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Characterization of experimental (noisy) strange attractors
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In experiments involving deterministic chaotic signals, contamination by random noise is unavoidable.

%e discuss a practical method that disentangles the deterministic chaos from the random part. The

method yields a characterization of the strange attractors together with an estimate of the size of random

noise.

In recent papers' it has been suggested that strange at-
tractors can be characterized by the correlation exponent I.
This exponent is defined on the basis of a long-time series
[X;I:Pof points on the attractor by considering the correla-
tion integral

C(I) =, g O(I - iX, -X,i),
N

where 0 is the Heaviside function. This correlation integral
counts the number of pairs whose distance ~X; —X,. ~

is

smaller than l. It has been shown that C(l) scales as

C(I ) —l" (2)

and that the exponent v can serve as a satisfactory measure
of the strange attractor. We have argued that v ~o- «D,
where D and a- are the fractal and information dimension,
respectively, 4 5 with equalities obtaining only when the frac-
tal is uniform (i.e., no "seniority" effects in the langauge of
Refs. 1-3). In a later work6 we have shown that, in fact, p

is one of an infinite set of dimensions that characterize
probabilistic fractals, but that it is singled out by the ease of
its actual calculation on the basis of time series.

In fact, characterizing the attractor with the exponent p

rather than with the fractal dimension D has a definite ad-
vantage for experimental applications. The numerical esti-
mate of D calls for partitioning phase space into boxes of
size l, and then counting the number of boxes which con-
tain a piece of the attractor. Such "box counting" algo-
rithms are extremely slowly converging even for low
dimensional attractors (D (2), and are quite impractical
for higher dimensional attractors (D & 2).' They call for a
measurement of a prohibitively large number of points of a
time signal. In contrast, the algorithms to calculate v are ef-
ficiently converging even with a relatively small number of
experimental points in a time series, and even at high
dimensions. '

A practical question that has been raised, however, is how
to determine v in experimental situations, where unavoid-
able noise smears the fractal structure of the strange attrac-
tor. The purpose of this Brief Report is to give a practical
answer to this question, with the hope that the proposed al-

gorithm will be used in the analysis of the various experi-
ments which reveal strange attractors.

The basic idea is that when we have a deterministic
motion on a strange attractor, the existence of noise will not
ruin the fractal structure, but will cause fuzziness on length
scales that are smaller or equal to the noise strength. ' To

(e)

FIG. 1. Attractor of the Henon map without noise and with a random jitter added to each iteration. (a) No noise; (b) random jitter
chosen from the interval [ —0.001, 0.001]; (c) random jitter chosen from the interval [ —0.05, 0.05]; (d) blowup of (a); (e) blowup of (b)
(f) blowup of (c).
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FIG. 2. Log2C(l) as a function of log21 for the Henon map em-
bedded in three dimensions. Curve 1 is for the map without noise
and yields v=1.25. Curve 2 is for the map with a random jitter
chosen from I

—0.5X10, 0.5&&10 ]. Curve 3 is for the map
with a random jitter chosen from t

—0.5 X10, 0.5 & 10 j.
Curves 2 and 3 break at length scales that are determined by the
noise level, below which the slope is approximately 3.

FIG. 3. 600-dimensional system for which u=l. 95. Shown is
log2C(l) as a function of log2/ for the Mackey-Glass equation with
7=17 (Refs. 3 and 5). Curve 0 pertains to the system without
noise. For the same level of noise we embed the attractor in
three-, four-, and five- dimensional spaces and obtain curves 1, 2,
and 3, respectively.

clarify this point we show in Fig. 1(a), the Henon attractor"
without any noise and with a random jitter that has been ad-
ded to each iteration in Figs. 1(b) and 1(c). The size of the
jitter has been chosen random1y from the intervals
[ —0.001, 0.001] and [ —0.05, 0.05] in the cases of Figs.
1(b) and 1(c), respectively. On the scale of Figs. 1(a)—1(c)
one hardly notices the difference between Figs. 1(a) and
1(b), although in Fig. 1(c) the effect of the noise is already
apparent. However, upon magnification [Figs. 1(d), 1(e),
and 1(f)] the fuzziness introduced by the noise becomes
very clear.

If we now embed the attractor in d-dimensional space, we
expect that the noisy trajectory will be space filling on length
scales smaller than the noise strength. When it is space fil-
ling C(I) scales like

We thus expect that a plot of log2C(l) as a function of log2
will have a slope of p down to 1ength scales characterized by
the noise strength and then a slope of d. A confirmation of
this idea in the context of Henon's map is shown in Fig. 2.
This agrees with Zardecki's results'0 for the behavior of the
fractal dimension as a function of l.

Experimental systems with strange attractors are typically
high dimensional systems which, ho~ever, possess low
dimensional attractors. Moreover, one typically follows only
one (or a few) of the multitude of degrees of freedom. It
has been argued before ' " that a knowledge of the time
series of one variable is sufficient. If we know X(t) we can
reconstruct a d-dimensional space from the d-dimensional

variable X;:
X = (X(r), X(r +T), . . . , X(r +(d —I)r)], (4)

and then use [X;]:Pin Eq. (1).
The algorithm to extract v in a noisy strange attractor

with a given noise level is now described as follows: One
reconstructs space with an increasing value of d and plots
log2C(l) versus log2l. For a series of values of d such that
d & v one should see then a fan-shaped plot. Above the
length scales characterizing the noise strength all curves
should be linear with a slope equal to v. All curves should
break at the same value of l, below which a slope equal to d
should be seen. An example is shown in Fig. 3. Here we
have a 600-dimensional system which is generated from the
Mackey-Glass delay differential equation. 3 5 For the param-
eter chosen the strange attractor is characterized by v =1.95.
The noise strength is 10 3. We see that all the graphs have
a break at the same I (which is precisely of the order of the
noise strength) below which they have a slope of d.

The advantage of the proposed algorithm is twofold.
Firstly, it offers an efficient way to characterize experimen-
tal noisy attractors. Secondly, the position of the break in
the plots of log2C(I) vs Iog2l supplies information on the
noise level in the system. Thus one knows which length
scales belong to the deterministic chaotic motion and which
length scales belong to the blurred realm of random
processes. This information might be of considerable use
for other experimental applications.

%'e hope that the simplicity of the algorithm and its use-
fulness would prompt a characterization of experimental
strange attractors along these lines.
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