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A discussion of relativistic bremsstrahlung cross sections is given for incident-electron
kinetic energies in the range 5 keV--1 MeV, based on an exact numerical calculation using
screened potentials. Comparisons are made with previous authors' results, extending the dis-
cussion of a preliminary note. Exact point-Coulomb and Born-approximation results are con-
trasted. The present results show that the Born approximation significantly underestimates
the bremsstrahlung cross sections in the energy region considered. Screening effects are
somewhat larger than expected, and when large are not well described by a form factor.

I. INTRODUCTION

The exact calculation of relativistic atomic-field
electron bremsstrahlung beyond the Born approxi-
mation (the well-known Bethe-Heitler formula') has
been possible only in certain limiting cases. Re-
sults have been obtained for extreme relativistic
energies by Bethe, Maximon, Olsen, and others
using analytic approximate high-energy electron
wave functions. In the nonrelativistic case, cal-
culations were made by Sommerfeld, Elwert, and
others for the point-Coulomb field, neglecting
screening. A gap has remained in the theory for
intermediate energies (kinetic energy of the inci-
dent electron T, —= F., —m, e =5 keV-50 MeV), ex-
cept for those cases in which Born approximation
is valid. The purpose of this work is to obtain
information regarding the bremsstrahlung cross
sections at these intermediate energies by making
a direct numerical calculation. Even with modern
computers, it is not yet feasible to perform com-
prehensive calculations covering this entire energy
region. But it is possible to establish the impor-
tance of Coulomb corrections to the Born approxi-
mation and the importance of electron-screening
corrections to point-Coulomb results. It is also
possible to formulate analytical expressions useful
at high and low energies. Hopefully, the results
we have obtained can serve also as reference points
in the construction of better approximate theories.

While this work was in progress Brysk, Zerby,
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FIG. 1. Furry diagram {left) and Feynman diagrams
(right) for Bremsstrahlung.

and Penny (BZP)' reported a similar numerical
calculation and Elwert and Haug (EH)~ used approx-
imate electron wave functions to obtain analytic re-
sults valid (neglecting screening) for all energies,
at least for low-Z elements. We have already corn-
mented on this work in a preliminary note, showing
that BZP angular distributions are incorrect and
EH results are poor for large Z. Further analysis
of these papers will be given below.

We wish here to present a more complete discus-
sion of the calculation of relativistic bremsstrahlung
cross sections for incident-electron kinetic ener-
gies in the range 5 keV-1 MeV. Our methods are
similar to those used by Schmickley and Pratt in
the calculation of atomic photoeffect, and are based
on the description of the atom as a static spheri-
cally symmetric charge distribution of infinite
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TABLE I. Bremsstrahlung cross sections e(k) as computed in this work. Symbols B, C, S, HFS, TFC, and TF
refer to the Born approximations, point-Coulomb, screened, modified Hartree-Fock-Slater, modified Thomas-Fermi,
and Thomas-Fermi potentials; and z„and n„are thenumberof tc&'s and of v2's used in this work, respectively.

Z Ti k (k) a. c(k) a (k) (mb)

ma, ss. As in BZP, the electron wave functions are
calculated in partial wave series, and radial matrix
elements are obtained by a numerical integration
over numerically obtained radial wave functions.
In Sec. II we give a brief survey of bremsstrahlung
theory and in Sec. III we discuss our numerical
methods. Comparisons with previous results, both
theory and experiment, are presented in Sec. IV.

We also there use our results to examine Coulomb
corrections and screening effects. We compare
the present Coulomb-correction values with the
Elwert factor, 6 and the present screening values
with the form-factor results obtained using Born
approximation theory.
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FIG. 2. Bremsstrahlung differential cross sections
a(k, 8) for Z=l, TI =0.380 MeV, k=0. 228 MeV. (For
e&15'our results are larger than the Born-approxima-
tion results and the integrated cross section a.(k) is
dominated by the region 60'& 0 &10', the sine in d~&
diminishing the contribution of the small 0 region where
our results are smaller than the Born approximation. )
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FIG. 3. Bremsstrahlung differential cross sections
a (k, 8) for Z = 1, T& = 0.500 MeV, k = 0.250 MeV.
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where A '"' is the vector potential describing the
atomic field. The solution of (2. l) and (2. 2) is
written as'

e(z)=Q [+"(p, s) e ' 'b(p, s)

e'-&( s) e's'g(p, s)]

4=0, (2. 3)
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where b and 1 are annihilation and creation opera-
tors for electrons and positrons, respectively; a
and at are destruction and creation operators for
photons, specified by four-momentum (k, k) and

four -polarization (0, &). Here the radiation gauge
was chosen. Although we lose manifest Lorentz
and gauge covariance, only the two transverse de-
grees of freedom of the radiation field appear in
the formalism. The cross sections in this approx-
imation are obtained from the matrix element of
the S matrix between the initial and final states

3y( =(Ps k ISIS| &

FIG. 4. Comparison of present results of Brems-
strahlung differential cross sections cr(k, e) (solid line
for point-Coulomb, dotted-broken line for HFS field,
double-dotted-broken line for TFC field, and triple-
dotted-broken line for TF field) with the Born-approxi-
mation results (broken line), the results of EH (crosses),
and the nonrelativistic results [dotted line for results
without retardation (N. R.W. O. R.), quadruple-dotted
broken line for results with retardation (N. R.W. R.)]
for the case Z=13, TI =0.005 MeV, k=0.004 MeV.
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Our formalism corresponds to Furry's extension'
of the usual Feynman-Dyson formulation" of quan-
tum electrodynamics, including the interaction of
the electrons with the atomic field in the unper-
turbed Hamiltonian. The bremsstrahlung process
is shown symbolically in Fig. 1. The right-hand
and left-hand sides are Feynman and Furry dia-
grams, respectively. The diagrams corresponding
to radiative corrections are neglected in our ap-
proximation as this correction is quite small in the
energy region we consider here. (The lowest-or-
der radiative corrections to the bremsstrahlung
cross sections were obtained by Fomin. 's)

