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Wannier's predictions which has been established
here is connected primarily with the use of drift
tubes for the measurement of rate coefficients for
ion-molecule reactions. In such measurements,
the effects of longitudinal and transverse diffusion
of the ions should be considered, but the diffusion
coefficients above the thermal region are known

for only a few ionic species. When the necessary
coefficients are not available, the Wannier equa-
tions may be used to calculate values of DI, and D~

which should be at least approximately correct,
except for cases where resonant charge transfer
occurs.
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The effects of the variation of v& as other than the

first power of E/N at high E/N are clearly revealed in
the upper curve in Fig. 1 and in the lower curve in Fig.
4. Both the calculated values of +D and the experimental
data show a decrease in the slope of the curve at the
higher values of E/N shown.
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Spontaneous emission by a "two-level atom" interacting with a highly excited field mode is
described using quantum electrodynamics without time-dependent perturbation theory. It is
found that both the line shape and the Lamb shift are affected by the "applied field. " Detailed
solutions are presented as a function of the population of the "applied-field mode" and as a
function of the detuning.

I. INT ROD UCTION

There have been a number of treatments of the
phenomena which occur when spontaneous and stim-
ulated emission proceed simultaneously in the same
population. ' ' These treatments have used various
forms of semiclassical radiation theory. Two pa-
pers in particular give an extensive treatment using

a form of semiclassical theory which includes the
effects of radiation reaction on the radiating atom. "

These improved semiclassical theories have pre-
dicted certain nonlinear effects which occur when
spontaneous and stimulated emission occur simul-
taneously in the same population. ' These effects
involve changes in the line shape and in the radia-
tive frequency shift, as well as various transient
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phenomena which occur when the applied field is
suddenly turned on. Thus far these phenomena have
not been observed experimentally, but an experi-
ment is now in progress which will attempt to ob-
serve them.

Predictions from these improved semiclassical
theories do not, in general, agree in every detail
with quantum electrodynamics, though the discrep-
ancies seem to be entirely in the fine details which
have not yet been experimentally checked. These
discrepancies have, in fact, been suggested as pos-
sible experimental checks of quantum electrodynam-
ics. One difficulty with any such check is that,
although the semiclassical treatments have been
worked out in great detail, the quantum-electrody-
namic treatment has not been carried out in such
detail. This paper represents a first step in that
quantum treat, ment.

The method which we will use to treat these prob-
lems is to separate out one field mode, which is
assumed to be initially highly populated, from the
remainder of the field modes, which are assumed
to be initially unpopulated. We will take the single
field mode interacting with a "two-level atom" to
be a quantum system and find its eigenstates and
eigenenergies. We will then allow this atom-plus-
field-mode system (AFS) to interact with the re-
mainder of the field and determine the nature of the
spontaneous transitions between states of the AFS.
These spontaneous transitions will be studied by
making the Wigner-Weisskopf essential-states ap-
proximation and then solving the time-dependent
Schrodinger equation with Laplace transforms.

lL CALCULATIONS

The Hamiltonian for a "two-level atom" interact-
ing with the field can be written in the form

H = H, —(e/mc) A' (0) ~ p+ Hq,

We will begin by finding the exact eigenstates of
the AFS Hamiltonian 8, . The basis states for the
two-level atom satisfy

H, I
u) = KQI u), (4)

and the resonant field states satisfy

We will choose for our field-mode expansion'

2e
y, z k

where V is the volume of the cavity in which the
field modes are defined. Neglecting non-energy-
conserving transitions of the type in which a photon
is given off when the atom goes from the lower state
to the upper state, or absorbed when the atom goes
from the upper to the lower state, we can write
down the eigenvalues by diagonalizing a two-by-two
matrix. Choosing as a basis for our representa-
tion products of the states defined in Eqs. (4) and
(5), the eigenstates are

In ~&=2"'(In-»Iu&~ ln&lf&)

and the corresponding eigenvalues are

E„' = h [nQ s e (n)].

The interaction energy &(n) is

(n)=—(1/'A) (n —
I & ul (e/mc) A, (0) ~ pl n&

I
f&

=(1/g)I -i ' ~
i (2««/F)'"I,

with

u-=( uIer If&,

the dipole matrix element.
Then for reasonable field strengths,

where ~(n) «fl, (10)

Ho H, —(e/m=—c) Ao (0) p+ H~o. (2)

We have denoted the Hamiltonian for the atom alone
by H, and have divided the field into two parts,

A(r) = Ao(r) + A'(r). (2)

The first part, Ao(r), is a single highly populated
mode. Initially, we will take this mode to be res-
onant with the transition between the two levels of
our atom. The other part of the field, A'(r), is
simply all of the field except the one populated mode
Ao(r).

