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The analysis of neutron spectra scattered from molecular solids and liquids presents a formi-
dable problem which so far has been only slightly touched upon. For a period of ten years, the

translational motions of atoms in monatomic liquids have been investigated by neutron spectro-
scopists; their theoretical interpretation has reached a certain degree of refinement. An under-
standing of the effects of rotational motions on the neutron spectra scattered from molecular
liquids, however, has not been developed to the same degree. The aim of the present work is
to use some simple but reasonable model for the translational motions and to investigate in
more detail the effect of the various possible rotational motions on the observed neutron spec-
trum. The general principle used is that translational and rotational motions are statistically
uncorrelated. Thus, when the molecule as a whole vibrates and diffuses, it is assumed that it
can also perform librations, free rotations, or rotational diffusion. Phonon expansions are
done for the molecular vibrations and librations. Sears's basic theory is used to describe the
free rotations and rotational diffusion. A cross section is obtained which contains all the basic
components in the scattered-neutron spectrum. A discussion of "good"- and "bad"-resolution
measurements is carried through. The value of older neutron-linewidth determinations is dis-
cussed. It is concluded that the resolution width ought to be ~ 0. 1 x (the width of the rotational
spectrum) if finer details of the rotational motion should be observed as resolved structure.
With the aid of good-resolution data it is shown that the nature of the rotational motion changes
drastically over the liquid range, from librations to almost free rotations. Comparison is made
to changes of rotational motion of ions in the phase transition from the ferro- to the para-elec-
tric phase in the solid state. It is shown that from such observations of molecular motion the
liquid appears as a phase transition or as a transient phenomenon.

I. INTRODUCTION

Neutron- s cattering experiments have sho~n that
single excitations (phonons) exist in a solid up to the
melting point. ' The lifetime of these phonons is
of the order 10 ' sec, which means that the change
in the microscopic atomic motions in passing the
melting point is not too drastic. ' The static long-
range order is lost upon melting, but local order
still exists for periods long enough to define a vi-
brational atomic motion which shows a memory of
the collective behavior in the solid phase. As the

temperature is gradually increased and the boiling
point is approached, the liquid density decreases;
even the local order becomes questionaole in the
gas phase above critical temperature. '

The question is to what degree does this transient
nature of a liquid become evident through the study
of molecular motions in the solid, liquid, and gas
phases. Several experimental methods were used
to investigate these questions in detail. That slow
neutrons offer a particularly powerful tool in the
time range 10 "-10" sec and the space range

0
0. 1-10 A is shown by the considerable number of
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papers published in the period 1960-68 dealing with
slow-neutron-scattering studies on various hydrog-
enous liquids and solids. ' ' At the beginning af
this period a basic understanding of the observed
neutron spectra was lacking. At the present time
it is undoubtedly proved that if the proton motion
in a complex hydrogenous substance is studied, not
only the c.m. motion of the molecule is observed,
but also the rotational motions, which often play a
dominant role in the observed scattering picture. " '

This fact was not understood from the start of the
neutron-scattering studies some 15 years ago. The
first theoretical attempts to predict the neutron-
scattering cross section concerned only the c.m.
motion; the molecule was approximated by a point-
like particle ao-2e Such theories and models were
quite correctly applied to scattering results on
simple liquids like Ar and metals in liquid form.
The application of these simple models to molecular
liquids and solids like alcohols, hydrocarbons,
water, glycerol, etc. , now appears highly ques-
tionable. In the early studies no serious attempt
was made to take relative molecular motions of a
rotational or librational nature into account. Cer-
tain fundamental facts were, however, revealed.

On the short time scale for neutron observation
the atomic motions in monatomic substances show
considerable similarities in high-temperature solids
and liquids. Diffusive motions in liquids occur
mostly on a longer time scale, such that the simple as-
ymptoticbehavior predicted by Einstein, (x ) = 2Dt,
is not reached until a relaxation time 7 has elapsed,
during which vibrational motions develop. This is
also true for molecular liquids consisting of non-

spherical molecules. In simple liquids like Ar, and
in the case of spherical molecules like methane,
the asymptotic diffusive behavior is probably reached
within 10 "sec, or less, and therefore the effects
of diffusion of the center of mass of the particle is
clearly observed in these cases. ' The typical
features of slow-neutron spectra scattered from
incoherent scatterers like hydrogenous substances
are two regions of intensity: a near-elastic re-
gion, in which a rather narrow peak is observed,
and an inelastic region, in which a broad spectrum
with more or less pronounced structure is ob-
served. Because the near-elastic region, cor-
responding to small energy transfers, is formed
by energy exchange between the neutron and var-
ious diffusive modes of motion, it is quite clear
that high resolution is required to learn about the
true nature of diffusive motion of either a transla-
tional or rotational nature. Therefore, it is not
surprising that conclusions drawn from the obser-
vations have undergone a gradual change as the res-
olution grew better and better with the development
of new techniques and more intense neutron sources.

The classical example is the study of the full

width at half-maximum of the quasielastic peak in
hydrogenous liquids. From early water studies
it was concluded that the linewidth is smaller than
that predicted by simple diffusion theory; this was
taken as indicating that in between translational
displacements leading to diffusion the water mole-
cule vibrates to a certain extent as if in a solid.
These experiments were performed with an ingoing
neutron linewidth 0. 2-2 meV. Soon after, it was
found from cold-neutron studies with an ingoing
neutron spectrum width of 2 meV that in liquids
like glycerol, pentane, alcohols, etc. , the linewidth
is much larger than could be expected from dif-
fusion theory. This was taken as an indication
that some other proton motion dominates the motion
on the short time scale 10 "-10"sec. Recent ex-
periments with relatively high resolution (ingoing
linewidth -0. 1 meV) performed on pentane and
pentanol lead to the conclusion that, in these liq-
uids, the near-elastic scattering or quasielastic
peak has two components: a narrow one close to
the width expected from simple diffusion, and a
broader one of order 0. 5-1 meV. An experiment
with ultrahigh resolution ' on glycerol covering
a very narrow energy range at a small momentum
transfer has given a linewidth in possible agree-
ment with the value expected from simple diffusion
theory. Still later experiments, ' with an ingoing
neutron linewidth of 0. 08 meV, greater statistical
accuracy, and careful analysis of the effects of
multiple scattering, have shown the same tendency,
but the broadening of the sharp central peak is
smaller than that predicted from diffusion theory
for the c.m. motion and more like that predicted
for a solid in which the vibrating molecules per-
form both librations and some type of damped ro-
tational motion. Damping of the motions will lead
to a lifetime broadening of the central peak. Diffu-
sion broadening will be observed using ultrahigh
resolution and for small momentum transfers even
for larger molecules, although it will be small.
In general, rotational behavior will thus dominate
the scattering picture in the near-elastic region.

From these experiences in the near-elastic re-
gion, it is clear that the inelastic region will be
dominated by the frequency distribution of the
hindered translational modes of motion (c. m. vi-
bration, phonons) and the various hindered rota-
tional modes of motion (librations, damped ro-
tations, free rotations). Such effects have been
i '&served and discussed at considerable length in
the literature.

