indeed identical to within any power of the small
parameter (1nP )

' which turns out to be the expan-
sion parameter of this problem. Second, the dia-
gram of Fig. 1(d), which involves a, third particle,
is smaller than the other contributions by the ex-
pansion parameter (inP) '. Thus it is seen that in
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two dimensions, as in three, the ladder diagrams
provide the largest term in the expansion of quanti-
ties in terms of density and that the corrections in-
clude terms generated by the scattering of several
particles.

GROUND-STATE PROPERTIES

The ladder diagrams are summed in the usual

way by means of the integral equation

F( p', p, I'}= Up, ;
+ i(2v} fdq dq Up ~G (2 P+ q)

x G (-,
' P —q)l'(q, p, P).

In a manner identical to that of Ref. 5, the solu-
tion of this equation can be brought to the following
forms which do not depend on the existence of a
Fourier transform for the bare interaction:

1 dK
=f(p', P) f(p', ')f'(P, K) KE Ka, 2„„~ Ka Pa;8 (2„)a

1 1 dK
(P po )=f*(pop')+ f(ppK)f'(ppK) Ks Kz, 2„„8+Kz ( o)z„8 (2,)z o

where

3 0 x 2Zo=& -4
f(p', P) = 1 U(r)g;(r)e-~"idr.

The function g;(r) is the wave function for a
scattering problem between unit-mass particles
interacting with the potential. As the reduced m~~s
is &, the energy of the system is p . The analog
in three dimensions of the function f(p', p) defined
above reduces to the scattering amplitude multi-

plied by (-4v) when its arguments are of equal
magnitude. This is not the case in two dimensions.
If the scattering amplitude in the two-dimensional
problem is denoted f(p', p}, then it can be shown

that

f(p', P}=-(8'}"'e""f(p', P} «r f =P'.

As in three dimensions, the first-order chemical
potential and self-energies are obtained from the
effective interaction I' according to'

u =n,F(0, 0, 0) =nof(0, 0)+noP. P If(0 (l}l, .+~2g —q' q 2v)'

P

Zo(p)=np(p, p, 0)= of (0, 0) nP. Pff'(p, q)f(p, q)
2V —q' q (2v)' '

Z, o(5)= no('(0, 0, pl = no('(p, pl ~ n, P. P ff'(0, q)/(1, q) 2g-q' ~q (2w)'
(8}

Z„(p, p )=noF(-,'p, —,'p, p)+noF(- 'P P P}

2

nQfp(Q po o) p + no Ifp(2 Po 0 I PO+ 2 + ( p2 2 + i8
+ I 1 p2+ 18 (2&)2

where

fp(p op) 2(f(p op)+f( p p]p}0 (8) where

x [coed+„,,(Ka) —sin8„1'„.,(Ea) ] cosve,

and P. P. denotes principal part.
For hard disks of diameter a and unit mass, it

is shown in Appendix A that the function f(K', K) is
given by

f( K', K) = —2vKa~ c„e~ "J„(K'a)
v=0

c„=1 for v=0
=2 otherwise,

J„and P„are the cylindrical Bessel functions of
the first and second kind, 6) is the angle between
K and K', and the sine and cosine of the phase
shifts 5„are given by
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J„(Ka)
[ J'„(Ka)+ Y'„(Ka)]"',

for

pa «p, a —= [—16vna (lnna )
'
] «1, (15)

Y„(Ka)
[J„(Ka)+Y„(Ka) ]'iz

The following limiting behaviors will be useful:

f(K', 0) = 0 for all K',

f(0, K)-2v(lnKa) for Ka«1,

f(K', K)- 2v(lnKa) ' for K'a and Ka«1.

(10)

(11)

(12)

This limiting behavior is to be contrasted with
that of the analogous function in three dimensions
which is asymptotically equal to a constant value
for K'a and Ka much less than unity.

Substituting Eq. (10) into Eq. (4) for the chemi-
cal potentia. l, one obtains the homogeneous (as op-
posed to inhomogeneous in three dimensions) inte-
gral equation for ]Lt,

dq 1 1p= noP P
(

.z f(0~ q) z+~ ~

2gj 2p. -q q

The major contribution to this integral comes from
values of qa which are much less than (2g2)
which will be shown to be much less than unity.
Thus the limiting behavior of f(0, q) given by Eq.
(ll) may be substituted into the above integral.
In the limit of noa «1, one obtains

and for the important values of p which are shown

to be

p'= —,
' pp for p & P, .