Writing the Hamiltonian this way requires two
approximations, the dipole approximation in eval-
uating the field at the center of mass of the atom,
and the weak-field approximation in dropping the
diamagnetic term which is quadratic in the field.

the spectrum of Ho consists of a series of closely
spaced doublets (see Fig. 1(a)]. The doublet split-
ting is nearly equal in adjacent doublets if n» 1.
Thus in what we do subsequently, we will use the

approximation

e(n)= e(n —1)= e,

and will restrict our considerations to fields for
which this is a good approximation. '

Evaluating probabilities for transitions from one
doublet to the other, we are led to predict the spec-
trum of Fig. 1(b). This level splitting is just the
ac Stark effect. " This transition-probability argu-
ment can only give the spectral lines and their rela-
tive intensities and not the radiative effects we are
looking for. To obtain the line shape and frequency
shifts we must consider the complete Hamiltonian,
Eq. (1), and solve the equation of motion for the
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Ho+ Hf H +Hf —ggA c p

mhere

x b (t) e"', (14)

n-)

n-2 2& (n-2)

H„,=- —(e/tnc) A'(0) ~ p.

W'e will solve this set of equations by use of Laplace
transforms. ' Defining the transformed amplitudes

B(s)=g-e" b(t) dt,

Q-2e CL+2s

we can reduce E(ls. (13) and (14) to algebraic e(lua-
tions for the transformed variables. These alge-
braic equations are easily solved, giving the trans-
form of the amplitude b'(t} as

(s —2ie+q) b'(0) —q b (0)
(s+ q —ie —y}(s+q —ie+ y)

where

FIG. 1. (a) Energy levels of Ho without the inter-
action Hamiltonian. The doublet splitting is equal for
large n. (b) Emission spectrum of the atom-plus-field-
mode system.

state vector of the entire system. W'e mill assume
that the AFS is prepared at time t= 0 in a linear
combination of the states I n, a&, and that all the re-
maining fie'ld states are unoccupied. The state vec-
tor then develops in time according to Schr'odinger's
equation into some linear combination of the states
In-l, +& with the accompanying spontaneous emis-
sion of a photon into a state I k, )(&. Accordingly,
the state vector will be written as

i)k(t)& =(b'(t)in+) s "'+ b (t)in-) e"'

u (k, X} u (k, )()

s+ikc -iA s+ ikc -iA -2ia

(q2 e2)1/ 2

The matrix elements u(k, X) are

u(k, )() =- (1/N) ( n +
i Hi, t i

n - 1, —,k, )(&

=-(1/ar) &n+iH...in-l, +, k, ) &

=-(1/e) (n -iH...in-l, +, k, )&

=(1/III) (n iH(ctln-l, —,k, )()

e„Q(2(t/Vlkc)'t

(18}

(20)

+Q [c'(k, )(, t) i
n —1, +, k, X & e "' + c (k, 2., t)

2 &
si t

] s(( c )2t) e-in t -(12)

with the amplitudes, the b's and the ds, determined
by Schr'odinger's equation.

Substituting E(l. (12) into Schr'odinger's time-de-
pendent equation, we find that the amplitudes satisfy
the following set of coupled equations:

Nb'(t) e"' =2 [(n+[H(cti n-l, +, k, )(& c'(k, )(, t)

In order to understand these rather messy expres-
sions and make the necessary approximations we
will first look at the limit a- 0 in detail. In that
limit the applied field is decoupled from the atom
and we are simply describing ordinary spontaneous
emission. In this limit

b'(0)s+ q(b'(0) —b (0))
s(s+ 2q)

u'(k, )()

g )t s+ ikc -N

(21)

(22)

If the system is assumed to be prepared at time t= 0
in the state

x s "' +(n+iH„(i n —1, —,k, )(&

(st
]

&-((2c-())t (13) then

i
2((t=0)&= in-l, u&, (23)

Rc'(k, )(, t) e "' e " ' "=(n-l, s, k, XiH„(it(+)

x b (I), "'+(n-l, ~, k, )(IH(ctln~ -)

b'(0) = b (0) = 1/W,
and then

8'(s) =[M(s+2q)] '. (25)
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Even in the limit E = 0, the expression for q is
rather complicated. Ne will leave its explicit eval-
uation to the Appendix. In the Appendix we show

that, except for a negligibly small correction, q is
independent of s and equal to

b'(t) = (2&X) ' [(-q —i«+ y) e' """"
+(q —i«+y) e' "'""],

where

(32)

q(« = 0}= —'A+ ki&, (26) y- (q2 «2)1/2

where A is the Einstein A coefficient and & is the
Lamb shift which we had to renormalize in the
usual way.