The present work is an attempt to unite these
ideas into one model which will lead to an experi-
mentally useful cross section and may be directly
compared with recent experiments. The model
was formulated in an earlier work and extended
in a later one. " The basic framework used in this
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presentation is the same, but now the inelastic part
of the cross section is included as a phonon expan-
sion, an expansion of the librational part, and an
expansion for the rotational part. To describe the
rotational motion the general formulation developed
by Sears ' is used. The model is presented in
Sec. II and the cross- section formulaiion in Secs.
GI and IV.

In order to understand the old and new experi-

mentall

results it is of vital importance to inve sti-
gate the effects of resolution on the observed neu-
tron spectra. Therefore, the meaning with "good"
and "bad" resolution is discussed at some length
in Sec. V. It is shown that the old and new results
are completely understood on the basis of the pres-
ent cross- section formulation.

The main effort of the present work is to show
to what extent the observed neutron spectra may
change when the investigated sample passes from
solid form to liquid form and further passes over
the liquid range. In particular, the effects of
various rotational forms of motion are investigated.
In Sec. VI it will be shown that the effects of tem-
perature variation on the molecular-rotational
motions, in a very clear way, reveal the nature
of the whole liquid phase.

IL MODEL

The basic model adopted here for the molecular
motion has already been described in part. '
It is assumed that the vibrational motions of the
atoms in the molecule are not excited and contri-
bute only a slowly varying Debye -%aller factor to
the double differential cross section. The motions
seen by the neutron are thus of rotational and trans-
lational nature. To make calculations possible it
is assumed that there is no statistical correlation
between rotations and translations. To simplify
further, the molecules are assumed to move as
rigid units. As will be seen later on it is fairly
easy to relax this condition and allow for internal
molecular librations or rotations of methyl groups,
etc.

Many rather sophisticated models were created
in the past to describe the translational motion of
the center of mass of the molecule. In order to
obtain a simple explicit form for the cross section
it is assumed that the motion of the center of mass
may either be simple diffusion for a time 7", or
vibrations around a residence position for a time
TQ ~

Independent of these motions, the molecule is
supposed to be able to perform a motion relative
to its center of mass, namely, either librational
motion for a time To during which its average
angular orientation does not change, or rotational
motion for a time T& during which its angular ori-
entation changes. The rotational motion may be

where the first part describes the vibrational part
of the motion and the second part describes the
diffusive part, respectively. The time ratios give
the fraction of all modes of motion due to vibra-
tions and due to diffusion. This principle is com-
mon to all models created during the last ten years
and merely gives the correct limiting behaviors
at short and long times. In a similar way one may
imagine the rotational motions to be described by
two equations of motion: one describing the libra-
tional motion during T

Q and another describing the
rotational motion during T

& ~ Thus, the ratios
7', /r0 and r, /v0 give the division of molecular trans-
lational and rotational motion into (i) various types
of diffusive motions in small or large steps and (ii)
various motions of more or less damped periodic
character.

The formulation of the translational motion of
the center of mass, within the frame work discussed
here, was first developed by Singwi and Sjolander.
The method was later extended by the present
author to cover the rotational motion and the re-
sulting cross sections w er e applied to experimental
data. ' ' The doubly differential cross section
per scattering nucleus has the following structure:

d o a k e " p A 0v', 8+—2AB
dQd01 2w kii 7.0+ 7",l, i —(AB/70'', )

+ c.c. . (2)

Here a is the incoherent scattering length, k and
ko the scattered and ingoing neutron wave vectors,
mfa =tf(k-k, ) the momentum transfer, if&ad the energy
transfer in the scattering process and 8 = k/2ke &.
%e further have

A
1 7 oaA + Ti bA —2a„b„

~0+ ~1 1 (eA kA/7'0~1)

1 Toa~ + T& b~ —2a~ b~
T0+ Ti 1 (ee be/T0T1)

(2b)

The four quantities a» b» a~, and b& may be ex-
pressed in the intermediate scattering functions
Xr(ii, t) and Xs(z, t) for translational and rotational

a free rotation, a rotational diffusion, or more
probably some intermediate case of friction damped
rotation. To fix the ideas we shall consider only
the two limiting cases, free rotation and rotational
diffusion, respectively. The times T~ and T&,
with k = 0 or 1, are average times; a time T~ or
T~ means t with a probability e '"4, etc.

It should be remarked at this stage that the phys-
ical meaning of the various times can.be stated
as follows: If the frequency distribution of the
velocity autocorrelation function ( v(0)v(t)) is in
general denoted by f(0&), then we may think of f(01)
as divided into two parts:

I I
TQ T]

f(id) =, I f(01)vib+ I I t(010)if ITo+ Tq
" TO+ Tq
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motion, respectively, in the fo11.owing way:

e„=J dt exp( ip-jt —t/rM}Xr'(», t)X~(», t), (4a)

b„=J dte xp(-i (dt —t/r2p)xr(», t)XR(», t), (4b)

aj) = J dt exp(- i(2)t —t!Tp2)xr'(», t )XF2(», t), (4c)

bjj = J dt exp(-i(dt —t/&u)Xr(»2 t)XF((», t). (4d)

Here we have I/r» = I/v„+ I/~I, with k and l equal
to 0 or 1, respectively. The superscripts 0 to 1
on Xr(», t) or Xz(», t) refer to the time periods rp
or fp, and ~& or 7, , respectively. It is seen that,
if ~,'=0 and fp-~, wehave n~=b~=B=O, correspond-
ing to a solid. On the other hand, if 7 p =0 and
7

&
—, we have ~„=b„=A = 0, corresponding to the

asymptotic diffusive behavior found in a liquid.
Whether both ~p and 7', play a role in the observed
cross section depends upon iwo factors: (i) The
physical process observed must contain both phases
of motion, (ii) the time scale of observation must
be such that both phases of motion are observed.

In order to obtain the cross section in an explicit
form the following forms are assumed for the in-
termediate scattering functions Xr(», t) and X22(», t):

»'y(0)z = 2W» is the Debye-Wailer factor for the
rotational oscillations. Explicit expressions for
the effective rotational mass M& have been dis-
cussed for linear' and other molecules. '9 In the
case of linear molecules, we have

tt =12 Qt(1 ~ l)(21 ~ 1)j (ee))

(10)

where I is the moment of inertia of the molecule,
j,(»r) is a spherical Bessel function of order l, and

r is the distance of the scattering nucleus from the
center of mass of the molecule. An expansion of
(8) gives

X)2(», t) = e )2{1+2W„[y(t}/y(0) ]+ ~ ~ ~ ]. (8')

The rotational motion during ~&, when the molecule
changes its direction in space, is described by the
general formalism developed by Sears, ' which is
valid if there is no statistical correlation between
rotational and translational motions and if the iso-
tropic forces acting on a molecule are much stronger
than the anisotropic ones. A'e have

Xr'(», t) = exp{- » '[y(0), —y(t),]),
where

(6) XF((», t) = Q (2l + 1)j,(»r} F, (t),
l=p

(1la)

X(2(», t) = exp{- » [y(0)j) —y(t)j2 ]j, (8)

where
(8)

y(t))2 = (I/2Mj2) J (cothpg cos$t+ i singt) f($)j2/g d$,

an expression analogous to (6) but with rotational
mass Mj( replacing molecular mass M. f($}„is
the frequency distribution of rotational oscillations;

y(t) = (5/2M) J (cothPI2 cost t+ i sin$t}[f($)r/$]d$,
p (6)

and» y(0) = 2Wr (the Debye-Wailer factor for c. m.
oscillations during Tp}' M is the mass of the mole-
cule. Equation (5) is expanded in the phonon ex-
pansion+

Xr(», t}=e r{1+2Wr[y(t)r/y(0}r]+ ~ ~ '
~ (6')

During the time v', we assume the simple diffusion
expression

x,'(», t}= e '" ', ( t)

where D is the self-diffusion coefficient for the
c.m. motion.

