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The Cohen-Lekner kinetic theory of electron transport in simple systems is extended to

polyatomic systems. The single-scatterer approximation is used to construct differential scat-
tering cross sections for electron-molecule scattering in which the dependence on certain in-
ternal parameters such as molecular orientations and conformations, which vary with periods
short compared to the duration of an electron-molecule collision, is accounted for by a fixed-
internal-coordinates approximation. The resulting differential cross section, unlike the case
treated by Cohen and Lekner, does not factor into a product of the electron-single-scatterer
cross section and the Van Hove spectral function. The most important consequence of the in-
ternal parameters of the scattering molecules is the appearance of an incoherent scattering
effect. Such an effect can be very important in liquids and solids where, because of intermo-
lecular order, the coherent part of the cross section may be very small. Boltzmann's equa-
tion for electrons moving in a constant electric field is derived, solved formally for arbitrary
field strength, and solved explicitly for a low-field limit.

I. INTRODUCTION

During the past few years, purification tech-
niques have been developed to the point that stable
free or "quasifree" electrons have been observed
in the inert gases, liquids, ' and solids and in
several hydrocarbon liquids. "Most of the
studies have been of drift velocities in which the
time of flight of excess electrons subject to an
external electric field is measured between two
electrodes of known separation.

Electron mobilities (defined as the ratio of the
drift velocity to the electric field strength) in
argon and krypton liquids and solids range from
400 to 1500 cm~/Vsse, morethan10~times ionic
mobilities in the same systems. These electron
mobilities are 50-100 times what one would have
expected from dimensional analysis based on sim-
ple kinetic theory, in which it is assumed that the
only differences between diffusing electrons and
ions are their different masses and cross sections.
In such a dimensional analysis, however, diffrac-
tion (i. e. , coherent-scattering) effects due to the
wave nature of low-energy electrons have been
ignored. Cohen and Lekner, '7 on the basis of a
Boltzmann equation they derived, showed that
condensed-phases diffraction effects, arising from
the molecular order of the systems, lead to a
cross section per scatterer equal to the product
of the electron-single-atom cross section and the
quantity S(0), where S(K) is the structure factor
related to the intermolecular pair correlation
function g(R) by the expression

S(K) = 1+ n J &&x'a[ g(R) —1] dBR. (1 1)

Here n denotes the molecular-number density of
the system. For the inert gases, liquids, and
solids, S(0) is about 10 ', thus accounting for the
factor of 50-100 lost in dimensional analysis.
Lekner' has shown that the Cohen-Lekner theory
accounts quantitatively for the magnitude and the
T "' temperature dependence of the mobility of
electrons in argon below about 115'K, and for
the increase in the mobilities in argon and kryp-
ton in going from the liquid to solid phase at the
melting point. Moreover, by including contribu-
tions to the cross section from fluctuations of the
effective potential energy, Lekner' has shown
that the theory provides a semiquantitative (or at
least a qualitative) description of the mobilities in
argon above 115 K and in krypton where mobility
maxima are observed. Thus, on the basis of the
Cohen-Lekner theory one has a fairly good picture
of the nature of excess electron transport in the
inert gas systems.

Excess electron mobilities in the hydrocarbon
liquids are much less understood than in the inert
gas liquids. There is evidence in both gases and
liquids that there is significant inelastic scattering
of slow electrons even in the saturated hydro-
carbons. Moreover, the mobilities are extremely
sensitive to the structure of the hydrocarbons.
For example, electron mobilities of 0. 16, 1.1,
and 55 cm /V sec were observed in n-pentane, cy-
clopentane, and neopentane, respectively. It is
felt intuitively '~ that this strong dependence on
structure is connected with the electric moments,
such as the dipole moments, of the C-H bonds in
these molecules, the more symmetric neopentane
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where 5 is the electron-single-atom differential
cross section and S(K, ~) (known as the spectral
function) is the four-dimensional Fourier trans-
form of the van Hove"' space-time correlation
function G(r, t) of the atoms of the system. It is

attaining fewer conformations of nonzero dipole
moment than the less symmetric cyclopentane and
n-pentane. Just what this connection may be has
not been clarified.

This paper represents what we feel is a first
step toward obtaining a quantitative theory of the
role of electric moments and internal degrees of
freedom in excess electron transport in hydro-
carbons.

In the following sections we shall present a
generalization of Cohen and Lekner's theory which
allows for the effect of the electric moments (or
any other noncentrally symmetric forces) and in-
ternal degrees of freedom on excess electron
transport in polyatomic systems. The most in-
teresting feature of our generalization is the ap-
pearance of an incoherent scattering contribution
not present in Cohen and Lekner's theory. This
incoherence effect is brought out very clearly in

Sec. II wherein we treat a model dipole fluid in
which there is only incoherent electron scattering.

Since we shall parallel their work rather closely,
it is useful at this point to review briefly Cohen
and Lekner's theory. The first step is the con-
struction of the differential cross section for elec-
tron scattering in a system of N scattering centers.
To this end, Cohen and Lekner made the following
two assumptions: (i) The total ampbtude Fr of
the scattered electron at a point in the system is
the coherent sum of amplitudes scattered singly
from the individual scattering centers, and (ii)
the scattering centers are identical atoms having
no internal states which give rise to incoherent
scattering.