The (incoming and outgoing) electrons in the
atomic field and the photons are described by oper-
ators e(x) and A' (x), respectively, which satisfy
the equations
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FIG. 5. Bremsstrahlung differential cross sections
cr(k, 8) of present theory (solid line for Z = 8 point-Cou-
lomb field, single-dotted-broken line and solid line for
Z= 13 point-Coulomb field and HFS field, respectively)
for the cases T&=0.045 MeV, k=0.040 MeV, with Z=8
and Z =13, compared with the Born-approximation re-
sults (broken line), the nonrelativistic results for Z=13
(dotted line for N. R.W.O. R. , triple-dotted-broken line
for N. R.W. R.), and those of EH (crosses for Z=S,
double-dotted-broken line for Z = 13).
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o are the familiar 2x 2 Pauli matrices; g& is
the initial wave function asymptotically nor-
malized to a unit-amplitude modified plane wave
of four-momentum (E„pt) plus an outgoing spher-
ical wave; and $, is the final wave function asymp-
totically normalized to a unit-amplitude modified
plane wave of four-momentum (E2, p2) plus an in-
coming spherical wave. ' The transition prob-
ability per unit time between the states is then
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FIG. 6. Comparisons of present results (solid line
for HFS field, double-dotted-broken line for point-Cou-
lomb field) with the Born-approximation results (broken
line), the results of BZRP (dotted-broken line), the
results of EH (crosses), and the experimental data of
MP (triangles) and of Rester (circles) for the case Z=13,
T& = 0.050 MeV, k = 0.040 MeV.
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FIG. 7. Comparison of present results (solid line for
HFS field, double-dotted-broken line for point-Coulomb
field) with the Born-approximation results (broken line),
the results of BZRP (dotted-broken line), the results of
EH (crosses), and the experimental data of MP (triangles)
and of Rester (circles) for the case Z=13, T& =0.050
MeV, k =0.030 MeV.

photon angle (deg. )

FIG. 8. Comparison of present results (solid line for
HFS field, double-dotted-broken line for point-Coulomb
field) with the Born-approximation results (broken line),
the results of BZRP (dotted-broken line), the results of
EH (crosses), the experimental data of MP (triangles)
and of Rester (circles), and the nonrelativistic results
(dotted line for N. R.W. O. R. , triple-dotted-broken line
for N. R.W. R. ) for the case Z=13, T& ——0.050 MeV,
k = 0.020 MeV.
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we may construct simultaneous eigenfunctions of
0, J, J, and the parity operator PI~, where I~ is
the space-inversion operator, since [Pis, H]=0
too. Thus we have"

g:&(P, r, F) = «Z [@'. (P) X(A]i' 's'"" It„„(r),

where
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FIG. 9. Comparisons of present results (solid line
for HFS field, double-dotted-broken line for point-Cou-
lomb field, and triple-dotted-broken line for TFC field)
with the Born-approximation results (broken line), the
results of BZRP (crosses), the results of EH (dotted
line), and the experimental results of MP (triangles) and
of Rester (circles) for the case Z=79, T& —-0.050 MeV,
k=0.030 MeV.
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where

p(pa)=p2E2dQ2/(2s), p(k)=k dA, /(2m)

we obtain the cross section, after integration over
energies E~ of the outgoing electron,

«=(2~) '(H p, & k'/p )dk«, «, l~«l . (2 5)

We use the split representation; in this way any
matrix element between four-component states may
be reduced to matrix elements between two-corn-
ponent spinors
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This gives a simple method to separate out the
quantities depending on polarization. Since

[J, H] =0,
where we have the angular momentum operator

J= L+S=rxp+~ g

and the Hamiltonian
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FIG. 10. Comparisons of present results {solid line
for HFS field, double-dotted-broken line for point-Cou-
lomb field) with the Born-approximation results (broken
line), the results of BZRP (single-dotted-broken line),
the results of EH (crosses), the experimental data of
MP (triangles) and of Rester (circles), and the nonrelativ-
is tie results (dotted line for N. R.W.O. R. , triple-dotted-
broken line for N. R.W. R. ) for the case Z=79. T&=0.050
MeV, k = 0.020 MeV.
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The index l runs from I l2 —l, I to (l~+1, ) in steps of
2 for n = 1, and from I l, —l,'I to (lz+ l', ) in steps of
2 for m=2:

I'=-1+rI. , q„-=-«/~ ~~;

Q)(m)=))„( —)
' [(2l~+1)(21,+1)]'~ C2, C', ,
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FIG. 11. Bremsstrahlung differential cross sections
o(k, 8) of present theory (solid line for point Coulomb
field, dotted broken line for HFS field) for the case
Z=79, T&=0.25 mac, k =0.1875 mc, compared with
the Born-approximation results (broken line), the re-
sults of EH (crosses), and the results of RJ (triangles).
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where V is the screened central potential for the
atomic electron in question.