In order to describe the motions relative to the
center of mass, which are of rotational nature,
different forms are assumed to cover the periods
7p and 7.&. The librational motion during 7p, when
the molecule performs rotational oscillations
around an equilibrium direction, has been con-
sidered in some detail by various authors' ' . Ne
take for the intermediate scattering function during
&p the following approximate expression:

where F, (t) is a rotational relaxation function. In

this formulation the mechansim of the rotational
motion is hidden in the functions F, (t). Explicit
forms for F, (t) are given for the limiting cases
(i) free rotation and (ii) rotational diffusion. In

general, F, (t) has the form

F2(t) = Ftr+ Fp)(t) (1lb)

for spherical, and

1 r(,'(I+ 1))-
I'(—,

'
(l —n+ 1))I' (—,

'
(l + n+ 1))

[ ,'(I-n)] '[-,'(l+n)-] '

(1ld)

for linear molecules. Here t =t(keT/I)'~, M(a, b,x)
is Krummer's confluent hypergeometric func-

where F» is the asymptotic value of F, (t) as t
tends to long times, and Fz, (t) describes the time
behavior of F,(t) for shorter times. For free
rotation F«often has a finite value, whereas for
damped rotation such as rotational diffusion, F/) 0.
The actual forms of F,(t) for spherical and linear
molecules are' (free rotation)

l

F,(t)= ()+22 (1 —2't )e ' ' ') "(11c)
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tion, and E, = 0 and 1 for l odd and even, respec-
tively. As seen from these expressions, the con-
stant terms E„ in E,(t), combined with the Bessel
functions, lead according to (11) to functions F(~r},
which are

F(Kr}= Q j~(Kr}
, 0

' 2K''

for spherical molecules, and

(1le}

for linear molecules.
For the case of rotational diffusion, when the

rotational autocorrelation function obeys a simple
diffusion equation, the form of E, (t) is

F (I) —e I~i '1)or! (12)

where D„ is a rotational diffusion constant. It is
seen that F,(t) according to (12) does not show the
correct short-time behavior because the time ex-
pansions of (12) are linear functions of time. For
long times, the form (12) should be acceptable.
For short times, the behavior predicted by the
free-rotation expressions like (lie) and (lid)
should be correct. A better representation than
either of (llc), (lid), or (12) would be a combina-
tion of both. This problem will be discussed in
some detail later. It may be noticed that the situa-
tion in describing the rotational motions has its
complete analogy in the description of the trans-
lational motions of the center of mass: The short-
time behavior of the width y(t) of the Gaussian
self-correlation function should be (vt) and is not
correctly given by a simple diffusion form, which
is linear in time. In the following the two alter-
natives for F, (t) given by free rotation and rota-
tional diffusion, respectively, will be considered
separately to describe the intermediate scattering
function It+(», t) valid for the period r, . The
characteristic feature of the proposed model is
that the molecule is supposed to perform rotational
oscillations around an equilibrium direction for a
certain time T0, while changing its spatial orien--
tation by some type of rotational motion during T&.
One could imagine another combination in which
the molecule performs rotational diffusion during
&0 and changes its spatial orientation by free ro-
tation during T~. Such an assumption would seem
probable from a consideration of the observed
form of E,(t) and Fz(t) for a simple molecular
liquid like methane. However, the variation of
quasielastically scattered neutron intensity with

K, predicted by such an assumption, is not in
agreement with observation, as will be shown in
Sec. IV.

In Eq. (2) and in the results reported in Sec. III
the cross section is given per scattering nucleus

(mostly protons). Should the molecule contain
several incoherently scattering nuclei at the same
or at different distances from the center of mass,
a summation over all the scatterers in the mole-
cule should be made to obtain the cross section
per molecule. Such a sum consists of terms of
the type given by Eq. (2).

III. SCATTERING CROSS SECTION FOR "IDEAL"
SOLID AND LIQUID STATES

Calculation of the cross section by use of Eqs.
(2)-(12) is stra, ightforward but cumbersome. Only

two simplified cases will be formulated in this
paper, namely, the case A T0»T&, corresponding
to a solid, and the case B T&» 70, corresponding
to a liquid without any vibratory component of the
molecular c.m. motion. The neutron scattering
from slowly moving molecules of nonspherical
type like propane, pentane, the corresponding al-
cohols, etc. , insolid as well as liquidform, is
probably well described by the first case. The
second case is approached although rarely fully
seen by present day neutron-scattering experiments
on lighter spherical molecules, like methane in

liquid form.

A. ro))rl

The conditions for observation of this case are,
that either the sample is in a solid state, or the
observation time is so short that asymptotic dif-
fusive motionof the center of mass is not reached.
The cross section per scattering nucleus (proton)
is given by the simplified form [cf. Eqs. (2) and

d 0' a A'

e (A+c. c. ).

The two constituents of A, a„, and b„are given
as follows:

a„=e r e f dte '"' ' 'oo[1+ v y(t)r+. . .]0

x [I+~'y(t)e+ . ]

Higher phonon terms are not included in the ex-
pansions because they do not add to the physical
clarity of the resulting formulas. It is seen that
a„will contain two terms which are foldings of the
Lorentz function (I/r '„+&a )

' and one-phonon terms.
As discussed in the Appendix the real part of these
integrals is much greater than the imaginary part,
which is therefore neglected. The final value of
ag ls

ay=T 8 2W -2W
00 1 +scoT

00

hy' "
f(g)e 1 rmd)

+e 2Ms „' 5 e' "—1 I+((o+ t')'r
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ll»' f ($)r 1 Tppdh
e(~4) —»+ (~+ ])'T',

"" dt.tt' e' ""»(t) („te) ~ „).
„0 Too

Similarly, one finds for b„

b„=e r J dtexp(-io)t —t/vI0)[1+» y(t)T]
a 00

(15)

XZ (2l+1)j I(»r)'[F» +Fz( (t)]
1=0

The rotational intermediate scattering function
expressed as the sum over l is written in a form
which is valid both for free rotation and for ro-
tational diffusion. For free rotation, the terms
F1~ have in general f inite values, and for rota-
tional diffusion F» =0 for all values of l. The
expression for b „can be approximately written
as

b„= TIpe T - . + 2 (2l+1)j,(»r) —exp(-i(dt —t/T, o)Fz, (t) +ep F(»r)F (»r) dt I'2 K