Under these two assumptions the total scattering
amplitude may be written in the form

N

Fr —Q Fe~x'~v
@11

where I' is the electron-single-atom scattering
length, r„ the position coordinate of the vth atom,
and h K=p -p' the momentum change for an elec-
tron scattered through the solid angle dA with an
electron energy change h&u = e —e'. Equation (1.2),
in turn, leads to the following expression for the
ensemble-averaged differential cross section per
scatterer':

d(T p
dO d(h &a&) hp

through this function that diffraction effects,
arising from intermolecular correlations, appear
in the Cohen-Lekner theory. Classically,
G( r, t) d'r may be thought of as the probability
that, if a particle was in the volume element d r
centered on position r=O at time t=O, there will

be a particle at r in d r at time t. Thus, at time
t= 0, G(r, t) obeys the condition

G(r, 0) =5(r)+ng(r), (1.4)

xIe "f(p') -f(p)]. (1 5)

e is the electronic charge and P = I/kT, where k

is Boltzmann's constant and T the temperature.
The left-hand side of Eq. (1.5) represents the
acceleration of the electrons by the field which is
balanced by the right-hand side representing the
deceleration of the electrons by collision with the
atoms of the system. The second term on the
right-hand side of Eq. (1.5) represents the loss of
electrons with momentumpby collisions. Itis built
up by multiplying the scattering probability
I d a/dA d(h~)] dQ d(hu&) times the probable flux of
scattering events (p/m) nf(p) d'p and integrating
over solid scattering angle 0 and energy transfer
hu. The first term on the right-hand side of Eq.
(1.5) represents the gain of electrons in momentum
state p by collisional transition of electrons ini-
tially in momentum state p'. This term is built
up similar], y to the term just considered, but with
a simplification arising from the detailed balancing
condition

S(-K, -~)=e'~"S(K, ~) .
It is difficult, in general, to assess the validity

of the single-scatterer approximation and of the
Boltzmann equation. As pointed out by Cohen and
Lekner, a necessary condition for single scat-
tering, and a sufficient condition for the validity
of the Boltzmann equation, is that the de Broglie
wavelength of the electron be short compared to
its mean free path. Lekner has found for argon
that even in the electron energy range for which

where the Dirac 5 function represents the
"self" part of G and ensures the existence of a
particle at r = 0 initially; the term ng(r), a prod-
uct of the atomic-number density and the pair cor-
relation function, gives the contribution of correlated
neighbors to G. The next step in the Cohen-Lekner
theory is to construct a steady-state balance equation
for the momentum distribution function f(p) of elec-
trons, not interacting with one another, moving
through the system under the influence of a con-
stant electric field f. They assume the balance
equation is a linear Boltzmann equation of form

sf P' ScoeS ==n dQd(h&u) ae ———,e S(K, ~)
Bp m 2 '
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multiple scattering occurs, its effect is largely
self-canceling. It remains to be seen if such
cancellation occurs in polyatomic systems. In
any case, in this paper we shall continue to treat
the scattering process by the single-scattering ap-
proximation and to assume the validity of the lin-
ear Boltzmann equation. Multiple-scattering ef-
fects will be studied in a future publication.

The theory presented in this paper may be
divided into two parts. The first part is the derivation
of an appropriate thermal-averaged differential-
scattering cross section describing the scattering
of electrons by the polyatomic molecules of the
system. The second is the derivation and solution
of the kinetic equation of electron transport. The
derivation of cross sections is the subject of Secs.
II-IV. In Secs. II and III, the first Born approxi-
mation is used to derive explicit cross sections
for electron-multipole scattering. Several investi-
gators' ' have advanced arguments in favor of
using the first Born approximation for treating
slow-electron-multipole scattering. In Sec. IV,
a more general expression for the differential
cross section is derived for the single-scatterer
approximation under the assumption that a certain
set of internal coordinates I, positions of nuclei
for example, are fixed during a scattering event.
This assumption of fixed I is sometimesix, ie-is

called the adiabatic approximation. Because of
confusion that arises from the use of the word
"adiabatic" for other unrelated situations, we
prefer to refer to the approximation as a "fixed-
internal-coordinates" approximation. To this
approximation, one first calculates the differential
cross section for the electron-molecule inter-
actions characteristic of fixed I and then averages
over the distribution of I characteristic of the sys-
tem. The opposite of the fixed-internal-coordi-
nates approximation would be to approximate the
electron-molecule interactions by averaging over
the distribution of I. The latter approximation is
appropriate when the internal parameters I vary
with periods short compared to the duration of
the collision, while the fixed-internal-coordinates
approximation is appropriate when the duration
of the collision is short compared to the periods
of I. To the single-scatterer approximation, both
possibilities are included in our theory; the struc-
ture-independent part of the interaction potential
will contain the contributions from averaging over
the I's of short periods. As an example, in con-
sidering thermal electrons in a hydrocarbon, we
might expect that electron interaction with rota-
tion of the molecule, rotation of CH& groups about
their bonds, and skeletal vibrations could be
treated by the fixed-internal-coordinates approxi-
mation, while interaction with the C-H stretching
and bending modes could be treated as the average

potential of interaction.
Section V is devoted to the derivation and formal

solution of the Boltzmann equation. An explicit
solution is given only for the low-field limit and
for the case of small average electron energy
change per collision event. The theory developed
here is presently being applied to particular mole-
cular models. The results of these calculations
will be published in the near future.