Choosing a coordinate system centered at the
atomic nucleus with the z axis along k, y along k
xp&, andxinthe (k, p, ) plane, and inserting Eq.
(2. 6) into Eq. (2. 4), we obtain ''8
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FIG. 12. Comparisons of our results of o(k, ~) (solid
line for point-Coulomb field, double-dotted-broken line
for HFS field) with the Born-approximation results
(broken line), the results of EH (crosses), the results
of BZP (dotted-broken line), and the experimental data
of Aiginger (circles) for the case & = 79, TI =0.180 MeV,
k= 0.108 MeV.
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and C„—= C(l ~j;m —s, s) the Clebsch-Gordan co-
efficient. Integrating (do)„, , over d01 and dA„
we obtain the unpolarized bremsstrahlung cross
section, differential in photon energy:

—„„=-o(k)
k der
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K2I Kg ~ trti IIK2I

(in mb). (2. 12)
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FIG. 13. Comparisons of our results of cr(k, 8) (solid
line for point-Coulomb field, double-dotted-broken line
for HFS field) with the Born-approximation results
(broken line) ~ the results of EH (crosses), the results
of BZP (dotted-broken line), and the experimental data
of Aiginger (circles) for the case Z = 79 ~ T& =0 ~ 380 MeV,
k = 0 ~ 228 MeV.

Finally, we find

S1 = fo «i 1 (k&) g.,f.,
Sp = f dr j, (k1')g„p„,

(2. 10)

These s integrals are the basic integrals to be ob-
tained numerically, which will be discussed in Sec.
III.

To obtain the unpolarized bremsstrahlung differ-
ential cross section we average (2. 5) over the ini-
tial-electron spin and sum over the final-electron
spin and both directions of the polarization of the
photon. Upon inserting (2. 8} into the expression
for (do) ~„and integrating over df)„we obtain"
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III. NUMERICAL METHODS

The problem of calculating bremsstrahlung cross
sections has been reduced to computing the Q and
P factors, the S integrals, and the spherical har-
monics. The Q and P factors and the spherical
harmonics present no great problem. But the S

where

(in mb/sr), (2. 11}

y0 = [(3.861 44) x 10 ] (32a/Z1 P, ) E, E1P1 k1,

A,'(m) = &~1 0-1 IJ -1%1/1 $1)R„'~,(m),
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~Z dkdA„
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K1K]K2 m~l m2 I

+A, (m) A, (m)+A'(m) A'(m)+A (m) 2 (m)]

0
30 60 90 I20 I SO I80
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FIG. 14. Comparisons of our results of o (k, &) (solid
line for Z = 1 point-Coulomb field, single-dotted-broken
line for Z = 13 point-Coulomb field, double-dotted-broken
line for Z = 79 point-Coulomb field, and triple-dotted-
broken line for Z = 79 HFS field) with the Born-approxi-
mation results (broken line), the results of EH (crosses),
the results of BZP (squares for Z = 79), and the experi-
mental data of Motz (triangles for Z= 13, circles for
Z = 79) and of Aiginger {solid circles for Z = 79) for the
cases T& = 0 ~ 500 MeV, k = 0 ~ 480 MeV, Z = 1, 13, and 79~
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FIG. 15. Bremsstrahlung differential cross sections
a(k, ~) of present results (solid line for HFS field,
dotted-broken line for point-Coulomb field) for 8=79,
T& = 0.500 MeV, k = 0.250 MeV, compared with the Born-
approximation results (broken line), the results of EH
(crosses), the results of BZP (triangles), and the experi-
mental data of Motz (squares) and of Aiginger (circles).

FIG. 16. Bremsstrahlung differential cross sections
a (k, &) of present theory (solid line for HFS field) for the
case Z=13, T&=1.0 MeV, k=0.7 MeV, compared with
the Born-approximation results (broken line), the results
of EH (crosses) and the experimental data of Motz
(circles) and of Rester and Dance (triangles).

V(r) = —(Zn/r) .

(ii) Thomas- Fermi

(3. la)

v(r) = —(za/r) v, (~r), (3. lb)

Vo is the Thomas- Fermi universal function. Values

integrals must be obtained by numerical integration
of the threefold product of initial continuum wave
functions, final continuum wave functions, and
spherical Bessel functions. Spherical Bessel func-
tions were obtained with the method of Corbato
and Uretsky. ' The continuum radial wave functions
were obtained by numerical integration of Eq.
(2. 7).

In this work we have made calculations for four
different central potentials:

(i) point-Coulomb ——' [(81/321r }r n(r)] (3. 1d}

with n(r) = 4m' p(r) the radial electron charge den-
sity. The radial charge density used in this work
was obtained from Liberman. '

The continuum wave functions were computed with
similar methods to those used by Schmickley and

of V~ were taken from data of Kobayashi et al. ';
(iii) modified Thomas- Fermi~

V(r) = —(Zo./r)(0. 711 e '"'0"+0.2889 e ' "0'),
(3. lc)

with

2(3 )N/8 Z&/8,

(iv) modified Hartree- Fock-Slater

r V(r) = —Z+ f n(r') dr'+r f„[n(r') /r'] dr'

TABLE II. Comparison of point-Coulomb Bremsstrahlung cross sections a(k) as calculated by the Born approxima-
tion, BZP or ZB, EH, and the present authors for 2=1 cases.