1+Z~T10 0 T10

.Aw 4
— . 2 dt

x & "r Iod' +»4h (2l + 1)j,(»r) exp( —i(dt —t/TI())y(t)TFz, (t)+e"' —1 1+ ((d+ $) zTIzp T10

where

F(»r) = Z (2l +1)j,(»r)'F„.
1=0

Examples of possible forms of F(»r) for free
rotation was given in Eqs. (lie) and (llf). For
rotational diffusion, F10= 1 and all other F1) s
equal 0, so that F(»r) =j,(»r) for this case. The
forms of Fz, (t) for free rotation of spherical and
linear molecules are given by the second terms

of Eq. (11c) and (lid). For rotational diffusion,

Fz, (t) =F, (t) is given by Eq. (12).
With these definitions and with the assumptions,

more fully elaborated in the Appendix, that (i) the
real part of the folding integrals defined in aA and

b„are much greater than the imaginary parts, and

(ii) that 0) TopTIp+& 1 in the inelastic scattering
region, the cross section is after some manipula-
tion given by

d 0' 0 0 e ~ Qb+C(d dt
, ~ „7(2( ~ ()I, ( )'Re eep( —t t —tt „)e„(t))dQd ~ ~o Too+T1o b +d +e('' i=1 o T1o

zwR zttt~» (hf) R 1 Top d( g» 0(e -zwR f($)T
2V&R „$ e ' —l l+((t)+ $) Tpp 2M „$ e I —1 1+ ( +oft) Tzpp

'" f(h)v» IPR
' —t( (+() ') (18)

Here we have

a= vppe R+ T,()F(»r) —2vopTI0F(»r)e

b = 1 —F(»r) e 4w r '"R,

c= vppv, p[e R+F(»r)+F(»r)e "R T),

d = Too+ T(o+ 2voov(oF(»r)e

2 2
Too T&0 .

In order to simplify the expression and bring out
the basic physics, the folding terms in f2A and b„
are not included in Eq. (18). These terms as well

as higher phonon terms in the expansions given by
Eqs. (5') and (8') may easily be included in the
cross section.

As will be seen from Eq. (18), the cross section
predicts a quasielastic peak of non-Lorentzian
shape and an inelastic part determined by three
components: the rotational term due to the molec-
ul» motion occurring during T „ the librational
term due to the molecular motion during 70 and
finally the c.m. vibration due to a molecular mo-
tion continuing all the time. This last term is
dominated by the frequency distribution f($)T and
reduces to the usual one-phonon term, if the width

Tpp or Tp( of the Lorentz functions (1/ v I+ (d )
' or
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(1/Tp, +u&') ', respectively, are small compared to

the width of f($)T T. his is the case if a well-de-
fined and narrow quasielastic peak is observed. In

such a case the last term may be approximated by
the expression

KK' T~e R+T,p'(Kr) f((u)re'"
(18)T

2M goo+ 7;o (d sinh Pu)

which is just the one-phonon term multiplied with

a x-dependent factor caused by the librations and
the rotations, respectively. To the same degree
of approximation, the librational term in Eq. (18)
reduces to the librational "one-phonon" term

Tcw 'K Too f(&u)Re

2M„7~+ 7;, u) sin pro
(20)

The rotational term is simple for the case of rota-
tional diffusion, when F2, (t) =F,(t) = e '

namely,

T»e r B

g (2l+1)j,(Kr)'[I+D„l(1+1)T»]
2 2 2 . 21)

Tpp+T» t g [I+D~l(1+1)Tgp) +(d T»

When the rotation is free the form of the rotational
term depends upon the molecular shape. For
spherical molecules the rotational term is

e-2WT-Bw 4 ~
2

& I ~ ~
2 l(~)

g ~ ~ ~ 2mkoT 2mkRT 1+(~ —~) Tgp
J~(Kr) (d exp —

2 t 2 2 (22a)

and for linear molecules

), +, r(-.'(l-m+1)r( .'(I+m-+1)) - I ~,
~

l(~')'
7op+ To w, ., [2(l —m)]![-,'(l+m}]! „m kBT 2m koT 1+(&u' —&u} T,o

(22b)

The prime over the second summation means sum
over all odd m's, when l is odd, and over all even
m's (starting with 2), when l is even. It is seen
that the rotational term changes shape from a sum
of & orentzian functions for the small step rotational
diffusion, Eq. (21}, to a sum of Maxwellian-shaped
curves for free rotation [Eqs. (22a) and (22b)]. If
the rotational motion is strongly damped, which
occurs if T, &(I/koT)', it is seen from the foldings
in Eqs. {22a,) and (22b), that the shape of the rota-
tional cross section becomes intermediate between
Lorentzian- and Maxwellian-like.

In order to see the nature of the quasielastic
peak, it is instructive to consider two limiting
cases: either that the librations dominate, 7p» Tg,

or that the rotations dominate, g, » 70. In these
limits the quasielastic peak reduces to

T-2Wg-ge
(

d o a
dAd(d q eg P kp

1 —F(Kr)e
[I F( r)eNwr "R]2+~2T

placed by &,0 if &g» &0 The limiting behavior at
small and large v values is

(rr)+(r„')+2r'
e-0 3 TOO

{24')

~& large) 00

(24")

where (rr) and (ro) are the mean square radii of
vibration and of libration, respectively. The line
broadening is a lifetime effect that disappears, if
7'00 and 7,0 -~.

A useful quantity, which may be tested experi-
mentally, is the angular variation of the intensity
of the quasielastic peak. The (d integration of the
quasielastic peak according to Eq. (18) may be
carried out in closed form and is given by

{) 2Tppe +T»F{Kr) Bw
AWg

I K, eg=a T
00 10

This formula predicts that, if the libration is
dominating, the intensity is given by

I(K) g e 2wr 2wR (26)

[1 F(Kr)e 2wr-2wR]-2

00
(24)

for 70»~» and a similar exPression with &pp re-

if ~0» w, and reduces to a similar expression with
&00 replaced by w», if ~, »&0. This cross section
is of Lorentzian shape, and the full width at half-
maximum (FWHM) is defined by

whereas, if the rotation is dominating, it is given
by

I(K). ..=a2 F(Kr) e 'wr (27)

As the variation of I(K) is quite different in the iwo
cases these formulas can be tested experimentally
without difficulty.
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The angular variation of the rotational inelastic
spectrum is also easily obtained by performing
the (d integration of the rotational term in Eq. (18).
The result is

(28)

given by

as =e R J dtexp(-t (t)t-'t/Tp, -DK t}

X [1+K y(f)R+ ~ ~ ~ ], (3O)

This result may be useful, if the rotational spec-
trum is rather narrow, occuring close to the quasi-
elastic peak.

and

bR =+[(2l+ l)j)(Kr)2
l 22P

B. v', &&To

d o a k=——e 2 (f3+ c.c.) .~d(0 77 k
(28)

The term 8 is constructed of a~ and b~, which are

This is the limiting liquid case when the c.m.
motion is governed by simple diffusion. The cross
section per molecule simplifies to

x j dtexp(-i(dt —t/T» —DK t)F)(t)] . (31}
0

These expressions are quite analogous to Eqs.
(14) and (16), respectively, the difference being
that the intermediate scattering function for the
c. m. motion yr(K, f) is changed to the form given
by Eq. (7}. By a treatment analogous to the one
just described for the solid, the cross section is
found to be

d 0 a k e ~" ' ab+c ~ . 2
""dt

r„Z(2(~ t)j, ( r)'Re —p(-i t —t/r„—D 't)e'„(t))dAd & ko ~os+rsi „b +d +e
~p »

8+ op

-2tNR 2 f)K f($)R 1 Tpg dt
2MR „„ t' e22~ —1 (1+DK2T )2 p ((e)+ ()2T2 (32)

Here we have

a=T, (1+DK T&)) e R&+~T(l D+TKp, )F(Kr)

2TpgT„F( r) Ke

b =(1+DK Tpq)(1+DK T„)—F(Kr)e R,

c = T(),T»[(1+DK Tz)e " + (1+DK T»)F(Kr)

+ 2F(Kr) e R]

d = (1+DK Tpg) Tgg (1++ D TgKg) Tpg

+2Tp&T»F(Kr) e R

2 2e = ~pg~gg ~

As will be seen from this expression, the cross
section is quite similar to the expression found in
case A, Eq. (18): a quasielastic peak of non-
Lorentzian shape and an inelastic spectrum, this
time dominated by only two terms, the rotational
spectrum and the librational spectrum. In the
present case the diffusion broadening of the ingoing
neutron spectrum affects all terms.