It should be noted from the intimate relation be-
tween the effective interaction I' and the self-en-
ergies, given in Eqs. (5)-(7), and the limiting ex-
pressions for these self-energies given above that
the effective interaction in the limit of small mo-
mentum transfers depends on the density as
(lnna )

' as stated previously.
Using the self-energies given above, the Green's

function can be obtained from the well-known ex-
pression of Beliaev. It has the form, for p &p, ,

G(P) = u~/(P —(u&+i5) —vz/(P + u~ —i5), (16)

where

u& ——(e&+ p+ cu&)/2&v» v& = (e&+ p —&u&)/2u&~, (17)

and where (d~, the excitation spectrum, is given by

(dz = (E.~+ 2Ep/l)

= [-,' p' —4vn p'(inn ') ' ]"'.
In the long-wavelength limit, the spectrum is
phononlike with a speed of propagation

p= —4vn(irma ) '{1+0[(lnna ) ']], (13) c= [-4vn(Irma ) ']'

where the result that no is equal to n in lowest or-
der has been anticipated. As stated above, the
quantity na is small compared to unity in the low-
density limit. The ground-state energy per unit
area is obtained from

E(n)/A = f g(n') dn',

which yields for the ground-state energy per parti-
cle in the low-density limit

E/N= —2zn(luna ) '{1+O[(lnna ) ']). (14)

It may be seen from Eqs. (13) and (14) that the ex-
pansion parameter in this problem is the small
quantity (lnna ) '.

The self-energies Zzz(p), Zzz(p) are easily ob-
tained in the limit pa«1. Substituting Eqs. (10)-
(12) into Eqs. (5) and (6) for the self-energies
and comparing with Eq. (4) for the chemical po-
tential, one obtains

Zzz(p)- Zoz(p)- p = —4vn(luna )
' for pa«1.

The evaluation of Z,q(p, p ) given by Eq. (7) is
somewhat more complicated. We leave to Appendix
B the demonstration that

Z„(p, p )- 2g= —8vn(luna )
'

The spectrum is seen to change from phononlike
to free particlelike in the vicinity of the momentum

p, defined in Eq. (15).
The depletion of the zero-momentum state is

obtained from G(p) according to the expression

n —nz=i(2v) f dp f dp G(p),

where the contour C contains the real axis and is
closed in the upper half-plane. Upon substituting

Eqs. (16) and (17) into the above expression, one
obtains for the condensate density

nz =n[1+ (lnna ) '] .

Finally, the ground-state energy, chemical po-
tential, and Green's function are related by the
equation

E/A ——z'np, =i(2v) f dp f —,'(p +a~)G(p)dp

In three dimensions, the analog of this equation
can be used to obtain the next approximation for
the energy and chemical potential from the Green's
function. Unfortunately this is not true in two
dimensions which can be demonstrated as follows:
Substituting Eq. (16) for the Green sfunction 'into
the above, carrying out the integration, and using
Eq. (13) yields
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Let

E/A ,'n—p —=—mn (lnna )

Z/A = —2vn (lnna ) [1+y(lnna ) '],

(18) where

c„=1 for v=0

= 2 otherwise,

so that

= —4'(irma ) + 2en(irma ) (1 —2y)
d(E/A) -1 2 -2

dtl

+0[(lnna') '] .

g is the angle between the vectors k and p and

F„(kp) satisfies the equation

p
" = -K2+ u(p) +~ F„(Kp). (A3)

1 d dF (Kp) 2
p2

p cfp dp p

Substituting these expressions into Eq. (18) yields
an identity which is independent of z.

SUMMARY AND DISCUSSION

Properties of the ground state of atwo-dimension-
al system of hard-disk bosons of diameter a have
been calculated in the low-density limit. The
ground-state energy per particle, chemical poten-
tial, and condensate density were found to be

E/N = —(2' n/m lnna ) [1+0(1/lnna ) ],
y. = —(4' n/m irma ) [1 + 0(1/lnna ) ],

no = n(1 + 1/ lnna + 0 [(1/lnna ) ])
upon restoring h and m. The excitation spectrum
for long wavelengths was found to be phononlike.
For a system of finite size, the above quantities
will vary smoothly with temperature in the limit
of vanishing temperatures. In particul. ar, the
phononlike behavior of the excitation spectrum
indicates that for T «To/lnN, the specific heat
will be quadratic in temperature. Corrections to
the above quantities due to finite-size effects are
smaller than the above by the ratio lnna /1nN.

The expansion parameter of the system is —1/lnna
Taking the hard-core diameter a to be 2. 2 A and the
density to lie in the range appropriate to real helium
monolayer s, ' 0.06-0. 08 A, one finds that the ex-
pansion parameter varies from slightly larger to
slightly less than unity. This is in contrast with
the expansion parameter in the three-dimensional
system which, when evaluated at the density of
liquid helium, is approximately 21. Thus the
motivation for obtaining the next few terms in
the above series for the two-dimensional system
is far greater than in the three-dimensional case.