0.380

~(k) (mb) for T, =

0.500

Mev, k=
0.228

0.250

Mev

Born

4.477

4. 984

BZP or ZB

4. 425

4.29

EH

4. 513

5. 003

Present theory

4. 513

4. 985
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TABLE III. Comparison of point-Coulomb Brems-
strahlung cross sections 0(k) in millibarns as calculated
from nonrelativistic theory with retardation (¹R. W. R. ),
Sommerfeld theory without retardation (¹R. W. O. R. ),
and the present work for low-energy cases.

r, a p, p,
Z (Mev) (Mev) N. R. N. R. N. R. W. O. R.

This work
N. R.w. R. (Point-

Coulomb)

13 0. 005
13 0. 045
13 0. 050
79 0. 050

0. 004 0. 14 0. 063
0. 040 0, 42 0, 14
0. 020 0.44 0. 34
0. 020 0. 44 0.34

332.
28. 1
37.6
38. 1

344.
41.2

60.4
53.0

335.
28. 0
40. 3
46. 7

Pratt. ' In order to have a finite solution at the
origin we convert g and f in EI). (2. 7) to g and f,
respectively, where g= r g, f= r f, r = [«
—(Zo)']'l3. To reduce the propagation error, we
use the power-series-expansion method to compute
the first 2(l +Ie) points, where Io is defined by I « i

= 2I0+I~, with 0 —I~ & 2. The integration was con-
tinued by the fourth-order Runge-Kutta method.
Upon reaching the first minimum of f, near r
= 1« I/p, we switched from computing g and f to
computing g and f. It is desirable to do this be-
cause these functions are asymptotically sinusoidal.

The functions g and f are normalized by a spheri-
cal-Bessel-function formulation based on the as-
sumption that at some point in the free-field region
of the atom the wave functions g and f are approxi-
mately modified phase-shifted free-field solutions:

g=r[(E+1)/2E] ~2[Aj„(pr) —A y„(pr)],

f= r[(E—1)/2E]'~ [A.j„,(Pr}—A y„,(Pr));

ZaE - V"=
p

'- Z/r
Q = vln2Pr for point-Coulomb field,

= (E/p) f V(ur)dw for screened fields .
(3.3)

In order to have the following normalized solutions:

g = r [(E+1)/2E]'~ ~ [cosFi„j„(pr) —sin)(„y„(pr)],

4.0

5.0

(3.4)

f=r [(E—1)/2E]' [cosW„j„~(pr) —sin)(„y„~(pr)],

the normalized solutions should be multiplied by the
normalization constant N = A '. By averaging A
and 8„over one (or more) period(s), we get better
results for normalizations and phases.

Combining the normalized initial and final radial
wave functions with the spherical Bessel functions,

we numerically integrated the S integrals by the tenth-
order Newton-Cotes formula, with the integration grid
hr = v/(32p, ) up to the point where the continuum
wave functions can be approximately considered as
the modified phase-shifted free-field wave functions
and an integration-by-parts method can be used.
Then the rest of the 8 integrals were calculated by

or

g = r[(E + 1)/2E] A [cos5„j„(pr)—sinF„y„(pr)],

f= r[(E- 1}/2E]' A[cosl„j„,(Pr) —sinh„y„, (Pr)],
where

=p) +Q A= (A~+A2)~~~

MeV,

2.0 7I 4,T, *0.04$MeV, k*
I44)

SO i tV
~t (0-447, 0 4$0) 7 ~ IS,7&*0.OSOMeV, k «0.040MeV, 9'I '0.

7 ~ IS,T, ~ 0,0$0Mev, k~O. OSOMeV, l'I yt e O. S49

ft (0.$49, 0.2$0)

ft (0 449 04$0) 7 ~ IS,T OOSOMev, k 0020MeV, V, *0 4$0 M4 0 449
I 0-

I(„=tan '(A /A, ) if A, &0;

5„=tan '(A A/, ) +«if A, &0, A &0;

)(„=tan (A /A, ) —v if A, &0, A &0 .

(3.2)

0 0 50
I

60
I (

90 l20

photon angle ( deg. )

I

i 50 180

Q, the phase correction integral, is defined by

dQ vV

where

FIG. 17. Coulomb correction factors f (8) for the cases
(1) Z=13, Ti =0. 005 MeV, k=0. 004MeU; (2) Z=13, Ti
= 0. 045 Me V, k = 0. 040 Me V; (3) Z = 8, T1

= 0. 045 Me V,
k = 0. 040 MeV; (4) Z = 13, Ti = 0. 05 0 MeV, k = 0. 040 MeV;
(5) Z=13, Ti=0. 050MeV, k=0. 030MeV; (6) Z=13, Ti
= 0. 050 Me V, k = 0. 020 MeU. Elwert factors f@(vq, vi) are
shown by arrows.
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5,0—

given in Table I.
The combined effects of all errors are estimated

to be O(1%) for o(k, 8), and O(0. 5%) for ry(k) results.

t(e)
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FIG. 18. Coulomb correction factors f(e) for the cases
Z= 79, T&

——0.25 m, c, k = 0.1875 m, c, and Z=79, T,
=0.050 MeV, 0 =0.030 MeV. Elwert f"ctors f~(v&, v f)
are shown by arrows.

the integration-by-parts method. The S integrals
were combined with the Q and P factors to give R
matrices, and these were combined to give the
cross section, differential in photon energy. Com-
bining the A matrices with the Clebsch-Gordan co-
efficients and the spherical harmonics we obtain
the cross section, differential in photon energy and
angle.

