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By introducing the Doppler shift into Mollow’s theory of saturated absorption and by performing the
average over the velocity distribution, a Lamb-dip line shape is obtained. Analytical expressions and nu-
merical results are presented. In some cases, these results do not agree with the results of the existing

theory.

Mollow! has developed a theory for the absorption of ra-
diation from a weak probe field by a two-level atom pumped
by a strong near-resonant field. Absorption line shape was
calculated for radiative and collisional relaxation, in the ab-
sence of Doppler broadening. Experimental measurements,
using atomic beam techniques, verified the theory.? In such
experiments Doppler shift and collisional effects are essen-
tially eliminated. It is straightforward to incorporate the
Doppler shift into this theory. Since the theory is valid for
arbitrary pump field strength, it should be interesting to ap-
ply it to the Lamb-dip line shape in saturation spectros-
copy,>* and to compare the results with the existing theory
for the case of no velocity changing collisions.’

In this work we derive the appropriate expressions and
present the numerical results for several cases of interest.
To keep the comparison simple, we also neglect the velocity
dependence of the collision rates.’ For the weak pump field
case, our expression reduces to the standard result. Howev-
er, for higher field strength, our results are quite different,
compared with the results obtained in Ref. 5.

We consider a dilute gas of two-level atoms (radiators
with lower state |a) and upper state |b)) perturbed by
foreign gas collisions. The absorption rate from the weak
probe field of frequency o’ is determined by the imaginary
part of the dielectric susceptibility. For an electric dipole
transition one can write

X(w') =" Yd} |2F (o) , (1

where d,,f,' is the component of the electric dipole matrix ele-
ment for the transition |a) — |b) along the polarization
vector 'e’; of the probe field. In the absence of the pump
field, F — Fy, given by the following expression (see, e.g.,
Ref. 6):

IO (T)—, O (T
Fo(w,)=de[nb (¥) _:la (V)] o)
o' —wog— V- k' +iyo/2
where 7,9 (V) represents the thermal velocity distribution
of the atoms in the two states (i =a,b), wo is the transition
frequency, k' is the propagation vector of the probe field,
and yo=1vy.+ vy, where y. (yy) denote the collis_ipnal (na-
tural) damping rate constant. Note that V-k' is the
Doppler shift, and k'=w'/c, where c is the velocity of light.
Here we have neglected the collisional shift, the velocity
changing collisions,*¢ and the resonant collisions.” We have
also made the rotating wave approximation, which is valid
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for the near-resonance case. If Zwo/KT >>1 (K is the

Boltzmann constant and T is the temperature), then
ni® << nf® and, for radiators of mass m,
3/2 5
(T m —mv
n V)=nl———=| exp|———| . 3
(V) [ZwKT] Pl 2kt )

where n is the number density of the radiators. Equations
(2) and (3) give the well-known Voigt profile if y. is in-
dependent of V.

For a weak pump field, 7, —n,? in (2) can be replaced
by the modified population difference np — n,, but the line-
shape function can be left unchanged. For example, intro-
ducing Doppler shift into Eq. (2.11b) of Ref. 1, we obtain

B (nb(O)—na(O))(Aw2+‘y%/4)

—ny,= 4
16~ Ma (y0/2'y)Q2+Aw2+y(2)/4 )

Aw=w—wo—7V -k , (5)

where Q is the Rabi frequency at resonance, k is the pro-
pagation vector of the pump field, and y=vyy+7y;, where
v, is the inelastic collision rate. Now (2) is replaced by the
following (our first approximation which is valid for the
weak pump field case):

dvin, (V) —n.(¥)]

0 —wg— VK +iyo/2

Fi(o') = (6

The modified absorption line shape is given by ImFj,
whereas ImF, represents the background. The Lamb-dip
line shape is given by the difference between these two
functions.

Now we specialize to the case of two counterpropagating
beams, where k'= — k and o'=w. Neglecting the velocity
dependence of the collision rates, the integration over the
two components of V which are perpendicular to K can be
readily performed. Introducing a different set of the vari-
ables, we can write the result, obtained from (1)-(6), in the
following form:

Axi(n) =F~dd |12 Im(F,— F,)

B to dVexp(— VYy3)(yo/2y)Q?
—Almf—w [(n=V)+&1(n+V+iyd2)]

, (D
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where
A=nldy|*Nmkyp)~", (8)
n=(o'+w)/2—wi=w—wg , )]

&= (yd/2y) Q1 +yi/4; V=v.k , (10)

where yp=k(m/2KT) "2, the Doppler width. This result
is equivalent to Eq. (15) of Ref. 5. In the large Doppler
width approximation, the exponential factor can be taken
outside, and the integration can be done by completing the
contour in the upper half of the complex V plane. The
|

result is
Axi(n) =4 exp(—n¥y3)d1(n) , (§5))
2
¢1(n)—§ (yo/2y) Q*(g +70/2) 12)

(21)%+ (g +y0/2)?