II. ELECTRON-DIPOLE-SCATTERING CROSS SECTION:
BORN APPROXIMATION

In this section, we study a particular model to
illustrate the ideas behind the more general theory
to be presented in the next sections. Let us con-
sider a system of N identical rotators, described
by the Hamiltonian operator Ho, interacting with
an electron according to the dipole potential-en-
ergy function

N(pp)N
V=+ —eD„- - 3 =Q V„,ir —r„I

where e is the electronic charge, ID„I= D the
dipole moment of the vth rotator, r the position
of the electron, and r„ the position of the vth
rotator.

We wish to calculate the differential cross sec-
tion for the scattering process in which the sys-
tem of rotators goes from quantum state i to
state l, and the electron with initial momentum
Sko= p is scattered into an element of solid angle
dQ = sin0 d8 d(III and has a resulting momentum
Sk=p'. Using the Born approximation, we can
express the desired cross section per scatterer
per unit solid angle in the form'

(2. 1)

dv k
(2. 2)

where

z ) dre'"' P„e' o' i . 2 3)

K= ko-k (2. 5)

d3R jK R R'Dy
2wh A

(2. 6)

The last expression can be simplified somewhat by
interchanging the summation over v and the inte-
gration over r and introducing the coordinate trans-
formation R = r —r„ to obtain

+ ii = -Z(&~ &(Ve'"'"I && (2. 4)
y-1
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Taking a fixed-coordinate frame in which the z axis
lies along the unit vector K= K/K, we may write

R= R[cos8„K+sin8„cos(t)„i+ sin8„sin P„j],
~da A

D„=Df cosy„K+ siny„cos«7„i+ siny„sinr}„j],

and the integral of Eq. (2. 6) can be performed
as follows:

00 1 2f

a(y„}= —,D dR d(cos8„) dI() „e««e"'a
0 -1 0

x [cos8„cosy„+sin 8„cos(t)„siny„cosr}„

+ sin 8„sin(t) „siny, sinr}„]

d(k()d)5(E« —E« —k(d) . (2 9)
do dg

dA ) dn

We have summed over all final states consistent
with conservation of energy by introducing the
Dirac 6 function in Eq. (2. 9). From Eq. (2. 9)
it follows that the differential cross section corre-
sponding to the ith quantum state of the system is

5 E) -E) -5'(d

(2 k)-1 g dt -«(h(d E««-««&d«/h ~ &I&

where

2ieDm cosy„
gZ g (2. 7) (2. 10)

The second equality of Eq. (2. 10) follows from the
integral representation of the Dirac 5 function

cosy„= D„K/DK. (2 &)

Expression (2. 4} differs from that obtained for
scattering by a centrally symmetric potential in
that the scattering length a(y„) cannot be taken out
of the inner product (l I

~ ~ ~ (i) because of the orien-
tation dependence, i. e. , the dependence on y„.

The cross section per unit angle for scattering
by N dipoles initially in state i, and such that the
total electron energy change is 8&, is given by

() (x) = (2«/)
'
J dy e'"" . (2. 11)

«e «/h
~
j)

we obtain the result

The quantity t in Eq. (2. 10) ha. s the dimensions of
time. Combining Eqs. (2. 4) and (2. 2) and using
the fact that

2 N N

dt e-«(d«(i~ e«H(««/h a(y )
e«K'i„e-«//()«//) a(y ) e-««f r~

~

.
)dQ d(tt(d) «2«/kk«)N „r« „, , (2. 12)

Equation (2. 12) gives the differential-scattering
cross section corresponding to the quantum state
i of the system. If the system is assumed to be
in thermodynamic equilibrium at a temperature
T, then the differential cross section for electron
scatter by the system is obtained by thermal aver-
aging Eq. (2. 12). Thus, the desired differential
cross section is

-e /ar
h 2

a) d(aw), a) d(l( )),
N N

Z Z dte'"
2n'SkpN „q „, q

x(a(y„(t))e« '~" ' a(y„.(0))e «"'"~' ')r,
(2. 13)

where ( .) r denotes the thermal average

e«dar(t
( «a (

') Tr(e //Q/aro]
(a)r= ' ~ e /ar

——
T ~ „ /ar], (2. 14)

z, ) e i e

and where we have used the Heisenberg operator
notation

&(r,(t), r„(t), y, (t), . . . , y„(t))

&(«) y«, ~ ~ ~, y//)e ()' " . (2. 15)