We should finally discuss the accuracy of our
numerical methods. Errors in the calculations of
wave functions are discussed in the paper of Pratt
et al. ,

"and present errors are of the same order,
&10 . Errors in spherical Bessel functions,
spherical harmonics, 3-j symbols, etc. , are com-
pletely negligible. The two major sources of error
are (i) finite grid size in the 8 integration (histo-
gram error), and (ii) truncation error due to limita-
tion of the number of x,'s and of &2's in the series
Eqs. (2. 11) and (2. 12).

To estimate the histogram errors in S integrals
we made tests by using various grid sizes ranging
w/(128/, )-v/(16/~). The results generally fluctuated
by O(0. 1%) for o(k), O(1/o) for o(k, 8) with small
and large photon angles, O(0. l%%uo) for intermediate
photon angles. The other major source of error,
truncation, can be tested by increasing the number
of a, 's and of g2's. The results show the same or-
der of fluctuations as those by the histogram errors.
The number of ~,'s and of ~2's used in this work is

A. Comparison of Point-Coulomb Results

We compare the point-Coulomb-potential results

50.0—

40.0—

30.0—

I 0.0

f(8) 1 &9 vI 0 668 'P2 2, IP
~2 (2.(2 eO 666)

I

30
I I I

60 90 I20

photon ongle (deg. )

I

l50 !80

FIG. 19. Coulomb correction factors f(0) for the cases
T& = 0.500 MeV, k = 0.480 MeV, Z = 1, 13, and 79. Elwert
factors fE (v&, v&) are shown by arrows.

IV. RESULTS AND DISCUSSION

We list in Table 1 all cases (specified by Z, T„
and k) we have computed. The Table also gives the
bremsstrahlung cross section v(k) integrated over
angles which we obtained with different potential
models; these values correspond to single points
in the energy spectrum of the bremsstrahlung. In

Figs. 2-16 we show the corresponding angular dis-
tributions o(k, 8) in millibarns per steradian for
each of these cases, as well as a comparison with
other work. Our cases provide some coverage of
the energy range 5 KeV-1 MeV and targets Z
= 1 —79; they were chosen to study Coulomb correc-
tions and screening effects and to permit comparisons
with previous work. We begin by comparing point-
Coulomb potential results which also serve as a
check of our calculations. We can then discuss the
importance of Coulomb effects beyond the Born ap-
proximation (Bethe-Heitler formula). Next we ex-
amine the importance of screening effects. After
summarizing our theoretical formulation we com-
pare it with current experimental work.
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TABLE ~. Comparison of Cou].omb correction factors f(v2, v&) calculated in the present work with the Elwert factors
f for all the cases given in Table I, and comparison of the screening correction factors y(k} calculated with the Born-
approximation theory and in the present work.

54eV) f(v2, vg)

&~yak)

HFS TFC HFS

tk)

TFC TF V2 Vg

1
1
1
8

13
13
13
13
13
13
13
79
79
79
79
79
79
79

0. 500
0. 500
0. 380
0, 045
0. 005
0. 045
0. 050
0. 050
0. 050
0. 500
1.000
0. 050
0. 050
0. 25 m~
0. 180
0.380
0. 500
0. 500

0. 480
0.250
0. 228
0. 040
0. 004
0. 040
0. 040
0. 030
0. 020
0.480
0. 700
G. 030
0, 020
0. 1875
0. 108
0.228
0.480
0. 250

mec 2

l. 063
1.000
l. 008
1.883
2. 206
2.317
l. 752
1.342
l. 171
l. 903
1.120
1.755
1.356
2. 488
1.943
1.904
5.954
1.634

l. 058
1.004
1.008
1.851
2. 193
2.243
l.697
1.306
1.147
1..782
1.061
l. 518
1.257
l. 771
1.393
1.275
3.126
1.156

0, 862
0. 985
0. 982
0. 967
0. 941

0. 996
0. 899
0. 857
0.948
0. 944
0. 955
0. 978
0.947

~ ~ 4

0. 893

0. 985
0. 976

~ ~ ~

0.931

~ ~ ~

0. 882
0. 986
0. 982
0. 975
0. 960

0. 997
0. 836
0.798
0. 904
0. 910
0. 932
0.945
0. 921

e 4 e

0. 860

0.972
0. 965

~ 8 ~

0. 848
~ ~

~ ~ 4

0. 845

0.02
0. 001
0. 002
0. 27
0. 84
0. 44
0. 26
0. 12
0. 06
0.24
0. 01
0. 72
0.36
0. 75
0.34
0. 20
1.45
0, 11

67.
16.
21.
14.
4. 1

12.
10.
6. 5
3.9

28.
11.
3.6
2. 1
6.5
4. 8
5.0

16.
3.7

with analytic theoretical predictions in two limiting
eases: (a) for very small Z, with the Born approxi-
mation' and (b) for very low energy, with nonrela-
tivistic results.

Relativistic Born approximation (the Bethe-Heitler
formula) is expected to be valid when the Coulomb
parameter y~ = 2wZo. /p2«1. Values of y~ for our
cases are shown in Table I. The Z=1 cases shown
in Table II were run specifically to check our cal-
culations; in Table II we compare them with other
results. The integrated results are within 1% of
the Born approximation and are higher; it will be
clear from our subsequent comparison mith the
Elwert-Haug calculations that this is a real devia-
tion from the Born approximation. In angular dis-
tributions this deviation arises from intermediate
photon angles, as in Figs. 2 and 3. However, me
believe the deviations these figures also show at
small and large angles, which do not contribute in
the integrated result, are not real: More partial
waves are required at these angles. (We saw this
greater sensitivity both in our own work and in the
various forms of the BZP results. ' We estimate
that to obtain about 2% accuracy at these angles
would require about twice the number of partial
waves used in this work. ) It may be noted that
throughout the low-energy region the Born approxi-
mation underestimates the cross section. Much of
the underestimate is simply a normalization factor
and we will discuss this later. We know, however,
from the work of Bethe and Maximon, that a cross-
over takes place, and at high energies Born approx-
imation is an overestimate. Thus for lead and en-

ergies above 50 MeV the Bethe-Heitler formula
tends to overestimate cross sections by about 1070.'