The properties of the quasielastic peak are anal-
ogous to the previous case. If, again, the limiting

if 7 p
~ &„and a similar expression with 7'p& replaced

by v», if 7, » 7p. The FWHM is now determined by

n(p= (2/T(), )[1+DK T(), F(Kr) e R],— (34)

if 7'p» &g, and a similar expression with Tpg replaced
by ~», if ~j» vo. The FWHM is a complicated ex-
pression, using the full Eq. (32), but the limiting
behaviors for small and large ~ values are simpler:

(r'g ~ etc ),
K -0 ~01

(36)

1
- 2 —+De if 7o» ~s

2t (large} ~01
(36)

and Tgg replacing To&, if 7'&» 7o. It is found that
Eqs. (35) and (36) are of exactly the form that was

forms for vp» T) and ~&» ~o are considered, one
finds for the quasielastic peak the following Loren-
tzian shape:

(
do a k &lVR Q(2l

dPd(d~ e)

X
1+DK Tp, —F(Kr)e R

[1+DK Tp&
—F(Kr) e R] + (d T

(33)
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predicted in an earlier work [compare Eqs. (35b)
and (35c) in Ref. 12j . The area under the quasi-
elastic peak is given by

2T01e~ '+T»F(Rr)I Rpe1=a
T01+ T11

The area under the rotational term is

(3V)

I(K)„,= a2 " [1-F(«)].
Toy +Tjj,

(38)

The inelastic terms are in the present case (liquid)
similar to the corresponding terms in the previous
case (solid) with the following obvious changes: The
Debye-Wailer factor e 2 Tie missing, in Eq. (21)
the factor 1+D„l(l+ 1)T„is changed to I+DR T»
+D, l(l + 1)T«, in Eqs. (22a) and (22b) the factor
1+(&u' —~) T10 is changed to (1+DR T11) +(&u' —&0) T211,

finally 700 is changed to T», and Tjp to T». With
these changes Eqs. (21), (22a), and (22b) are still
valid.

C. Internal Molecular Rotations

In the treatment given thus far, the molecule was
supposed to be rigid. In real molecules internal
librational or rotational motions may occur. A

typical example is the motion of a methyl group in
many organic molecules. This motion may, for
instance, be a libration or a free rotation. Such
an internal motion may be included within the
theoretical framework developed in a previous
work. ' In such a case, the motion relative to the
center of mass has two components: (i) the motion
of the molecule considered as rigid just treated
above and (ii) the motion of a part of the molecule
in a system participating in both rotation of the
rigid molecule and in translational motion. The
calculations are very lengthy but straightforward.
If the internal librations and rotations are treated
in exactly the same way as was described above for
the over-all rotation of the rigid molecule, the re-
sulting cross sections are found to contain expected
new features: (i) If the internal motion is a libra-
tional motion, a new Debye-Wailer factor e
describing the effect of the square of the librational
amplitude enters as well as a librational inelastic
spectrum governed by the frequency distribution
f(~); of the librational-angular-velocity autocor-
relation function; or (ii) if the internal motion is
a free rotation, a new factor F(Rb), analogous to
the function F(~r), discussed in connection with
Eqs. (lid), (lie), (1V), (18), and (32), will enter
as well as a rotational spectrum appearing in the
inelastic region. b is the distance from the con-
sidered proton to an axis of rotation fixed in the
molecule. This rotational spectrum is quite similar
to the one discussed above in connection with Eq.
(11). If the moving unit is a methyl group, its
frequency of oscillation will be high due to its small

moment of inertia, and the inelastic contribution
will occur for energy transfers considerably larger
than the contribution due to rigid-molecule rota-
tions or librations. This was in fact verified experi-
mentally by several research groups.

The cross section is too complicated to be dis-
cussed in detail in the present paper. As the area
of the quasielastic peak is a useful experimental
quantity, we will state here the final expression
for this area for internal librational motion and
for solid state:

I(R). ..=a2 T008 R+ Tl OF(«)
T i

00+ Tio

and for internal free rotation, solid state,

(39)

( ) 2 Tppe +T10F(Kr) F( b) +0 T (40)
Tpp+ Tj,p

If instead we consider a simple diffusive liquid, the
Debye-Wailer factor e ~disappears and the T's
are changed from Tpp and Tjp to Tpj and T» re-
spectively. The width of the quasielastic peak
will now contain the new factor 2%i in addition
to the previous factor 2R'~. These are the main
effects; secondary effects are numerous and will
not be considered here.

IV. MIXTURE OF STATES OF MOLECULAR
MOTION IN A LIQUID

As shown in Eq. (2) the true dynamical situation
in a liquid probably is a mixture of the molecular
motions during the periods To and T j. Evaluation
of the cross section according to Eq. (2) is, how-
ever, extremely complex and the chance of obtain-
ing a result of some physical transparency is
small. One way to approximate the true situation
is to consider the motion of the molecules as a
simple mixture of the extreme cases occurring when
either To» 7,' or 7y» Tp This gives a simPlified
form for the cross section:

dg 0 k „g Tp T$= ——e " -, A+, , B+c.c.
dA du m ko To+ T's To+ Tj

(41)

In such a description of the cross section the
transition terms between the two phases of motion
are not considered. The cross section appears as
a sum of the cross sections for the solid and simple
diffusion cases. Such a model is probably useful
only for bad resolution measurements to be dis-
cussed below. Furthermore, the validity of this
simplified model is questionable unless the ob-
servation time and range is long enough (low-energy
neutrons, small angle of observation) and the phys-
ical process is such that both phases of motion are
really well developed.
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This idea may be clarified if we assume a
Gaussian form of G,(r, t) e-' ~"'" and remember
the prediction of the uncertainty relation bP 4x & 5,
which gives ax & 1/K if bp =@K. The observation
range is thus inversely proportional to & = 2ko
~ sin&8 for near-elastic scattering, where 8 is the
scattering angle. If the neutron velocity is v, the
observation time 6t is of order nx/g; & 1/vK. There-
fore, we have 5t- g/E0sin28. The observation
range and time both increase as the ingoing neutron
energy and scattering angle is decreased. The
form of p(t) for noble-gas liquids and for light
spherical molecules is such that the asymptotic
diffusive behavior p(t)-Dt is quickly reached. For
heavier nonspherical molecules and probably for
liquid metals, there exists a fairly long transition
region in which p(t) shows a smaller slope and may
be said to behave as in a solid. For very much
longer observation time or lower frequency in the
analyzing probe (NMR, ESR, dielectric-relaxation-
time studies), asymptotic diffusive behavior is the
completely dominating feature unless the investiga-
ted substance has a very slow relaxation behavior
as in glass.