Equation (2. 13} reduces to the well-known result
for neutron scattering'h if it is assumed that a(y„)
is independent of orientation y'„. The dependence
of a(y„) on y„gives rise to an "incoherent" scat-
tering term which is not present in the neutron
scattering cross section. To see this more clearly,
let us assume that the dipoles may be represented
by freely rotating rigid rotors, i. e. , the Hamilto-
nianHpis the sum of the commuting terms Hp" and
8 0, where Hp denotes the rotational part of Hp,
and where H 0" contains the kinetic energy of the
centers of mass of the rotators and the part of the
intermolecular potential energy of interaction of
the rotators which we assume to be centrally sym-
metric. Under the assumption that H~~ and Hp
commute, Eq. (2. 13) reduces to the expression

dh k // //

dO d(k(d) 2«/ttk()N „«r„.«
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X (eIK r„(t) Itf'r-(0&y CM
/ T' (2. 16)

where the first thermal average in Eq. (2. 16) is
taken with respect to the Hamiltonian operator
H0, and the second average is taken with respect
to H0". In the summations over v and v', two
possibilities arise. First, there are N identical
terms for which v= v', and N(N 1) -identical terms
for which v & v'. Choosing v = 1 and v' = 1 and 2,
respectively, as representative contributions to
Eq. (2. 16), we may reduce Eq. (2. 16) to the form

Eq. (1.3), the starting point in Cohen and Lekner's
theory. Thus, the incoherent contributions arising
from orientation-dependent interactions are not
accounted for in the Cohen-Lekner theory, i. e. ,
0„,=- 0 for the case they treat. The term neglected
in taking Eq. (2. 22) for the differential cross sec-
tion may, in some cases, dominate the coherent
contribution to the scattering cross section. To
illustrate this point, let us simplify our model
further by assuming that the rigid rotors are freely
rotating dumbbells so that H0 is separable into a
sum of single rotor operators H„whose eigenfunc-
tions are the spherical harmonics Yi (y„, ))„) with

eigenvalue s
do 1 k

dt e'"
dQ d(k(0) 2))k k()

d3y etK r E, = E, = (8' /2I)l(l+ 1),

x [c„,(t)G,"(r, t) + (t„h(t)G "(r, t)], (2. 17)

c„,-=&a(y)(t))a(yh(0)))r,

and the definitions

(2. 19)

f d re(K r cG(Mrt) —(e(K r)(t& eK'r)(0))cM
(2 20)

where we have introduced the notations

o„,-=[&&(y)(t))e(y)(0)))r —&e(y)(t))e(y3(0)))"r ],
(2. 18)

i = 0, 1, . . . , m = —/, - I + 1, . .. , l. It follows from
the form of it(y„) in Eq. (2. 7) and the separability
of H0 that

= (k/k0) ( a(y)(t))) z, &a(y3(0)) ) r = 0. (2. 23)

Thus, for this simplification of the model, only
the incoherent term 0„, contributes to scattering.
To evaluate this term let us write a(y„) = —lb cosy„,
where according to Eq. (2. 7)

f
w

d3r EIK'rG cM(r t) (eiK ri(t)e-IK r)(0) )cM
T b= 2eDm/8 K. (2. 24)

i (N 1) &e(K'r 3(t &e-g'r (I 0&) CM
T

N
/ t~'r (t) -~erg(0)LCM

u=l

(2. 21)

The quantities G,"(r, t) and G "(r, t) are, respec-
tively, the self and total Van Hove space-time cor-
relation functions which describe the dynamics of
the motions of the centers of mass of the rotors.

If the scattering length a(y„) were orientation
independent, the "incoherent" term o„, would van-
ish, and Eq. (2. 17) would reduce to

e SEINE)tlh IE)'I h

r =0 fthm =-i t'=0 m'=-& ~

x &lml cosy&
I

l'm')& l'm'
I
cosyil lm ). (2. 25)

The matrix elements in Eq. (2. 25) may be evalu-
ated using the identity

Then, evaluating the thermal average, we obtain

aO g

c„,= b Q Q (lml e "Ie'"I ""cosyi e '"I""cosy,
l
lm)

)=0m=-g
Tr(E~E) j

d cr k g GM
2

dQ d(ll(d) itk0 l
(2. 22)

(l+1-m ) (l + 1 + m)
(y) )))) = Y)+), (y) l() '2 1' '2 )j2L+1j j2l+3j

where the spectral function S "(K, 0)) is the space-
time Fourier transform of G™(r,t) Equation.
(2. 22) is, to the Born approximation, the same as

(l —m)(l + m)

,(2l —1) (2l+1)

Using this identity, we find

(l —m)(l+ m)
2l —1)(2l+ 1)

2f 2t
(I'm'l cosy)

l
lm) = Yi (y„)7))cosy, YI.(y„)I))siny, dyi d)))

0 0

(l + 1-m)(l+ 1+ m)
(2l+1)(2l+3) (2. 27)
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This result reduces Eq. (2. 25) to the form

e se, (I + 1) —m e&(ei E-/, ~) t/ii ~ e/(8 i E-/i)i/iii'-m'
&$2I+ I) (2l+3) (2I —I)(2l+1) Q (2I+ I)e~e/. (2. 28)

In arriving at Eq. (2. 28), we have noted that f= (P/2v m)'" e
2 2

(2. 33)

and that

Q 1=21~1
Nt ~-1

eo f oe

Tr(e ~"&)= QQ e ~e/= Q(2I+1)e~ /. (2. 29)
J4e*-f

Noting that

As did Cohen and Lekner in arriving at Eq. (2. 31),
we shall evaluate Eq. (2. 32) only in the limit that
the collisions be almost elastic, i. e. , k0= k and
K= k/2(1- cose)j" . Then the integration over
kid leads to the factor t}(t), which in turn eliminates
the time integration in (2. 17) by substituting t = 0
in e„,(t) and Gc"(r, f). But, by definition,