Again it should be recalled that the reduced mass
is &. Denoting by y the angle between K' and p,
we employ the expansion

exp(-i K' ~ p) = p c,J„(K'p) cosp, y
v=0

=5 c,d (K'p)
it=0

"(cosy Ocospp+sinpesinpp), (A4)

where 0 = p+ y is the angle between K and K'. Sub-
stituting Eqs. (A2) and (A4) into Eq. (Al) and car-
rying out the angular integration yields

f(K', K) = 2vZ c„e""cosv 8
v=0

x U(p) F„(Kp)J„{K'p)pdp.
0

(A5)

The Bessel function Z„(K p) satisfies the differential
equation

p
" = — ' +—2 JK'p . A6

= (K' K) J„(K-'p)F„(Kp)pdp
0

Upon multiplying Eq. (A3) by J„(K'p) and Eq. (A8)
by F„(Kp), subtracting the equations, and integrating
from zero to infinity, one obtains

dpJ„(K'p) —F„(Kp) —pF„(Kp) —J„(K'p)
Ap cfp

APPENDIX A + U p „'p F, Kp pdp.
0

(A7)

In this Appendix, the function

f(K', K) = J u(p) gg(p)e
' I "dp (A1)

is evaluated. Standard partial wave analysis
applied to the two-dimensional scattering problem
yields for the wave function Q(p) the expansion

Use is now made of the specific properties of the
hard-core interaction. As the interaction is in-
finitely strong for p &a, the radial wave function
F„(Kp) vanishes in this region so that

j Z„(K'p)F„(Kp)pdp= J J„(K'p)F„(Kp)pdp. (A8)

gx(p) = 2 c„e""F„(Kp)cosd,
v=0

(A2) In addition, the potential vanishes for p &a so that
in this region F„(Kp) satisfies the equation
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p —F„(Kp) = -K + z F„(Kp) .1d d &
v'

p dp dp p

Upon multiplying this equation by J„(K'p) and Eq.
(A6) by F„(Kp), subtracting and integrating from
a to infinity, one obtains

I
p J (K'p) —F„(Kp) —pF.(Kp) V—K p)

dp dp p tt

(»
* «if-«.(-»»i». (».ip«p

= (K' —K') J„(K'p)F„(Kp)pdp,

where Eq. (AB) has been used to obtain the last line.
Subtracting this equation from Eq. (A7) and evalu-
ating the resultant expression at the limit yields

U(p) J„(Kp)F„(Kp)pdp= a J„(Ka)—F„(Kp)
p~

—aF„(Ka)—J„(K p)
I

dp p~

f(K', K)= —2w(Ka) F~ c„e' »J„(K'a)
v=0

x [cos5„J'~q(Ka)- sin5„Y~,(Ka)]cosv8,

(A10)

as stated in the text.
It is interesting to note in passing that the dif-

ferential cross section &(8) is related to f{K',K) by

a(e) =(svK)"'if(K', K) ~', K=K

and the total cross section is given by the optical
theorem

ar(K)= —K Imf(K, K).

If Eq. (A10) in the proper limit is substituted into
the above, the result can, after some manipulation,
be brought to the form

ar (K) = (4/K) 5~ 0 c„sin 5„.
The sines of the phase shifts are given in the text
[ Eq. (9)] and have, in the limit Ka» 1, the asymp-
totic behavior

sin5„- v(Ka) "/2 "v!(v—1)!, v &0

= a J„(K a)—F„(Kp)
dp p~

(A9) sin5O - —v/2 lnKa, v=0 .

as the radial wave function F„(kp) vanishes at p
equal to a. To carry out the derivatives of F„(kp),
we employ the explicit form

F„(Kp) = cos 5„J„(Kp)—sin5„Y„(Kp).

Thus in ~he low-energy limit, the total cross sec-
tion has the form

&r (Ka) -w /k(lnKa), Ka«1

and diverges in the limit of zero energy.

APPENDIX B

Lastly, substituting the result for the integral in

Eq. (A9) into Eq. (A5) yields
In this Appendix, the real part of the self-energy

~»(p, p ), which is given by

1 1~ i 1 2 1 1 dq
ReZ„(p, p)=2nof, —p, —p +2noP. P. f, —p, q o, 2 2 + z, 2,2, (BI)

2 '2 2 p +2+ —yp —q q —4p (2')

will be calculated. The imaginary part is ignored
as it is easily shown to be smaller than tPe real
part by a factor of 1/lnna .