A more realistic description of the c.m. motion
of the molecules in a liquid could be obtained by
using a better approximation for the intermediate
scattering function g, (K, f) than e " '. Several
models were prpppsed fpr this mptipn. It was
also clearly shown by neutron-scattering studies
on simple liquids that diffusive as well as vibra-
tional components must be included in a true de-
scription of atomic motions. 6' When, however,
the neutrons are scattered from heavy nonspherical
molecules, it is probable that the time scale of
molecular motion is so long that only the vibra-
tional part is actually observed, whereas the asymp-
totic diffusive linear-time behavior of the width
function p(f)-Dt is never reached within the avail-
able interaction time between neutron and nucleus
in the scattering molecule. It seems, therefore,
probable that the present model for r0» r,' (solid
state) should relatively well describe the scattering
situation in such cases. For the lightest spherical
molecules the diffusive behavior is probably ob-
served. For such a case (like liquid methane) a
more realistic description of )tr(K, t) is almost
certainly necessary to describe the observed
neutron-scattering result.

Another theoretical difficulty with the present
simplified model concerns the rotational motion.
The molecule is supposed to change its angular
direction either by free rotation or by rotational
diffusion. Most likely, components of both these
modes of rotational motion exist in a real liquid.
The experimentally studied rotational relaxation
functions F,(t) contain components of both kinds. ' '
It is an easy matter to modify the present model

in such a way that both these rotational motions
occur during 7', by assuming that during a time

f7, the molecule rotates freely, and that during
(1-f)r~ it performs rotational diffusion (Fig. 1).
This procedure, however, introduces another
parameter f determined so that 0&f &1. Therefore,
this way out of the theoretical difficulty was not
tried in the treatment given above.

One may argue that during the time ro the mol-
ecule should be allowed to perform rotational os-
cillations superimposed on a rotational diffusion,
and during ~, it should be allowed to rotate freely.
This model was tried in an earlier work. " %.ch
an assumption, however, leads to certain predic-
tions which are not in agreement with observation.
According to this model, the areaof the quasielastic
peak becomes

2 r0020(K2) e K+ 7 ioF(K V) -20'r'-2W;T
700+ Tlo

(42)

for the case of a solid including the effect of internal
molecular librations. The characteristic feature
of this formula is that when ~-0 it may be expanded
to give as a leading factor f(K) 0.el 1 —,' K r be-—

0 2cause r, being of order severalA, is supposed to
be much larger than (rs), (rr), or (r, ), which
should all be smaller than 1 A . The experimen-
tally observed functions f(K), „do not vary so
rapidly with &, at least not for lower temperatures,
as will be shown in Sec. VI. The only way open
to obtain a realistic form of F, (t) would therefore
be to assume both rotational diffusion and free ro-
tation to occur during v, . Such an assumption
leads to an expression for the area, of the quasi-
elastic peak (solid state):

F, (t)

FIG. 1. Rotational relaxation function for l =1 as com-
posed of two components: free rotation during fy& and
rotational diffusion during (1-f)v~, linear molecule is as-
sumed.
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I(K)e ~ i=02 Tooe s+ Tio [fF (vr) + (1 -f)jo(~r) ]
~oo+ ~io

2WT 2W) (43)

3j &(&r) e
To+ 7] jr 2k~ T

7', d$
1 + ($ —(d) Tg

and for rotational diffusion, we find

3j,(~~)'e ' & (1+2D„7,) 7y

7)+ Tg 77 (1 + 2D„7g} + (d Tg

1 (45}

If the central peak is narrow, it may be approxi-
mated with a ~ function and the integral in Eq. (44)
is directly carried out. It is then seen that Eq. (44)
describes a Maxwellian-type distribution on each
side of (d =0, the separation of the maxima being
2A = 2(&sT/I)'~~. Equation (45) describes a Lorentz-

The difference between this result for the differen-
tial cross section and the previous one [Eq. (39)]
is so small that it can probably not be observed.
Also, other consequences of such an assumption
differ so little from the cases when either free ro-
tation or rotational diffusion are the only processes
occurring during v&, that they would not be observed
experimentally. From the present analysis one
therefore arrives at the conclusion that it is very
difficult to separate between the effects of the two
kinds of rotational motion even by high-resolution
neutron spectroscopy, at least for molecules more
complex than, for example, methane.

V. GOOD- AND BAD-RESOLUTION MEASUREMENTS

The cross sections derived in Sec. III involve
the basic idea that during the time 7'o the molecule
performs librations around a fixed direction, and
during 7& it may either rotate freely or perform
rotational diffusion. From an experimental point
of view, it is of interest to examine more closely
the actual shape of the near-elastic scattering.

The near-elastic scattering is characterized by
a sharp central peak, the width of which is either
determined by a lifetime effect (solid state) or by
a combination of a lifetime effect and the c.m. dif-
fusion (liquid state). The rotational motion pro-
duces in both cases an inelastic contribution, which
may be concentrated quite close to the sharper
quasielastic peak, as seen on energy scale, time-
of-flight scale, or angular scale. For free rota-
tion as well as for rotational diffusion, the corres-
ponding inelastic-scattering term consists of a
series of terms beginning with l = 1. If we fix our
attention to this first term, we find for free rota-
tion and linear molecule

ian distribution of width &~= 2(1/T, +2D„). For
molecules of the type like n-pentane and propane
one finds the moment of inertia to be of the order
10 ' cm'g. Therefore, 0 is of the order 10' sec '

if T is about 250'K. Qn the other hand, the rota-
tional diffusion constant" D„should be of the order
0. 5~10' sec '. It is thus found that the separation
20 of the maxima of Eq. (44) and the full width 4
of the Lorentz function in Eq. (45) are of the same
order, namely,

20=2(ks T/I)' -2x10' sec ',
ate = 2(1/T, i 2D„)- 2 x10' sec ' .

(46a)

(46b)

Here it was assumed that ~& is atleastone order of
magnitude larger than D„'. If 7'& were of the same
order as D„' or 0 ', the quasielastic peak would
be determined by the relative magnitude of &o and

Tj, If To ~~ ~&, the width of the quasielastic peak
would be determined by 7'o ', and the broader ro-
tational inelastic spectrum would not be observed
because its area is determined by the ratio T,/To.
If Ty + 7'o the width of the quasielastic peak would
be of the order 1/T, (-0 or D„), and therefore it
would be so wide that it could not be separated
from the broader inelastic rotational spectrum.
In fact, measurements indicate that 7& in molecular
liquids like propane, n-pentane, propanol, penta-
nol, etc. , may be of the order 10 " sec. If &o as
well as 7'& were of the order 10 ' sec, it would be
impossible to separate a sharp quasielastic peak
from the inelastic rotational spectrum, regardless
of whether the rotation is free or diffusive. The
principle of the discussion is illustrated in Fig. 2.
The importance of good resolution in experiments
aiming at a study of the rotational effects is ob-
vious. The estimated width of the inelastic rota-
tional spectra is, say, of the order 10' sec ' or
about 1 meV and (he width of the central quasielas-
tic peak of the order 10" sec ' or about 0. 1 meV.
If the width of the ingoing neutron spectrum is of
the order 1 meV, the two components are not sep-
arated. Only one broadened peak is observed,
whose width is determined by a weighted sum of
the narrvw quasielastic peak and the broader in-
elastic rotational spectra (cf. Fig. 2).