2 m = —(1+1)(2l+I),
m~-l

G, (r, 0) = ~(r). (2. 34)

we can further simplify Eq. (2. 28) to obtain

o Q e&Ei [(I + I ) ei(e/ el i1&t/-h ~ fei(e&-ei-g i/hl
iac

1=0

Thus, the r integration is eliminated in (2. 17).
Finally, recalling the form of b, Eq. (2. 24), we

obtain

a 1 f 3
edify' 3

(2eDm) 2&@ &gkg dQ d kp
*0

g (2I+ I)e~'i.
J~O

(2. 30)
8v (eDm) 8vm De
3 mk7%2 3kT (2. 35)

The important feature of the dipole model de-
veloped to this point is that the diffraction (or
coherent-scattering) effect observed in electron
scattering in the inert gases, liquids, and solids
has been suppressed by the orientation dependence
of the electron-dipole potential of interaction. For
example, the diffusion cross section per scatterer
predicted by the Cohen-Lekner theory, for low-
energy electrons undergoing nearly elastic collis-
ions in liquid and solid argon is

ed iff eiaS(0)~ (2. 31)

where o„is the electron-single-molecule cross
section similar to the gas kinetic cross section,
and S(0) is the structure factor, Eq. (l. 1), which
accounts for the coherence (or diffraction) of scat-
tering in condensed phases. For liquids and solids
S(0) = 10 ' so that the diffusion cross section in
simple dense fluids and solids is much smaller
than the gas kinetic-diffusion cross section, Let
us compare this conclusion with the diffusion cross
section predicted for the dipole model developed
here. The diffusion cross section associated with
the self-diffusion of an electron may be defined by
the equation

This result is the same as that predicted for the
same model by Altshuler ' for electron swarm
diffusion in dipolar gases, proving our claim that
the orientation dependence of the scattering po-
tential can eliminate the diffraction effect observed
in scattering in the monatomic liquids and solids.
Incidentally, as partial justification for using the
Born approximation to arrive at Eq. (2. 34), Alt-
shuler showed that this expression led to good
agreement when compared to the measured Towns-
end cross sections of water and ammonia.
Christodoulides" has found good agreement be-
tweenexperimentand the first Born approximation
in thermal electron scattering experiments on
many polar molecules.

III. ELECTRON-MULTIPOLE-SCATTERING CROSS SECTION:
BORN APPROXIMATION

In this section, we shall treat, to the first Born
approximation, the problem of electron scattering
by the multipole potential of a system of K identical
molecules. For a given nuclear configuration of
the molecules of the system the electron-multipole
potential function may be expressed in the form20

d
&airc=k 1-cos~ dQd $(d d k0,

N

V=+ I'u~ (3. I)

(2. 32) where

where the initial momenta Ik0= p are distributed
according to the Maxwell distribution function

(3 2)
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for large r -r„. c, is the constant characterizing
the contribution of the lth electric moment to the
electron-molecule potential. The angles 6)„and {t)„
are, respectively, the polar and azimuthal angles
of r —r„with respect to a coordinate frame fixed
in the vth molecule.

For small Ir -rvI, the form of V„must be deter-
mined by a detailed examination of the charge dis-
tribution of the molecules. However, for the pur-
poses of illustration we shall use Eq. (3. 2) at all
values of I r —r„I. For numerical calculations,
the detailed form of V„ for small Ir —r„ I should
not be omitted, although the fact that thermalized
electrons have a rather long de Broglie wave-
length does favor the point-multipole representa-
tion of Eq. (3.2}.

As in Sec. II, the first Born approximation leads
to the following amplitude for the i- l transition:

The integral defining 8, diverges for l =0. How-

ever, this causes us no difficulty since we are re-
stricting ourselves to neutral molecules, in which

case c~=—0. For l +1,4, is definite. If the elec-
tron-induced dipole potential were included in Eq.
(3. 2), the term corresponding to l = 0, i. e. , the
centrally symmetric term, would not vanish. A

detailed calculation of the scattering cross section
should include this term, although for low-energy
electrons the dipole term would probably dominate
the cross section.

Following the steps outlined in Sec. II, we ob-
tain the following thermal-averaged differential
cross section:

d k N N

Z Z dte'"'
dII d(R(o) 2nhkoN '„, „, ,

x(a{I(t))e'"' v'" a(I (0))e' ' ~' ')

where

Pn~ = -+(I
~

a(y. , n.)e' '"i t&,
v=1

(3. 3)

where I„denotes the angles y„and q„.
(3. 9)

a(y„, q„) = (m/2mlf ) f d Re'"' V„. (3. 4) IV. ELECTRON-MOLECULE-SCATTERING CROSS SECTION:
SINGLE-SCATTERER APPROXIMATION

z„and p„denote, respectively, the polar and azi-
muthal angles of K with respect to a coordinate
frame fixed in the vth molecule. We can evaluate
a(y„, g„) with the aid of (a) the expansion '

In this section we consider a system of N identi-
cal molecules, described by the Hamiltonian op-
erator H0, interacting with an electron through a
pairwise additive potential-energy function,

w w OO

e ' '" =Q (2l+ I)(-i)'j, (KR)P, {cos(K,R)), (3. 5} v=Q v„.
v=1

(4. I)

where j, is the lth-order spherical Bessel function,
and (b) the addition theorem '

