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Binary-collision effects on density fluctuations of dense gases
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A dynamical theory of simple fluids which incorporates exactly all the effects of a single binary collision
is used to study the dynamic structure factor S(q, co) for Lennard-Jones fluids. The comparison of our
results ~ith those of recent neutron inelastic-coherent-scattering experiments of dense krypton gas indi-

cates that S(q, m) is sensitive to the details of the interatomic potential even in moderately dense gases.

Recent measurements of the dynamical structure factor
S(q, r0) of dense krypton gas through neutron inelastic
scattering experiments' have revealed significant deviations
from hard-sphere kinetic theory and molecular dynamics
results' even at lower densities. This suggests that the at-
tractive part of the pair potential plays an important role in
determining the dynamics of density fluctuations. Very re-
cently, molecular dynamics simulations have been carried
out using a Lennard-Jones potentia14 and these confirm that
the line shape of S(q, co) is sensitive to the details of inter-
molecular interactions in a dense gas. A dynamical theory'
which incorporates the static correlations of a Lennard-
Jones potential while still approximating the dynamics
through generalized Enskog theory has not improved to any
great extent the discrepancies. This implies that we have to
look into the dynamics of the intermolecular collisions using
a realistic pair potential.

In this Brief Report, we look into the dynamics of a
binary collision in a Lennard™Jones potential and apply the
binary-collision expansions (BCE) to evaluate the dynamic
structure factor S(q, r0). In this expansion, the first term is
just the ideal gas result and the second term incorporates
exactly all the effects of a single binary collision between a
pair of particles. The third term will incorporate binary-
collision events between three-particles and involve a three
particle correlation function. %e shall include only the first
two terms of the expansion. Such an expansion has been
used to evaluate the correlation function, either directly7 or
through the memory function using the Mori formalism
and the results indicate that such a procedure is able to ac-
count for a very significant portion of the observed spec-
trum.

The density-density correlation function is defined as

F(q, t) = (p, (0)p, (t) )

= (p, (0)e' 'p, (0))

is the density of a system of %particles and

L. = X L,(q) + XI,,„

is the complete Liouville operator. Here Lo is the kinetic
contribution to L and L&k is the potential contribution.
( ) denotes an equilibrium ensemble average. In terms

of the Laplace transform variable z, we have

F(z,z) =(p, —p,)

We now apply the binary-collision expansion to Eq. (2).
The basic formula of BCE6 is

z —iLO

1 1+X + 0 ~ ~

jk z —iLO —iL~k z —iL0
z

The first term involves no collisions while the second term
involves just one collison between a pair of particles j and k.
Thus if we write

F(q, t) =F0(q, t)+[Ft(q, t) Ft (q,t)]—
then we have

and

Ft(q, t) = (N —I) (e '[e ' +e 2 ]), (6)

Fta(q t) =(N —I) (e '[e ' ' +e ' ]) . (7)

R~(t) and R2(t) are determined only through two-particle
dynamics, i.e., Rt(t) =exp(iWt2t)Rt(0) where Wi~=Lo(1)
+La(2) +Ltd. Kc(t) =exp(iL&&t)K(0) =R(0) +Pt/m cor-

responds to an ideal gas. The equilibrium ensemble average
can be worked out to be

(8) =, „dRt dR2 dpt dP2 g(Rt, R2) M(Pt) M(P2) 8
y2

(8)

where g(Rt, R2) is the pair distribution function depending
only on r = ~Rt —R2~, defined by

( ) J dR3 dR~e
TA

dRi dR~e4

where Uis the potential and Vis the volume. M(Pt) is the
normalized Maxwellian.