It is quite clear from the analysis presented here
that the linewidth studies carried out in various
neutron observations have different meanings.
Only in the limit of small values of & do the ob-
servations with good and bad resolution give the
same result. As seen from Eqs. (25) and (28},
(3'7) and (38), the area under the inelastic rota-
tional spectrum in the limit of small values of K

tends to Tg/(Tp+ Tg) p K T, whereas the area of the
quasielastic peak tends to 1. Thus, if ~r &1, the
effect of the broader inelastic part is negligible
compared to the central peak, and the width derived
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FIG. 4. Width of quasi-elastic peak in liquid pentane
at —125 C measured with bad resolution (solid line and
circles) and good resolution (squares). Width of ingoing
spectrum 2 meV for bad resolution and 0.1 meV for good
resolution.

diffusion is

6~=2(1(r+D„+Dr ) as a'-~

and approximately

&a= 2(Q+ Da' ) as x- ~

(48a)

(48b)

for free rotation. In a solid, we have D= 0 and,
correspondingly, Tp may be very long; therefore,
no broadening is observed in such a case. For
very bad resolution, terms with / & 2 may influence
the values given in Eqs. (48a) and (48b). The pre-
dicted variation of linewidth as a function of z' is
shown in Figure 3.

A typical example of bad resolution is when the
full beryllium-filtered cold-neutron spectrum is
used as an ingoing spectrum. The width of this
spectrum is of the order 2 meV at 5 meV. From
Fig. 3 it it is seen that observations with such a
broad ingoing spectrum on hydrogenous samples,
which show a value of hD„or AQ of the order 1 meV,
would give a linewidth value ranging from ~iq-2D„
or 20, up to any larger value determined by the
number of terms in the series expansion (l & 2) in-
corporated within the resolution width. This ex-
plains at once why, in many earlier studies on
hydrogenous liquids, the linewidth curves show a
saturation value of the order of 1 meV; not only
the sharp quasielastic peak but also the first ro-
tational term (l = 1) is included in the apparent
quasielastic peak in such studies (cf. Fig. 7 of
Ref. 13, and earlier references quoted in connec-
tion with it). Even several measurements with
semimonochromatizing choppers giving ingoing
energy widths of 0. 5-0. 8 meV in the cold-neutron
range are to be classed as bad-resolution studies.
To ensure good resolution, an ingoing neutron
linewidth of about 0. 1 x 2D„or 0. 1 x 2Q is necessary.
In the examples discussed above this means a

width of & 0. 1 meV. If measurements with good
and bad resolution are compared, the observed
linewidth results support the present predictions
of Fig. 3 very strongly, as shown in Fig. 4, where
experimental results on n-pentane are shown.

Considering the conclusions drawn above re-
garding bad-resolution measurements, the question
arises as to the validity of the results of older
quasielastic neutron-linewidth data. In several
cases of strongly hydrogen-bonded liquids like
glycerol and n-propanol, the molecules are prob-
ably not free to rotate and possible orientational
changes are rotational jumps. In such a case the
bad-resolution studies probably give a reasonable
result because the free-rotation term, according
to Eq. (44), degenerates into a distribution whose
width is defined approximately by l /37, where
l = r QT&, which is an average rotational jump.
Also, the limiting value as tc- 0 is correctly given
by the bad-resolution data as D, + D„, . The
exact numerical values of some of the constants
derived from bad-resolution data may, however,
be in error.

VI. TRANSIENT NATURE OF A LIQUID

It was pointed our earlier that, if the rotational
molecular motions change their nature over the
liquid range, it will be observed if the area of the
quasielastic peak is studied as a function of scat-
tering angle (or equivalently, as a function of x)
at a set of representative temperatures covering
the liquid range. This is illustrated by Eqs. (25),
(37), (39), (40), and (43). If in the solid state
To» T, the quasielastie intensity is governed by a
Debye-+aller factor z ~-aw'r-Bw&

general, guess that a similar situation is prevailing
in the liquid state near the melting point. The re-
lative values of Tp and T& in a liquid must depend
upon the shape of the molecules and the nature of
the intermolecular forces. It is to be expected
that T, & To for long molecules sensitive to aniso-
tropic forces or for strongly bound molecules, that
T&-To for molecules of intermediate length or more
loosely bound molecules, and that T, & To for spher-
ical molecules or weakly bound molecules. If
T&» To, which should be the prevailing situation in
a dilute gas, the intensity [area I(x) under gas-
model cross section] will be governed by F(xr).
lf 1nI(x) is plotted as a function of x assuming a
case described by Eq. (37)

a rp e '""+ r, F(xr)I x)=a
To+ T&

a set of curves as given in Fig. 5 is obtained when
the ratio 7gr, is varied between the limits 0 and ~.
It is also assumed that 2WR=u K, with u =0.4 A
and r = 2.6 A. In order to bring out the principles
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4 ~+T F(X;r)
+

FIG. 5. Integrated inten-
sity I(K) under the quasi-
elastic peak as a function of

for various ratios ~0/&g.
Libration is supposed to oc-
cur during &0 and free rota-
tion during &~.

~ 1

s ~' k'

clearly, it is assumed that only one distance ~
of the scattering nucleus from the molecular
center of mass exists. In a real hydrogeneous
molecule like pentane several values of r are in-
volved, which means that the marked structure in
I((('} will get lost upon summation of several terms,
one for each proton. The general tendency of I(&)
will, however, remain. The slope of the curves
I(x) of Fig. 5 at the origin is obtained from a series
expansion of Eq. (37}:

l(K} = (( — K ) ILS K 0. (49)
7 0+Tg

The slope varies from -u, if Tp» T, to —3r, if
T& » &0 If 7'Oand 7'& interchange their role over the
liquid range, a characteristic variation of this slope
as a function of temperature is expected. Such a
variation has indeed been observed in neutron-scat-
tering experiments on several liquids investigated,
as shown in Fig. 6. Its magnitude varies from
0. 1-0.3 A, expected for librations in the solid
state or just above the melting point in the liquid
phase, to about 1.2-1.5 A, corresponding to values
of r-2 A near the boiling point. 1.5-2. 5 A corres-
ponds typically to half the molecular length in the
cases given in Fig. 6. The physical meaning of
these observations is clear: Near melting point
the investigated molecules perform librations;
the amplitude of these librations increases steadily
over the whole liquid range; and near the boiling
point the molecules have a great probability to
rotate freely. The rotational motion thus demon-
strates the transient nature of the liquid.

To connect the preceding with the discussion at
the beginning of this paper, one may state the
physical implication of the data of Fig. 6 in a dif-
ferent way: If the generalized frequency distribu-
tion for rotational motions consists of two parts,
one due to Langevin type of rotational diffusion
with weight ~,/(ra+ r, ) and another due to damped
oscillations (librations) with weight r /s( 7'+, ), the
latter will dominate near the melting point, where-

a' L'

1.5 Propane

Pentanol

Pentane

.5

Lish
NI

Melting
point

J l ).is
soiling

point

FIG. 6. Variation of the slope of I(v) for small ~ values
as a function of T/T, for the temperature range between
melting and boiling points of propane, pentane, and penta-
nol. Ta is the critical temperature. (After unpublished
measurements of B. Friberg. )
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0.4

0.3

~Q
0.2

C

0.1

Tc (Nq), Sq sion we have concentrated the interest to a narrow
range of the neutron-scattering results, the quasi-
elastic region. A phase change may cause a con-
siderable change in the inelastic region as well,
which is seen from Sec. III. Such results are
well-known experimentally and are discussed in
the literature.