Nonrelativistic results may be expected to be val-
id when the initial electron kinetic energy T,«1 and
the screening is small. The condition T&«1 is
most nearly achieved in the cases shown in Figs.
4-10, and particularly in the case Z = 13, T, = 5
keV, k =4 keV (Fig. 4). The standard result (no
retardation) obtained by Sommerfeld is only valid
when py is small compared to unity. However, the
theory neglects screening effects, which are im-
portant for very low energies, and we will discuss
this later. It is also possible to include certain re-
tardation effects, as originally done by Elwert~ and
more recently by Elwert and Haug, ' as a limit of
their relativistic calculation, namely, by neglecting
O(P') in their formula. There are problems of con-
sistency because O(p) terms are also partly neg-
glected, as in (e '~ —1), since p= p»[1+O(p )],
where NR stands for nonrelativistic kinematics. In
Figs. 4, 5, 8, and 10 we have shown both treat-
ments, and the corresponding integrated results
are summarized in Table III, which also gives the
P». We see that for 5 keV, by including retarda-
tion effects, we get agreement for the integrated
erose section within 3%, as well as a good fit of the
angular distribution. Thus, even at our lowest en-
ergy we have seen that retardation effects are im-
portant, but in fact the relativistic Born approxi-
mation includes them. At higher energies the g are
already too large to expect more than qualitative
agreement. The retardation continues to improve
the shape, but the integrated values actually run
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FIG. 20. Screening correction factors p(k, ~) for the
cases Z=13, T, =0.005 MeV, k=0. 004 MeV, Z=13,
Tf 0 045 MeV k 0 040 MeV and Z 79 T( = 0 ~ 25
m~C, k = 0.1875 meC .

remains finite. ' The SM wave function includes
this distortion and so the EH formula correctly
gives finite results. This feature is also related to
the Elwert factor, as will be discussed shortly.

Two previous attempts at numerical calculation
can be compared with our point-Coulomb results.
One case was obtained by Rozics and Johnson (RJ), "
using exact electron-point-Coulomb wave functions
in a partial-wave expansion. Comparison of our
point-Coulomb results with those of RJ is given in

Fig. 11. The disagreement is probably due to the
fact that the RJ calculation does not include enough
partial-wave terms. This difficulty is more clearly
visible in the work of BZP, which we see in three
stages with increasing numbers of partial waves
taken. The earliest form, shown in Fig. 3, im-
proved in the published results of Figs. 2 and 12-
15. Subsequent work was done by Rester and Peas-
ley, ' who have had access to the BZP codes. The
agreement with the Born approximation and EH for
the Z=1 cases shown in Table II gives us greater
confidence in our results, but we conclude that the
BZP results are acceptable for integrated cross
sections o(k), though not for the angular distribu-
tion o(k, 8).

B. Coulomb Effects

closer to the calculation without retardation.
We can also compare the point-Coulomb-potential

case with the recent analytic work of Elwert and

Haug (EH). This calculation uses Sommerfeld-Maue
(SM) wave functions, "neglecting screening effects,
and in appropriate limits reduces to the formulas of
Sommerfeld, Elwert, Bethe and Heitler, ' Sauter, '

Scherzer, and Betheand Maximon. The SMwave
function is a good approximation for all energies pro-
vided (Za) /I&I « 1 and the screening is small.
For Z = 1, 8, and 13 our results are quite close to
Elwert-Haug predictions at all energies, although

the deviations are significant and indicate that the
Elwert-Haug formula underestimates the Coulomb
cross sections o(k) and o(k, 8). The agreement is
better for lower-Z cases, and disappears in

the high-Z cases. This shows the growing
importance of the higher-order terms in Z which
the EH calculation neglects. For high Z, the EH
results appear little different from the Born-ap-
proximation results when the outgoing electron car-
ries a substantial fraction of the energy, but are
better (though not good) for the cases in which the
Born-approximation results are worst, namely,
for much of the energy radiated. Qne understands
this when one remembers that in the extreme case
of the tip (all energy radiated), the Born-approxi-
mation result vanishes, but because the nuclear
field strongly distorts the low-energy wave function
from that of a plane wave, the cross section in fact

I.OO—

y (k, e)

.90

.80

,ro
.050 MeV

Born Approx.

Present Theory
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.60
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I
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I
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ph 0 ton ang le 8 ( de g. )

FIG. 21. Screening correction factors &(k, 0) for the
cases T& =0.050 MeV, k=0. 030 MeV, and 0.020 MeV,
Z=13 and 79.

In order to formulate in more detail the Coulomb
effects that go beyond the Bethe-Heitler formula, we
have plotted the ratio f(8)=o '"'(k, 8)/o '"(k, 8)
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of point-Coulomb to Bethe-Heitler angular distribu-
tion in some representative cases in Figs. 17-19.
Table IV gives the integrated Coulomb-correction
factor f(vr, v, ) =o '"'(k)/cr ' (k). In almost all
the cases we have considered, even for Z = 13,
Coulomb effects are very large. However, we be-
lieve that such effects are fairly small for low Z
when less than half the energy is radiated.