Substitution of Eq. (25) into (24) and inversion of
the Laplace transform gives the usual exponential
decay and the Lamb shift

Using Eq. (27), we can also solve for

b (t) = (2W y}
' [(-q+i «+ y) e' ' """

+ (q+i«+ y) e' ' """],
and from Eq. (14) we can then determine

(33)

b'(t) = (I/)/Y} e ~ ' e '

Returning to Eqs. (13)-(15), we find

b+(t) e-1 t
b (t) ta t

(27)

(28)

u(k )1) (r q}(et ataka t-cata)t -I)
c'(k, ))., t) = i(kc-II -~ «) - q+y

(r+ )(e(-a-k~tka-tok!a) t
+ ~ (34}i(kc —n+ «) —q —y

which in the case «=0 reduces to b'(t) =b (t). Inte-
grating this using the initial conditions of Eq. (23),
one obtains

b (t) = b'(t) = (I/W ) e "'/' e ' '. (28)

The probability that a photon is in the mode k, X,
regardless of the state of the atom, is then given by

Substitution of these results back into Eq. (14) de-
termines the amplitudes of the lower states:

c (k X t}= -At/8 1 tka-o-k) t
~W uk X)

t(kc -0 —n) ——,'A, (

(30)

From Eqs. (25) and (31) we see that the amplitude
of the upper state does not in general decay as
e "' but with a decay constant equal to —,'A plus the
real part of y. In the limit & = 0 the real part of y
is —,'A and we have the normal decay rate —,'A, but
when z» —,'A, the real part of y vanishes and the de-
cay rate is —,'A, one-half the usual decay rate.

Further, if we go to the long-time limit in Eqk

(34) and calculate the probability of a phonon in the
k, ~ mode regardless of the state of the atom, we
find

P(k, X)-=Ikm [
~

c'(k, 2., t)
~

'+
~

c (k, 2., t)
f

']

P(k, )).) =
f
c'(k, ))., t)

f
+

f
c (k, X, t)

f

2 2u (kt X)
f
e A /„- et&ka o A)t 1

f

2
{kc-n

2u (k, X}
z i z as t-.

(kc —0 —&) + aA
(31}

q=-,'A --,s& (26')

This is just the usual Lorentzian centered about the
LamL-shifted line with the natural linewidth.

Now, having seen the manner of solution for ordi-
nary spontaneous emission, we can return to the
problem of spontaneous emission in the presence of
an applied field. By precisely the same argument
which we give in the Appendix for neglecting the s
dependence of q in the absence of e, we can still
neglect this small s dependence. Further, since
a«G, its appearance in q represents only a small
correction to q, which is itself small compared with

Thus to a good approximation we have

u (k, X) r-q
21r I' i(kc -0+ «) —q+ y

y+q
+

i(kc —&+ «) —q —r

f y-q
+

1

i(kc —0 —«) —q+ y

y+q
+ ~t(kc —0 —«) —q —y

2

which in the limit

becomes

u'(k, ) } 1
2 (kc —A ——,'&+ 2«)'+ III A

(35)

(36)

even for nonzero E.
We can then easily invert Eq. (17) to give

2

(kc —0 —2&) +igA
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QONSTANT
X

TANT

Thus, on the average, the atom spends only half as
much time in the excited state when there is a
strong applied field. Since the spontaneous qmis-
sion can take place only from the atomic excited
state, its effective rate is halved by the applied
field.

For general applied fields which do not fall into
the weak-field or the strong-field asymptotic limit
we can determine the appropriate decay constant
and frequency shift by writing

0.5 I.O 20

y= a[(aA —t&) -4& ] -=x+ty

and then determining that x and y satisfy

e /(~A' —x') ——,'&'/x'= 1

(39)

(40)

FIG. 2. Curves of constant decay rate and frequency
shift as a function of the field strength and the Lamb
shift. All quantities are measured in units of one-fourth
the Einstein A coefficient.