P, {cos(K,R))=2 Q Y, (y„, g„) Y, (8„,p„). (3. 6)vt v fm v& v

(y. ,an. )= Z+Z Z Z 4~(-i)'&Y, .(y„n.)
imam=-1 1'=0 m'=l'

dR ' )1 d&„

x sin8„Y, ,„,(8„,y„)Y, (8„,y„)

where

=+ Z Z 4m(-l)'A, cPY, (y„, q„)Z' ~,
l~0 ma-)

(3. 7)

0
(3. 6)

Inserting the expansions of Eqs. (3. 2), (3. 5), and
(3. 6) into Eq. (3. 4), letting

d R= R sin6j„de„d(IJ)„dR,

we can obtain the result

We shall assume that Vv depends on the distance
of separation of the electron and the center of
mass of the vth molecule and on the internal state
of the molecule, i. e. , on the-orientation, relative
bond angles, conformation, etc. We shall denote
by Iv all the parameters describing the internal
state of molecule v and on which V„depends sen-
sibly during an electron-molecule collision. Any
internal coordinates which vary with a period
small compared to the time it takes an electron to
pass through the potential field of a molecule (i. e. ,

-compared to the electron-molecule collision time)
are assumed to contribute to Vv only in an average
manner. Thus, the internal coordinates Iv that
appear explicitly in Vv are those which vary with
a period long compared to the electron-molecule
time.

As we did in Secs. II and III, we consider a scat-
tering process in which the system goes from state
i to state l and the electron with initial momentum
ko is scattered into an element of solid angle
dQ = sin8 d8 ~ with a resulting momentum k. As-
suming the validity of the single-scatterer approxi-
mation and assuming that Iv is fixed during the
scattering event, we may write the cross section
per unit solid angle per scatterer in the form
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F,)] (4. 2)

where

Nr F(r, le t~i).
Pnl

(4. 3)

F(I„) is the I„—modulated-electron-single-mole-
cule-scatteringamplitude [F(I„)also depends on
the solid angle 0 and on ka and k, but in our nota-
tion we omit this dependence]. The fixed-internal-
coordinates (fixed I„) approximation to the electron-
single-molecule- scattering amplitude has been dis-
cussed by Chase' and used by Altshuler' and
others ~'8 in treating scattering by polar molecules.
The validity criterion is that the number of excited
states of a target molecule which contribute to the
total scattered wave function be limited and that
the traversal time of the scattered particle through
the interaction region of the target molecule be
small compared with the period of the target motion
excitable in the collision. The fixed-internal-co-
ordinates approximation and the form of Eq. (4. 3)
follow directly from the Born approximation, so
that the Born approximation is a special case of
Eq. (4. 3). How general Eq. (4. 3) is we cannot
determine at this point. This seems to be the
weakest point in the present theory as well as in
the Cohen-Lekner theory.

Starting with Eq. (4. 3), the thermal-averaged
differential cross section is obtained by the proce-
dure used in Sec. II. The result is

Z Z df t ttt
dQ d(ifttt) 2nMON „ t „'.~

x{5„,(t)G, "(r, t) + g„t (t)G "(r, f)}, (4. 5)

where G, " and G "are defined by Eqs. (2. 20) and
(2. 21), respectively, and where

c ..(f) = [(F(I (f))F (I (0)))' -(F(I (f))F (I (0)))']
(4. 6)

&„„(I)= (F(I,(f))F(I,(0)) ),' . (4. V)

(F(I„(f)) tR'F "'F (I„,(0)) tg'8 ' ')
(4. 4)

Equation (4. 4) is the most general form we shall
give for the differential cross section.

In the special case that the Hamiltonian is the
sum of an operator Ho involving only the internal
coordinates I~, . . ., I& and an operator Ho" in-
volving only the center-of-mass positions r„.. . ,
r„, Eq. (4. 4) may be written in the form

0 k ~ g 4dg g$ fK ge

2

dQ d(g(u) 2ttg ko

The ensemble averages indicated by ( ~ ~ )r are
taken with respect to the Hamiltonian Ho .

As is illustrated by Eq. (4. 5), the ensemble-
averaged differential cross section involves not
only the position correlation functions G "(r, t)
and G, "(r, f) but also correlation functions such as
(F(It(f))F (I,(0)))r, t = 1, 2, . .. , involving relaxation
of the internal coordinates I. In general, the full
correlation function (F(I„(t))e'* ~"F(I„.(0))
x e t"'~" ' ')r cannot be factored into translational
and inter'nal correlation functions as in Eq. (4. 5)
and, therefore, must be characterized as a coupled
relaxation of translational and internal degrees of
freedom.