It is apparent that in many cases the shape of the
angular distribution is given well by the Born-ap-
proximation theory, and the Coulomb effect is
presumably a normalization effect.

Such a prediction was obtained by Elwert in the
nonrelativistic region, by comparing the nonrelativ-
istic Born approximation and the exact nonrelativ-
istic calculation without retardation, giving (Elwert
factor)

fe (v„v, ) = (v2/v, )(I —e "')/(1 —e ""&) (4.1)

We now turn to a discussion of the effects of elec-
tron screening on the point-Coulomb cross sections
we have considered to understand when screening
effects are important and to see whether they can
be estimated in any simple fashion. Until now,
such estimates have been made with a form-factor

independent of the angle. This derivation requires
T, «1 and (vz —v, )«1. The factors arise from the

normalization of continuum Coulomb wave functions-
in the low-energy limit they keep these wave func-
tions finite. We have plotted f~ for all the angular
distributions in Figs. 17-19, and we give its val-
ues for all our cases in Table IV. It is clear that
the usefulness of the idea of normalization goes be-
yond the regions for which Elwert's derivation ap-
plies. Note that f~ approaches 1 as the energy ra-
diated becomes small.

From the figures we can see that higher Born-
approximation corrections (Coulomb effects) that
go beyond simple normalization are important for
small and for large photon angles. In the present
energy range they increase the cross section. This
has consequences for screening which we will dis-
cuss below. Such effects grow with increasing
atomic number Z and also as the ratio k/T, in-
creases. Since small and large angles contribute
less to integrated cross sections, it appears pos-
sible, according to Table IV, to use the factor fe
to predict such cross sections for low-Z elements
and initial electron kinetic energies below about
0. 1 MeV (or with 10% accuracy up to 1 MeV).
However, for high-S elements, the Elwert factor
gives poor predictions even at low energies. This
conclusion was also reached by Elwert and Haug.
There are not yet enough data to construct with con-
fidence an empirical f (v„v, ) valid over wider
ranges.

C. Screening effects

1.00—

y(k, 8)
T, *.SOOMeV, it ~ .250 NeV

.95

IOS M@V

.90

.85
2*79
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I
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FIG. 22. Screening correction factors p(k, ~) for the
cases Z=79, T&=0.500 MeV, 0=0.250 MeV, and 0.480
MeV; and Z= 79, T& —-0.180 MeV, 4 = 0.108 MeV.

approach based on the Born approximation; so we

will examine in some detail the validity of this pro-
cedure.

We have considered primarily the modified Har-
tree-Fock-Slater potential, but we also have a few

results for TFC and TF potential models which en-
able us to see the sensitivity to the choice of screen-
ing-potential model. Ratios of screened to Cou-
lomb distributions are presented for some of our
cases in Figs. 20-22, and ratios of the integrated
results are given in Table IV. Differences between
screening models at these energies are about 1%
and so we will not discuss them further —this
stability assures us of the physical validity of our
results. (It does appear that sensitivity to the
screening models increases at very low energies. )

We compare our results with those of BZP, the

only other calculation which goes beyond form-fac-
tor approximation, in Figs. 6-10 and 12-15. The
agreement is fairly good, particularly in the (un-

published) BZRP cases, for which their codes were
further modified. We have already noted in dis-
cussing the point-Coulomb cases that the BZP re-
sults are not good at small and large photon angles;
we find BZRP an improvement although some dif-
ferences still remain, especially for smaller k/T,
ratio cases. For the screened integrated cross
sections no BZP results were published, but they
can be obtained by integrating the BZP results over
the photon angle.
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Let us now review the usual theory of screening
and the regions in which it is claimed to be valid.
In the Born approximation, the bremsstrahlung
matrix element is proportional to

J V(r) e"'d'r=M',
where

V(r) = f [p„(r')+p, (r')]dr'/~ r —r'~, (4.2)

p„and p, are the nuclear-charge and electron-
charge densities, respectively; q = p~

—pz -% is the
momentum transferred to the nucleus. " From Eq.
(4. 2) we have

M' = (4vZ/q') [F„(q)+ F, (q)],

with

F„(q)= (1/Z) f p„(r)e" d r,
F,(q) = (1/Z) f p, (r)e' t d'r .

(4. 2)

In the energy region considered in this paper we
have FN(q) 1. ' Thus the unscreened cross sec-
tion may be corrected for screening effects by in-
cluding the multiplication factor [1—F,(q)] . If the
analytic form of the potential model is known, the
form factor can be calculated by the method de-
veloped by Moliere. For our comparisons, the
electron form factors F,(q) were computed numeri-
cally using the Hartree-Fock-Slater (HFS) radial-
electron charge density.

The standard description of screening effects in
bremsstrahlung ' ' is based on the parameters of
the Thomas-Fermi model. Here F, (q) depends on
the quantity qr», where x» —-137Z ' is the radius
of the Thomas-Fermi atom. Screening effects are
classified by the screening parameter $, which is

approximately equal to rrr/r, where r is the
maximum-impact parameter discussed by Heitler36
and is equal to q f Q f =p, -p, —k. If ~, is
small compared to rrv, then $, is large and F,(q)
is small, which means electron screening is not

important. If r is of the order of r», then $,
-1, F, is large, and screening is important. A

comparison of r with r» in the energy range we

considered here is shown in Fig. 23. One sees that
screening effects are important for high and low

energies. For a, given incident energy the effects
are more important when less energy is radiated.