1
(kc -0 ——,'& —2e)'+ t'lt A' (37)

P(u, n —1)= g b'(t) e "'—b (t} e"'~ '

= e "'t ' cos'(-', at). (38)

Thus the spectrum of the spontaneously emitted
photons is the expected ac Stark-effect triplet, but
it is centered about the atomic transition frequency
plus one-half the Lamb shift, and each component
has a natural linewidth which is one-half the nor-
mal width.

We can understand this a little better by calculat-
ing the probability that the atom is in its upper state
and has not emitted the spontaneous-emission
photon:

e'/(n'tA'+ y') + —,'n'/y' = 1, (41)

equations for a hyperbola and an ellipse" (see Fig.
2). Figure 3 illustrates the line shape for various
applied fields on resonance when the Lamb shift is
negligible. Figures 4-V illustrate the line shape
when there is a Lamb shift just equal to the natural
linewidth with various applied fields. In Fig. 4
the ordinary Lorentizian natural line shape is centered
at the Lamb-shifted frequency. As we apply a grad-
ually increasing field, we see in Fig. 5 two sharp
spikes appear on the basically Lorentizian profile.
These are due to the contributions of the first and
third terms in Eq. (35}. As the field strength in-
creases we see, in Fig. 6, the contributions of all
four terms in Eq. (35). And finally, in Fig. 7, as
we approach the asymptotic limit, the components
due to the second and third terms merge, giving the
Rark-split triplet centered at half the Lamb shift
predicted in Eq. (37).

This analysis can be carried through in almost
exactly the same form for an off-resonance applied
field. The only change is that y is given, not by

P(k, X)

FIG. 3. Fluorescence spectrum
for various applied fields when the
Lamb shift is neglected.

I

—2
Kc-Q

2 A
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P(IL,}i}

FIG. 4. Line shape for a Lamb
shift equal to the natural linewidth
and no applied field.

I

-4
I

-3 -2
I Kg-Q

4 (A(~}

Eil. (39), but instead by

r -,' [(=--,
' A -i~. i )n' 4e']'~', (42)

Ne have studied the behavior of a two-level atom
interacting with a resonant or nearly resonant high-
ly populated field mode in detail without resorting
to time-dependent perturbation theory, or some
semiclassical approximation. We have found that,
in addition to stimulated absorption and emission

where o is the detuning parameter. Comparing this
with Eq. (19), we see that we have simply replaced
the Lamb shift 4 by & —n, the detuning measured
from the Lamb-shifted line. Figure 2 will describe
this case if we interpret the horizontal axis to be
this new parameter 4 —n. The line shapes will in

general be qualitatively different from those in
Figs. 4-7 because the amplitudes of the various
components will be different.

III. DISCUSSION

into this field mode, the system can spontaneously
emit a photon into some other field mode. (In a
laser this would include the "side light" scattered
out of the lasing mode. ) The linewidth and the ra-
diative frequency shift of this spontaneously emitted
"side light" were found to be functions of the ampli-
tude of the "applied-field mode. "

These phenomena do not appear to have been ob-
served experimentally up to this time. The curves
of Fig. 2 illustrate some of the difficulties of this
kind of experiment. Clearly, to get an appreciably
narrowed or shifted line one must have a very in-
tense, very nearly resonant applied field. Fur-
ther, inhomogeneous broadening is a difficulty en-
countered in any line-shape or line-shift experi-
ment. This would lead one to expect that an atomic
beam would be necessary. In spite of these diffi-
culties, this would appear to be an attractive way to
measure the Lamb shift, since it can be measured
as the difference between the position of the center

- I.O

-6 FIG. 5. Line shape for a Lamb
shift equal to the natural linewidth
and a weak applied field.
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P(k, X)

-I 0

-.S

FIG. 6. Line shape for a Lamb
shift equal to the natural line-
width and an applied field such
that stimulated and spontaneous
emission are equally probable.

-6
I

-4
I

-2
I

Kc-Q
(4/p)

of the line with and without the field.
Our analysis is incomplete in one important

aspect. The spontaneous transition which we des-
cribe is between excited states of the atom-plus-
field-mode system. We have truncated the problem
in considering only a single spontaneous transition.
In the real physical case there will be a cascade
emitting many spontaneous-emission photons. The
present treatment is sufficient to discuss this pro-
cess if, in fact, the cascade involves the successive
emission of photons for which the orobability of
emission of a givenphoton is not appreciable until the
probability of the preceding photon's having been
emitted is nearly 1, i.e. , if the cascade is simply
a series of transitions each of which is described
by present theory. The semiclassical theories'
treat spontaneous emission as a continuous rather
than successive process. This leads to qualitatively
different results for the long-term solutions. The

We would like to thank Professor J. Eberly for
some suggestions made during this research, and
P. Stroud for numerical work leading to Figs. 3-7.