V. KINETIC EQUATION FOR ELECTRON DISTRIBUTION
FUNCTION

Consider a dilute solution of electrons (dilute
enough that electron-electron interactions may be
neglected) in a system of N identical neutral mole-
cules. Assume that there is a constant external
electric field 7 applied to the system. We wish to
derive a balance equation for the momentum dis-
tribution function f(p) of the electrons at steady
state. At steady state, the action of the field g on
the electrons causes the following rate of change in
f(p) d p, the probable number density of electrons
with momenta between p and p+ dp (i. e. , in mo-
mentum state p):

( dA d(K(o) + f(p) d p n.
dQ d(Etta) m

(5. 2)

Equation (5. 2) is built up by multiplying
[d o/dQd(ku)]dQd(8'~), the scattering probability
per scatterer, by (P/m)f(p)d'p, the flux of elec-
trons in state p, to obtain the rate of loss of elec-
trons from state p per scattering molecule.
Multiplication by n, the number density of scat-
terers, yields Eq. (5.2). This equation is then
integrated over all 0 and h& to obtain the following
total rate of change in f(p) due to "loss" collisions:

d'p n dfl d(g~) & ' ' f(p) . (5. 3)m dA d(K(u)

Next consider the rate that electrons are gained
in the state p by the scattering process in which

eX =(p)d'P (5. 1)
ep

The balance equation for f(p) is obtained by equating

Eq. (5. 1) to the rate of change of PP) d'P arising
from collisions between the electrons and mole cules.

Consider first the rate that electrons are lost
from the state p= Kko by the scattering process in
which the electrons are scattered into the solid
angle dQ, attain t)ie momentum p'= hk and incur
an energy change between K& and 5+dh+. This
rate is
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electrons initially in the momentum state p' are
scattered through the solid angle dAp and attain
the momentum state p. This process is accom-
panied by the electron energy change -S~. Inte-
grating the expression analogous to Eq. (5.2) but

for the transition p'- p, we obtain the following
total rate of change in f(p) due to "gain" collisions:

d p'n dO dh~ — ' f p' . 5. 4

e8 -'=n dQd(K(u)~ e(K, (o)
Bp m

x[e '""f(p') -f(p)],

where we have introduced the notation

e(~ )
P d&(p P~ )
p' dD d(5")

(5. V)

(5. 8)

The conservation of momentum and energy imply
that

P dip d'P'=P' dA d'P, (5. 5)

and time reversal and isotropy imply the condition
of detailed balancing in the form

Equation (5. 'l) reduces to Cohen and Lekner's re-
sult, Eq. (1.5), in the special case for which the
differential cross section has the form given by

Eq. (l. 3).
Equation (5. 'I) can be solved formally by expand-

ing f(p) in Legendre polynomials:

p d&(p Pi&) Bh"P d&(P Pi -")
( 6)p' dQ d(f(o) P 4l d(g(o)

f(P) = Q f, (e)P, (cosf),
l=p

(5 9)

Combining Eqs. (5. 4)- (5. 6), forming the difference
between the resulting form of Eq. (5.4) and Eq.
(5. 3), and equating this difference to Eq. (5. 1), we

obtain the following for the Boltzmann equation:

where f is the angle between the momentum p and
the field Z and c = g ko/2m = P /2m. Inserting
(5. 9) into the right- and left-hand sides of Eq.
(5. 7), we obtain

eg'(P — f( ~ — P, (cos(} f'+-y' M ~ P,(cos(}—2f, -—~fi 2 3,& fi
m ' 3 p 5 2 3

I 00

~) e "",&')P, cosf' —,e P, cos f)
Lnp

(5 10)

The prime on f,' denotes the derivative with re-
spect to c. Since the quantities in the integrand
of Eq. (5. 10) do not depend on the azimuthal angle

y of 0, the addition theorem, Eq. (3.6), leads
—after integration over y —to the following form
for the right-hand side of Eq. (5. 10):

*'
dh& ~e K, ~ ~ e y 6 Py cos8 -fy E

(5. 12b)

«P, fi
Sm 2f,' ——= 2wn d8 sin 8 d(I(o) e(K, (o)

I
2n d8sin8 d K& e K, ~ P, cosf

m ~np

x [e ~""f, (c')P, (cos8) —f((~)]. (5. 11)

eSP, f,f, +—=2wn d8sin8 d(R&g)~e(K, &u)
*

xf '""fo( ')-fo( )]. (5. 12a)

fp + 5 f2'+ —~ 2mn d8 sin8

Inserting this result in Eq. (5. 10) and equating
factors of P, (cosg) on each side of the ecpation,
we find the first three members of the set of equa-
tions for f, (c):

x(e " f,(c')P, (cos8) —f,(a)) . (5. 12c)

Following arguments first advanced by Shockley, ~3

Cohen and Lekner claim that terms of order l p 2
in (5. 9) may be neglected for both low and high
fields. Though Shockley' s conclusion will be seen
below to remain true for the low-field limit, his
arguments in the high-field limit depend on the
assumption that for electron energies much less
than the electronic excitation energies of the mole-
cules an electron colliding with a molecule loses
an average energy of about (2m/M)(e) per collision.
M is the mass of the molecule and (e) is the aver-
age energy of the electron. Since an electron
scattered by polyatomic molecules can involve
substantially larger energy transfer than Shockley's
estimate, his conclusion that terms of order f, for
l & 2 can be neglected in the high-field limit, must
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be treated with some reservation. The high-field
limit will be investigated for some specific poly-
atomic models in a future publication. In the pre-
sent paper, we shall restrict our attention to the
low-field limit and to the special case in which
the average electron energy loss per collision is
small compared to the average energy (c) ((e)

kT-in the low-field limit) even though it may be
substantially larger than the "elastic" value of
(2m/M)(c) . The scattering of slow electrons by
nitrogen provides an example of such a case. '
The average electron energy loss per collision is
of the order of 100(m/M) (t) .