In Ta,ble IV we show our results for the ratio
y"'(k) of screened to point-Coulomb-integrated
cross sections and compare them with y (k) as cal-
culated from the form-fa, ctor theory. This Table
also gives the parameter $, which indicates the ex-
pected importance of screening. The calculated
screening correction factor y' (k) for the HFS field
is also plotted in Fig. 23, allowing one to see the
regions for which screening in fact is important.
Then in Figs. 20-22 we show the corresponding
ratios y(k, 8) for angular distributions in some rep-
resentative cases. From Table IV and Fig. 23 we
see that the criterion for importance of screening
based on $, is qualitatively correct, but the screen-
ing effects tend to be larger than usually supposed.
For the same parameter $, the screening is more
important for large Z and for small or large T&,

i. e. , the ranges in which screening is unimportant
are more limited than the form-factor theory sug-
gests. It may be noted that, in general, the cases
for which screening corrections are expected to be
large are those which are difficult to calculate with
our techniques because such a large number of par-
tial waves are required. These are cases in which
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FIG. 23. Comparison of the maxi-
mum impact parameter r~ with the
radius of the Thomas-Fermi atom rTF
in the energy range T, =0.001-1.0
MeV. (Q in the figure is the compton
wavelength. ) The calculated sc reening
correction factors 'V~~{k) for the HFS
field are superimposed on the figure
for all our 2 =13 and 79 cases; the
numbers given in the parentheses are
for the 8=13 cases. The cases are
indicated with X's.
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higher Born effects are important, small- or large-
angle regions are important; in such regions more
partial waves are required.

In the range we have calculated, with the screen-
ing factor r(k) generally greater than 0. 9 for low-
atomic-number elements, y gives at least a quali-
tative impression of screening and often gives the
cross section within 2%. However, for those cases
in which screening effects are big, the form-factor
theory of screening appears to give poor predic-
tions.

Looking at the angular distributions, we see that
the form-factor approach is most satisfactory at
intermediate angles. Ne understand this once we
remember that this is a Born-approximation re-
sult, and we have already seen that, apart from
over-all normalization, the Born approximation is
good at intermediate angles. At large and small
angles, we find that higher Born approximations
increase the cross section; when screening is in-
cluded, form factors should be folded in multiply,
which explains why the actual calculated screening
factors y(k, 8) are smaller at small and large
angles. Since the intermediate angles dominate the
integrated cross section, the deviations there are
not so large.

It appears that screening effects, like Coulomb
effects, should be described by an empirical y.
Again, there are not yet sufficient data to construct
such a y with confidence.

D. Comparison with Experiments

The status of experimental work on the brems-
strahlung cross section to 1958 has been summa-
rized by Koch and Motz in a review article on this
process. For incident-electron kinetic energies
of 15-50 keV, results were obtained by Smick and
Kirkpatrick, Clark and Kelly, Amrehn, Bohm,
Honerjager, Amrehn and Kulenkampff, Kerscher
and Kulenkampff, Doffin and Kulenkampff, Ross,
and Motz and Placious; 90-180 keV by Mausbeck,
and Zeh; 0. 5-1.0 MeV by Motz ' and 2. '72, 4. 54,
and 9. 66 MeV by Starfelt and Koch.

Recently, Rester and Dance, ' and Rester' have
reported experimental data for electron kinetic en-

ergies of 1.0, 1.7, 2. 0, and 2. 5 MeV. They show

disagreement with the results of Motz for Al and
Au at 1.0 MeV. For electron kinetic energies of
2. 04 MeV, results have been reported recently by
Aiginger and Zinke4'; of 0. 180 and 0. 380 MeV by
Aiginger'; of 0. 500 MeV by Aiginger"; and of
50 and 200 keV by Rester.

Figures 6-10 present comparisons of our HFS
results with the experimental data of Motz and Pla-
cious (MP) and of Rester 8 for the cases T,
=0. 050 MeV; k=0. 040, 0. 030, and 0.020 MeV (for
Z=13); k=0. 030 and 0. 020 MeV (for Z=79). The
experimental data of Rester are closer to our HFS
results than those of MP.

In Fig. 16 we give a comparison of our HFS re-
sults with the experimental data of Motz ' and of
Rester and Dance (RD) for the case Z= 13, T,
=1.0 MeV, k=0. 7 MeV. The experimental data of
RD are closer to our results than those of Motz,
especially for small photon angles.

For the cases Z = 79, T, = 0. 180 MeV, k = 0. 108
MeV, and 2=79, T, =0. 380MeV, k=0. 228MeV as
shown in Figs. 12 and 13, we find good agreement
with the experimental data of Aiginger. 6

Finally, in Figs. 14 and 15 we present compari-
sons of our results with the experimental data of
Motz" and of Aiginger" for the cases T, =O. 5 MeV,
k=0. 480 MeV, and T, =0. 5 MeV, k=O. 250 MeV.
The experimental data of Motz are high and the ex-
perimental data of Aiginger agree well with our re-
sults.

From these examples, we conclude that the agree-
ment between the experimental results of Aiginger,
and of Rester and Dance and our HFS results is
quite good. The experimental data of Motz are seen
to overestimate the cross section. The recent ex-
perimental data of Rester are closer to our HFS
results than those of Motz and Placious.
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