APPENDIX

In Eqs. (25) and (22) we found

B'(s)=[a 2 (s+2q)] ' (25)

semiclassical theory predicts that in general the
atom may settle down into a certain definite linear
combination of the excited and ground states reemit-
ting as much energy as it absorbs, whereas the pres-
ent theory predicts that there will always be oscil-
lations of the type predicted in Eq. (38). Work is
proceeding on the cascade problem, but we are un-
able to say at the present time how important these
corrections are to the above theory.

ACKNOWLEDGMENTS

P(k, X)

FIG. 7. Line shape for a Lamb
shift equal to the natural line-
width and an applied field such
that stimulated emission is twice
as probable as spontaneous emis-
sion.

-5 -4 -3 -2 (Kc-Qj
(A/ p)
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where

u'(k, X)

&, & s+ikc —i 0 (22')

d ku~(k, X)6(kc+y —A) = 3 (0+y)
(2v) 3'

(A6}

1
b (t)= . llm 8 8 (s)ds2' g» 0

R os 6 gt
lim ds . (Al)

2vi v 2 . . . , s+2q(s)

Making a change of variables

s =iy+ 5

the integral becomes

(A2)

1 1 e(i@+6) t
b'(t) = . lim dy

2 pl W2'g 0 ~ y f6 2tq (xy +6

We desire to obtain the transform of Eq. (25},
If we ignore the y, this expression is exactly one-

fourth the Einstein A coefficient. That the y is in

fact negligible follows because the decay constant
and the frequency shift are small compared with

A. Thus the integral (A3) can have no appreciable
contribution from any frequency components e "f3}t

for which y does not satisfy y «A.
The principal-part integral is divergent in our

dipole approximation. " This is not surprising since
it is just the self-energy of the electron. We must

carry out the mass renormalization and cut off the
integral at high frequencies to obtain the usual ex-
pression for the Lamb shift. After renormalization
(R. N. ) our expression for the frequency shift is

(A3)

Now the on).y place where the limit causes any prob-
lems is in q(iy+6). We must investigate the limit

lm(q)s s = —(& p /3vlc )(fl v) in I«/(&

(A V)

u'(k, X)
limq(ty+6) =2 lim Z
6-0 6„0 ~ „&y+5 +ikc —iQ

In order to calculate spontaneous emission we must
evaluate the sum in the limit of a very large cavity.
In that limit the discrete sum over k becomes an

integral over all k space. Then the sum becomes

V g dku k X) (
(2n') g ~ kc+y —0 -i6

By a well-known identity we can write the limit as

1im q (iy + 6 )
6 0

where K is the cutoff wave number. Since the fre-
quency shift like the decay constant is small com-
pared with 0, we have approximately

lm (q)a.„=—(0'p, '/3vtfc') ln
I
Ec/0

I
(A8)

which is just one-half the usual expression for the
Lamb shift in a "two-level atom. " '

Finally, then, we see that, for the purposes of
substituting into Eq. (25}, q is given approximately
by

2iV + & dku (kX)
(2v)s, kc+y —0

q=~A —i ~~

where

(A8)

+ im dku k, X)5 kc+y-Q (A5)
A -=4p'Q'/3ifc' (A10)

where 6' denotes the Cauchy principaL-part integral
and the 5 is the Dirac 5 function. Substituting from
Eq. (20), we can carry out the second of these in-
tegrations

is the Einstein A coefficient, and

n -=(2fl'i '/3«c')»
I
«/fl

I

is the Lamb shift.

(All�

)

*Work supported in part by a National Science Founda-
tion grant.

B. R. Mollow, Phys. Rev. 188, 1969 (1S6S); Phys.
Rev. A 2, 76 (1970).

~M. C. Newstein, Phys. Rev. 167, 89 (1968).
S. G. Rautian and I. I. Sobelman, Zh. Eksperim. i

Teor. Fiz. 41, 456 (1961)[Soviet Phys. JETP 14, 328
(1962)].

R. K. Wangsness, Phys. Rev. 149, 60 (1966).

M. Crisp and E. T. Jaynes, Phys. Rev. 179, 1253
(1969).

C. R. Stroud, Jr. and E. T. Jaynes, Phys. Rev.
A 1, 106 (1970).

See J. J. Sakurai, Advanced Quantum Mechanics
(Addison-Wesley, Reading, Mass. , 1967), Sec. 2.3.