It will be assumed that pa «1 so that

f, ( & p, & p) = 2m (lnpa) ',
which follows from Eqs. (8) and (12), and the as-
sumption that pa is small compared to unity. In
addition it will be assumed, and later confirmed,
that the major contribution to the integral above
comes from the region in which qa «1 so that

can be written as

ReZ»(p, P )/4wno= —(InPa) '+2P. P.

(lnx) x —t. x —s
(83}

The major contribution to this integral comesfrom
the region of x which is greater than t and lessthan
s or, in terms of q,

s &(qa)'&t .

f,(&p, q) =27t(lnqa) ' .

Defining the parameters

s=p a'+2pa' —t, t=(pa/2)'«1, (82)

The parameter t is assumed at the outset to be less
than unity and it will be shown that for the important
values of p, s is also small compared to unity.
Assuming this, the integral has the value

and making a simple change of variable, Eq. (81) 1/lnt —1/lns +0[1/(lnt) ]+0[1/(lns) ] ~
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po order (Int) ~, the first term in the above expres-
sion and the first term in Eq. (B3) cancel leaving

ReZ
—Sn'no

11(p&p )
1 [po 2 2 I (p /2)z]

Restricting ourselves further to the regime

pa «p, a = (- 18vna /irma )"
= 2(m')"'

we find that the third term in the argument of the
logarithm can be ignored with respect to the second.

The important values of P are those near the
poles of the Green's function where P has the mag-
nitude

P =+&= —.P.P «r P«P, .
Therefore, the ratio of the first to the second term

in the argument of the logarithm is

p'/2p =p.p/4IJ

From Eq. (B2}for s, it can now be seen that s is
approximately equal to 2' which, from Eq. (13)
of the text, is small compared to unity. Therefore
the most important pa.rt of the integral in Eq. (Bl)
does come from qa much less than unity as assumed.

We have found that

ReZ»(p, p ) = —swno/ln2pa

= —8vn/irma +0[1/(irma ) ]

= 2p +0[1/(1nna ) ],
in the region P «P„p = co~.

*Research supported by the National Science Founda-
tion.

W. D. McCormick, D. L. Goodstein, and J. G. Dash,

Phys. Rev. 168, 249 (1968); G. A. Stewart and J. G.
Dash, Phys. Rev. A 2, 918 (1970).

See, for example, J. G. Dash, Phys. Rev. A 1, 7

(1970) and references therein; H. W. Jackson, Phys.
Rev. 180, 184 (1969); A. D. Novacov and F. J. Milford,

J. Low Temp. Phys. (to be published); M. Schick and
C. E. Campbell, Phys. Rev. A ~2 1591 (1970).

3P. C. Hohenberg, Phys. Rev. 158, 383 (1967).
4G. A. Stewart and J. G. Dash, see Ref. 1.
S. T. Beliaev, Zh. Eksperim. i Teor. Fiz.

34, 433 (1958) [Soviet Phys. JETP 7, 299 (1957)).
N. M. Hugenholtz and D. Pines, Phys. Rev. 116,

489 (1959).

PHYSICAL REVIEW A VOLUME 3, NUMBER 3 NARC H 1971

High-Energy Neutron Scattering Measurements on Liquid Helium and Bose
Condensation in He ii f
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Differential neutron scattering cross sections for liquid 4He have been obtained for momentum
transfers along the free-particle excitation curve up to 20. 3 k '. Momentum transfers in this
range are much higher than in previously reported work. The measured recoil energies as well
as the angular dependence of the scattering confirm that the neutron scattering, at these high
values of ff, is sensitive to the motions of single helium atoms. A temperature dependence in

the widths of the cross-section peaks, as well as shape changes in these peaks as the tempera-
ture is decreased below Z'„, is consistent with the idea that a narrow condensate component con-
tributes to the scattering for Z'& T„. Results from a detailed comparison of the measured cross
sections with a theory for high-energy neutron scattering are reported. The kinetic energy per
liquid-helium atom is deduced from this theory-experiment comparison and is found to be in

agreement with computations of the kinetic energy based on thermodynamic phase equilibria
considerations. A fractional occupation of the zero-momentum condensate state of (8. 8 s1.3)%
at 1.27 'K is also deduced from this theory-experiment comparison.

I. INTRODUCTION

At sufficiently high energy and momentum trans-
fer, neutron scattering from liquid helium can be
expected to provide information about the momentum
distribution n(P) of individual helium atoms. While
any experimental information about n(P) for helium

atoms is of interest, it is particularly important to
obtain knowledge regarding the shape of n(p) near
p =-0. The shape of this part of the momentum spec-
trum bears on the question of the existence of a con-
densation in momentum space. Much of the theo-
retical basis for understanding superfluid He II in-
volves the notion of macroscopic occupation of a