VII. CONCLUSION
-100 - 50 0 -50 &00

Tin C

FIG. 7. Variation of the mean square amplitude of the
oscillations of protons in ammonium sulphate around the
ferroelectric transition point at —50'C {cf. Ref. 49).

as the former will dominate near the boiling point.
The similarity between the dynamics of rotational
and translational motions is striking. All the
models and attempts to create a basic theory for
the dynamics of translational motions of atoms in
simple liquids during the last decade have indeed
contained the two ingredients discussed above.

The same principle may be used to study a phase
transition in a molecular solid such as the ferro-
electric-parael. ectric transition. A neutron-scat-
tering study of the elastic and near-elastic inten-
sity scattered from ammonium sulphate (NH, )2604
was performed" at temperatures around the tran-
sition temperature -50'C. It is of particular in-
terest in this connection to study the slope of the
curves of Inf(s) vs z for small z values according
to Eq. (49). The variation of the intensity of the
elastic peak is completely dominated by the motion
of NH, group. It is found that this slope varies
from very small values of about 0. 04 A below the
transition point to values of about 0. 37 A above
the transition point (Fig. 7). The NH4 ion is thus
bound and performs librations in the ferroelectric
phase, whereas it performs damped rotations in
the paraelectric phase. The last conclusion may
be drawn from the fact that the N-H distance is
1.05 A, which is very near the value (3&&0. 37)" A
obtained for the value of r according to Eq. (49),
if 0. 37 is identified with 3r . The similarity be-
tween the mell-defined ferroelectric phase tran-
sition occurring over a temperature range of about
20'C and the transition from the melting point to
the boiling point in a liquid, is striking. The
rapid change of dynamics in a transition in the
solid is replaced by a slow and gradual change
over the whole liquid phase. The liquid phase
appears as one single-phase transition or as a
transient phenomenon between the ordered solid
phase and the disordered gas phase. A study of
the rotational motions of molecules thus offers
an elegant tool to demonstrate and evaluate the
nature of the liquid phase. In the present discus-

The present formulation of scattering cross
sections is very general and allows various models
for the molecular translational c.m. motion as
well as for the rotational motion to be tested
against experimental facts. In this paper, only
two simple models are used for the hindered trans-
lations in order to bring out the main ideas clearly.
Similarly, the rotational motion is assumed to be
either a rotational diffusion or a free rotation.
In spite of these apparent oversimplifications it is
believed that the main features of several scatter-
ing experiments may be understood on the basis of
the formulas presented. In fact, the present analy-
sis together with some recent high-resolution
neutron-scattering studies on molecular substances
has shown that measurements with ingoing neutron
spectra much wider than 1G%%uo of the first rotational
term (I = 1) are only of limited usefulness. Bad-
resolution data may give only a rough idea of the
details of the molecular dynamics.

In cases when the damping of the rotational
motion is not weak, the free rotations degenerate
into a fraction of a free rotation or a rotational
jump. For such a case the basic formalism for
the rotational motion used in this paper [Eq. (11)]
may break down. Empirical treatments of the
observations are then the only possibilities of in-
terpretation at present. An example of an experi-
mental determination of the damping of rotations
is given in Ref. 49. The part unknown to physics
for the case of strong damping may be said to be
concerned mith the process occurring during the
short time T&. The question of coupling between
rotational and translational motions probably plays
an important role in such cases.

APPENDIX

In connection with Eqs. (14), (16), (30), and
(31) certain folding integrals have to be evaluated.
In this Appendix we shall discuss only the integrals
in Eqs. (30) and (31); the integrals in Eqs. (14)
and (16) are treated analogously. We consider the
integral

(Al)

The integral to evaluate is
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I= dt e '"'-'/'o&-n" '
t (cothP( cos(t+i sin(t) d$

"f(&)
d~ t ")coth(p$) (elfk+e ~Et)+ (slat e l(t)]e Eu-t-~/Tp&-&J& dt

2

d$ (cothP) + 1)f(&) 1
+ (cothP( —1)

2 o 1+D,x r»+ i(u) —$)TO, 1+DtPro&+ i(&+ ()ro&

"f(-5) d(- 5) "f(()
d

1
P'" —1 1+De r„+i(~+$)r» $ e '- l 1+D~ r«+ (t~ +$) r»

f($) 1 1+Dd&» i (~+ ()&0,
01 ] e%4 1 (1 +Dg2r )2+ (~+ ])2P 0+

Here we have

Io ——(1+De T»)

and

f(h)
8 —1 (1 + DK T») + (~+ () r()g

(A3)

f"'"f(&) 1 (~+ &) &Oi 4
e~' —1 (1+D~~r„)~+ (~+ t')~r,~,

'

(A4)

It is seen that if the width of the Lorentz function

in IO and I& is small compared with the width of

f(g), and if f($) does not vary too rapidly within a
range of $ values corresponding to the width of the
Lorentz function, we find Ig «IO and we may in a
first approximation neglect the imaginary part of I.

A further condition for obtaining the simple cross-
section forms given in Eqs. (18) and (32) is that
M2T00T10»1 and M2T01T11»1 in the inelastic region.
A closer inspection of the full cross-section form
of the quasielastic peak according to Eqs. (18)
and (32) shows that its width h&o is proportional to

{roorgp) or (~OFii) respectively. In the in-
elastic region we have ~ » h~ by definition. There-
fore, the conditions ~ TOOT„»1 or ~ Top'»»1 are
automatically fulfilled in the inelastic region.
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The motion of the center of mass of atoms and molecules is described in the presence of ex-
ternal fields. In the case of electromagnetic radiation whose wavelength is much larger than
the atom or molecule, we find that there wi11 be a very small change in the component of the
momentum of the center of mass which is in the direction of the polarization of the light. For
ions we show that the integral over the perturbing potential yields -Nqv, where N is the degree
of ionization, q is the elementary charge, and v is the velocity of the center of mass in the di-
rection which the light wave travels. If the wavelength of the light is large when compared
with the size of the vessel which contains ionized atoms or molecules, the equation describing
the motion of the center of mass is that of a damped harmonic oscillator. We show that in an
external homogeneous electric field, the wave function of the center of mass of an ionized atom
or molecule is an Airy function. In an external homogeneous magnetic field, we show that the
motion of the center of mass of a neutral molecule is that of a harmonic oscillator with a fre-
quency of co=(N,q H /4Mmc ), where N, is the number of electrons in the atom or molecule,
H is the magnetic field strength, M is the total mass, m is the electronic mass, and c is the
velocity of light. If an oscillatory field polarized perpendicular to the steady field is intro-
duced, we show that the transitions are restricted by the usual harmonic-oscillator selection
rules, and that the emission rate for spontaneous emission is about 10 sec for the lighter
atoms.

I. INTRODUCTION

The motion of the center of mass of atoms and
molecules has been ignored as being inconsequential
to quantum chemistry. Since chemical reactivity
depends on that motion, it should be studied under

the variety of conditions to which chemical systems
are subjected. Recently we have published several
papers' ' which described the protonic structure
of hydrides where we found it necessary to trans-
form the Hamiltonian to center-of-mass (c.m. ) co-
ordinates. As a result of that transformation, we