Going over to the center-of-mass and relative coordinates
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defined through

R =
2 (R) +R2), P =P( +P2

r =R~ —R2, p =P] —P2
(10)

we get, after performing P and R integration,

Fo(q, r) = I+~ „d r r(r)e" ' exp-
'

q vtr

F~(q, t) = n J d r dp g(r) G(p) exp
q2~2 f2

8

&& exp —'q [ r —r (r)]
2

4

+exp —'q [ r + r (t)]
2

(12)

vol2 2 2

F) (q, r) = n ' d r g(r)(I+e" ' ' ) exp —— (13)

r

1 p 2

G(p) = —exp—
(2 7r m'uo) ' ' 2' v

goo
S(q, o)) = —

J~~ F(q, r) cos(ar) dr
m'

(14)

In Fig. 1 we have plotted the full width at half maximum
(FWHM) of S(q, co) as a function of the wave number q.
The solid line curve is the experimental result' while the
ideal gas result (straight line) is given as a reference. The
circles are the results of our calculations. The density in
Fig. 1(a) is n'= no3 =0.482 and in Fig. 1(b) is 0.628. The
temperature in both cases is T'= AT/a=1. 47. Here we

with 1J0=2ksT/m, and n is the number density. It should
be noted that the second term in F (q, r) [Eq. (11)] cancels
with the second term in F~ (q, t) [Eq. (13)]. Thus the
dynamics of the two-particle system is solved with their ini-
tial relative positions weighted by the pair distribution func-
tion g( r ) and their initial velocities weighted by a Maxwelli-
an distribution G(p). It can be easily checked that this ap-
proximation of F(q, t) satisfies the zeroth, second, and
fourth moments exactly.

This theory is an ab initio calculation and thus has no ar-
bitrary parameters. The only inputs required are g(r) and
the two-particle dynamics. The integration in Eq. (12) is
performed through importance sampling Monte Carlo in-
tegration' and the Verlet algorithm" is used to evaluate
r (r) and p(r). The interatomic potential used is the

Lennard-Jones potential for which g(r) can be generated
for any thermodynamic state using the optimized cluster
theory. ' We have cut off the r integration at r = 2.25'-. By
computing the imaginary part of the integral, which should
be zero, we conclude that the errors involved in evaluating

e,ntegral are between 5% and 10% The dynamical struc-
ture factor S (q, cv) is then obtained from F(q, t) [Eq. (4)],

FIG. 1. F%HM of S(q, oJ) for density (a) n =0.0106 A; (b)
n =0.0138 A 3. Circles; present theory', full line: a smooth line
through the experimental points; straight line: perfect gas.

have used o-=3.57 A and a=202 K as the parameters for
krypton. It is seen that the results of our binary-collision
theory are in reasonable agreement with the experimental
values at the lower density awhile at the higher density which
is about 75% of the triple point density, the agreement is
not as good. The simple binary-collision theory applied
directly to the correlation function will show increased devi-
ation from the experimental results as the density increases.
Higher-order correlated and uncorrelated collisions have to
be included to give good results at high densities. The
mean-field effects which are dominant for higher densities
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and around q
—qo,

' where qo is the position of the first
diffraction peak of the static structure factor, have not been
included in our theory and this explains some of the devia-
tions of our results around q —qo.

To get an idea of binary-collision effects on density fluc-
tuations, we have plotted, in Fig. 2, F(q, t') for the higher
density n' = 0.628 and q = 1 A ' as a function of dimen-
sionless time r'=r/7, where r'=ma'/48m. For krypton,
t'=1 corresponds approximately to 3.65 x10 '3 sec. The
solid line is the MD (molecular dynamics) result4 while the
results of our calculations are denoted by circles. It is seen
that even at this higher density, the BCE theory agrees with
MD results up to t' —l.5. The difference between our
results and the MD values can be directly attributed to
third- and higher-order particle dynamics which will intro-
duce correlated collisions.

The general trend of agreement between our results and
experimental values indicates that the attractive part of the
potential is important even at lower densities and it is the
dynamics of particles in such a poten~ia1 which should be in-
c1uded in any theory of density fluctuations of even
moderately dense gases.

FIG. 2. Variation of F(q, t ) with dimensionless time t". Here
n =0.628, T =1.47, and q =1 A . The solid line is the MD
result. The circles represent our results.
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