¢1(n) gives the standard result for the Lamb-dip line shape
in the weak field and infinite Doppler width approximation.’

Next we generalize (7) for arbitrary pump field strength
by using the complete absorption line-shape function ob-
tained by Mollow.! In place of (6) we now use the follow-
ing function obtained from Eq. (3.8) of Ref. 1, on introduc-
ing the Doppler shift:

F(o) = [ dVIn(¥) = n(Nfule’) (13)
Fila') = (wo'+Aw—iye/2)(wo' —iy)+ (Aw—iyy/2) lww' Q%2 (14)
¢ (0o’ +Aw—iyy/2) (0o —Aw—iyy/2) (we' —iy) — QHwe' —iyd/2)
wo'=w—0 -V -(Kk—K) . 15)
Again subtracting the background, we obtain from (1)-(4) and (13) the following result for the case k' = — k and o’ = w:
Ax(n)=4 Imf_+:dVexp(—n2/712)) m
(=) +yi/4 (n=3V—iyd2D)QV +iy)+(n=V—iyy/2)"'V Q2
(n=V)2+g2 (n+V+ivd/2)(m=3V—iy/2)2V +iy)+Q2Q2V +iyy/2) | °
(16)

This result generalizes (7) for arbitrary pump field strength,
assuming the fields are not so strong as to influence the col-
lision rates.® In the large Doppler width approximation, the
integral over V can be evaluated as before, in the complex
V plane. [Note that all the poles of f,(V) are in the lower
half plane.] The result is

Ax(n) =4 exp(—=nYyB)o(n) , 17

¢(n) = (7w Q%0o/yg)Im(B/D) , (18)

B=(2g +vyo)(4n+i6g +ivyp)
x(2m+i2g+iy)—idQ3:(n+ig) , 19)

D=2g+vy))[(4n+i2g +iye)(d4n+ibg +iyo)

X(2n+i2g+iy)—2Q%(4n+idg +iyo)] .
(20)

This result should be compared with Eq. (30) of Ref. 5; the
two results are different. To see this difference more clear-
ly, let us consider the value of the Lamb-dip profile, at
n=0. (The profile is symmetrical about n=0.) From (17)
one obtains

A 0?2
Ax(0) = —=ZY°

v8(2g +y0)
(2g +y0) (6g +v0) (28 +y) —4Q7%
(2g +y0)(6g +v0) (28 +y) +2Q%(4g +v()
21

The comparison of this result with Eq. (31) of Ref. 5 is
shown in Fig. 1. (In our notation Q2=482, yo= 2y, and

y=7"1) Dimensionless variables (Q'=Q/y, yo=vydy,
m' =mn/v, and yp=7yp/y) are used.

By a direct numerical integration of (16) it was found that
the approximation (17) is quite accurate, at least for the
case w = and large Doppler width. Therefore (17) can be
directly compared with the weak-field approximation (11).

(0.0)

FIG. 1. Comparison of Eq. (21) of this work with Eq. (31) of
Ref. 5. Curves a and d represent Eq. (21) of this work with y5=2.0
and yo=0.2, respectively; curves b and c represent Eq. (31) of Ref.
5 for the same parameters. (yp =50 in all cases.) Amplification is
visible in curves c and d for large Q'. (Q'=Q/y, etc.)
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FIG. 2. Comparison of Eqgs. (17) and (11) of this work for v =o'
and yp=>50. Curves e and g represent Eq. (17) with yo=1.0,
Q’'=50 and yg—0.1, Q'=3.0, respectively. Curves f and h
represent Eq. (11) for the same parameters. Amoplification is visible
incurve g. (Q'=Q/y, etc.)

The results are as shown in Fig. 2. As expected, the differ-
ence between the two results increases as ' increases, and
(17) exhibits amplification for large Q’. For low Q’, Egs.
(17) and (11) agree quite well.

It appears that the nature of the approximations involved
in the two theories is different. Mollow’s theory is based on
Markov approximation and quantum regression theorem.
The nature of the approximations in Ref. 5 is not so clear.
For example, in addition to the impact approximation and
the neglect of memory effects, the correlations between suc-
cessive photon events are also neglected in this work.

The other approximations, mentioned earlier, are related
to the collision model. For example, velocity changing col-
lisions are of considerable interest.>%%° However, the
equations of motion cannot be solved for arbitrary Q, if
such collisions are retained; perturbative solutions, to third
order in Q, have been obtained.!'® Further work on this
problem is in progress.
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