The simplification of the low-field limit lies in
the fact that the set of equations for f, implies

(g, (e)[P (cos8) —I]],
which yields for f, (e) the expression

f, (c) = eSA, fo/kT,

(5. 2o)

(5. 21)

with the definition

we (i) expand p' and g, (a') in a power series in e,
(ii) expand 8(K, &u) with respect to K in a series
about the elastic scattering momentum Ko= kp

x[2(l —cos8)]'/~, and (iii) neglect all but the lowest-
order terms of the expansions (i) and (ii) in the
integrand of Eq. (5. 16). The result is

—eSp/mkT=2i/n J d8sin8 J d(kw} (P/m) 9(K„ i//)

f, ~ 8'+ terms of higher order in S. (5. 13)

Thus, to terms linear in 8, the expansion for f(p)
is

Ai'=2vn J d8sin8[1 —P, (cos8)]

x( f d(ri(u) 9(KO, (u)]. (5. 22)

f(p) fo(~)+ fi(~) cos~ (5. 14)

0 = 2wn f d8 sin 8 f d(h&u) (p '/m) 9(g w)

x (5. »)
and

(eg p/m) fo' = 2i/n J d8 sin8 f d(k(d) (P'/m) 9(K, ~)

where fo and f, are, respectively, solutions to the
equations

The quantity 8(KO, ~) is obtained by setting K= Ko
in the scattering lengths and the exponential factors
appearing in e(K, ~). A& has the physical signifi-
cance of a mean free path of drift of electrons of
energy E.

Assuming that 9(KO, &u) has the form determined
by Eq. (4. 4), we can perform the integrations
over & and t explicitly to obtain the rather simple
result

N N

f d(a~) 9(K„~)=—Z Q(P(f„(o))P(f„,(o))

x [e '" fi(~')Pi(cos8) -fi(~)]
&& ef Ko EP&0)-i„(0)]i

tP fT ~ (5. 23)
The solution to Eq. (5. 15) is the Maxwellian equi-
librium distribution

f (~) c 6/kr (5. 17)

where c is a normalization constant. Equation
(5. 16) may be put in a more convenient form with
the aid of the definition

(5. 16)f (~)=- fo(e)i} (e)

and the fact that fo(c') e ~""= fo(e), because of the
conservation of energy. In terms of i}ti(e), Eq.
(5. 16) becomes

&T
=2pn desin6) dhe p' m e K, ~)

x(q, (e')P, (cos8) —y, (e)). (5. 19)

Equation (5. 19) is exact to first order in the
field g. To proceed further without approximation,
we would have to know 8(K, ~) and, in general,
would have to solve for g numerically. However,
we shall simplify the problem greatly by using the
assumption that the average energy transferred
per collision by the electron is small compared to
the average energy of the electron. In particular,

where o „,(0) and o„„(0)are defined by Eqs. (4. 6)
and (4. 7) and $ "(Ko) is of the form given by Eq.
(l. 1) with the condition that g( R) denote the pair
correlation function of the centers of mass of the
molecules of the system. In the limit that o, (0)
=—0, the expression for A& reduces to Cohen and
Lekner's low-field result.

The low-field mobility, defined as the ratio of
the magnitude of the drift velocity, given by the
relation

f(p dp f (p)d'P, (5. 25}

to the magnitude of the field 8, may be computed
in terms of fo and f& as follows:

In the special case that the Hamiltonian Ho is the
sum of an operator Ho involving only the internal
coordinates I&, . . . , I„and an operator Ho

" in-
volving only the center-of-mass positions r„.. .,
r„, Eq. (5. 23} becomes

J d(I~) 9(R, ,~) =(e„,(0)+a,.„(0)S'"(K,)j,
(5. 24)
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Aj.fpd'P pd'P . 5. 26

This result, along with Eq. (5. 24), demonstrates
that in solids and liquids, where S "(Ko) is small
(-10 '), the incoherent scattering cross section
e„,may give an appreciable contribution even
when in the gas phase, where S "(Ko)= 1, o„,
gives the major contribution.
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Three-Body Interactions in Liquid and Solid Helium
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We have calculated the contribution of the triple-dipole three-body interactions to the ground-
state energy of liquid He and solid He. The liquid calculation was done by a Monte Carlo meth-
od using a variationally determined product wave function, and the solid calculation by evaluat-
ing the triple-dipole sum in the static lattice for several crystal lattices. The triple-dipole
term is found to be quite small, of the order of 2% of the ground-state energy of liquid He4.

I. INTRODUCTION

The magnitude of the contribution of three-body
interactions to the ground-state energy of helium
has become a more important question because the
two-body potential is being determined more ac-
curately' and because recent ground-state energy
calculations' have been accurate enough to distin-
guish between various proposed forms of the two-

body potential. In this paper, we will present de-
tailed calculations of the contribution of the triple-
dipole dispersion term to the ground-state energy
of liquid He and solid He.

The Hamiltonian H for a set of N helium atoms
of mass m in a volume V is

@Z N

H= — Q V(+U
2m