The particular shape of the volume and the particular
boundary conditions are unimportant since we will later
take the volume to be very large so that the sum over



1052 C. R. STROU0, JR.

modes is replaced by an integral.
E. T. Jaynes and F. W. Cummings, Proc. IEEE 51,

89 (1963).
When we describe spontaneous emission, we will

allow the cavity to become very large. We will assume
that in that limit n also becomes very large so that in

that limit c approaches a constant finite value repre-
senting a finite strength.

An excellent review article on the Stark effect is
A. M. Bonch-Bruevich and V. A. Khodovoi, Usp. Fiz.
Nauk 93, 71 (1967)[Soviet Phys. Usp. 10, 637 (1968)].

' This technique was apparently first used for this

type of problem by G. Kallen, in Handbuch der Phygik,
edited by S. Fliigge (Springer, Berlin, 1958),
Vol. V. It has been used several times since for simple

spontaneous emission.

Numerical calculations indicate that the field strength
& =A would require a laser beam tuned to resonance
with an intensity of about 1 W/cm for the sodium D lines.

It is interesting to note that this integral is not diver-

gent if we retain the retardation rather than making the

dipole approximation, though it does not appear to give

the correct answer for the Lamb shift. See C. R.
Stroud, Jr. , Ph. D. thesis, Washington University, St.
Louis, Mo. (unpublished), for a detailed treatment for
the 1s and 2p states in hydrogen. There it is shown

that there is a small correction to exponential decay
which goes at t 2 for sufficiently long times.

~ We have used exactly the same method as H. A.
Bethe, Phys. Rev. 72, 339 (1947), for our renormal-
ization.
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Results are presented on the propagation of excitations generated by a small (-1 mm square)
pulsed heater immersed in a large (-300 cc) sample of He II maintained at temperatures below
300 mK. Small carbon-film detectors placed at 1, 2, 3, and 4 cm from the heater are used to
measure the flux of radiation over a wide range of heater-power densities (R~). The observed
signals are free from wall reflections. At the lowest temperatures and small W&, the fastest
excitations propagate without dispersion or attenuation at a velocity of 234+4 m/sec. Spatial
attenuation which is observed at higher temperatures corresponds to effective mean free paths
for large-angle scattering of 1, 2, and 3cm at 306+ 6, 272 + 6, and 254 ~ 8 m K, res pec tively. When

W~ exceeds 0.4 W/cm, signal shapes reflecting appreciable interactions between radiated ex-
citations are observed. For 8'H & 2.9 W/cm, the observed signal acquires another component
which propagates without appreciable dispersion at a velocity of 200 +10 m/sec. In these ex-
periments, no evidence has been found of any excitations associated with any upward bend in
the He II phonon-dispersion curve resulting in signal velocities in excess of the first-sound
velocity.

I. INTRODUCTION

A heater immersed in He II is expected to gener-
ate phonons and other excitations. At sample tem-
peratures above about 600 mK, collisions with
intrinsic He II excitations thermalize these emis-
sions to produce the density and temperature
fluctuations of first and second sound. At lower
temperatures, the intrinsic thermal excitations
become rare and direct radiation of phonons from
the heater to the detector becomes possible. This
paper reports on an experimental study of such
signals received at distances of 1-4 cm for input
energy fluxes between 0. 02 and 8 W/cm and at
sample temperatures of 120-o00 mK.

There is evidence of direct phonon radiation in
past experiments on the transmission of heat pulses
down a He II filled tube where one end is. the heater
and the other a thermometric detector. ' In such a

geometry, however, much of the radiation reaches
the detector via reflection from the tube wall. The
present experiment is designed to eliminate this
comp1ication. A small "point" heater and small
detectors are positioned far from the walls in a
relatively large sample of He II. At low tempera-
tures corresponding to long mean free path, the
signal shape should be indicative of the velocity
distribution of the emitted excitations.

This work was originally motivated by a desire
to determine the amount of dispersion (if any) in
the 50-250-GHz range (energy equal to 2. 5—12 K
and wave number equal to 0. 13-0.66 A ') of the
phonon spectrum. It is known that the He II liquid
structure factor S(K), in the low-temperature limit
must have a slope of 1/(2mc) as the wave number K
approaches 0, where m is the atomic mass of He'
and c the first-sound velocity. Jackson and Miller
et al. independently pointed out some time ago


