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Temperature-dependent and Coulomb-like interactions taking into account short-ranged quantum
effects are reviewed for nonrelativistic and hydrogenic pairs of pointlike charges of either sign in a
high-temperature plasma with ions of arbitrary charge Z. A particular emphasis is given to the
pseudopotential within a pair of electrons with parallel spins. Closed-form and accurate expressions

are derived and compared with numerical values.

I. INTRODUCTION

The pseudopotential method is an approach to small
(albeit significant) quantum corrections to the equilibrium
thermodynamics in a high-temperature plasma with
charges of either sign. This potential V;(r) includes the
quantum effects at short distances (r <%;;, the thermal
de Broglie wavelength; i and j refer to the particle species).
It turns Coulombic at larger separations (r > Z;;) and al-
lows for a classical treatment of canonical equilibrium
quantities.! 3

The purpose of this work is to reiterate and detail a few
more significant properties about these effective interac-
tions. We thus supplement Ref. 1(a) (hereafter referred to
as I) with a few details for hydrogenic pairs (pairs of
point-like charged particles). Then, we pay special atten-
tion to the electront-electront (parallel spin) interactions.

More generally, the evaluation of Vj;(r,0,¢,T) for vari-
ous high-Z elements of the periodic table is more tedious
than for hydrogen.* These potentials would be useful, for
instance, in the study of the plasma created during laser-
or heavy-ion-beam driven fusion.> For this case it is
essential to have an accurate knowledge of the form of
V;j(r,T), not only for the different components of the (D-
T) plasma, but also for the plasmas arising from high-Z
elements. The present formalism concerns plasmas with
fully stripped ions only. We take into account only the
possibility of bound states between an electron and a nu-
cleus.

II. PSEUDOPOTENTIALS

As in I, the two-body pseudopotential Vj;(x,y,e€) is de-
fined as a function of the two-body radial distribution
function g;;(x,y,€) by
172

ln[gij(x,y,e)] N (1)

Vij(x,y,e)= —€

ij
Z,'Zje2

expressed in a dimensionless form with

x=r/Ry, y=2Z,Zje’/kyTk;),
€=7,Z2;/12,Z;| ,

and kij=ﬁ(kBTp,~j)“l/2 (uy; is the reduced mass). The
function g; can be expressed in terms of the one- and
two-particle density matrices using the relations
P2<ii’yj;ii,yjy3)
P1(Xi, X, B)p1(Y, ¥, B)

(2)

gij(")=

for distinguishable particles, and

g (r)= [PZ(—X,S;,X’—S’:B)—PZ(X”???’i’B)] (3)
et p1(%,%,B)p1(¥,5,B)

for electrons with parallel spins. The density matrices are
straightforwardly expressed through the corresponding
relative wave functions. At this point it should be appre-
ciated that the plasma (collection of field particles) itself
has been evacuated through a kind of thinking experi-
ment. Nevertheless, the pair selected out is still supposed
to remain in thermal equilibrium with the previous plas-
ma. Taking into account the possibility of bound states
(Z;Z; <0), g;; thus reads

8ij(x,7,€)=g,(x,7,6)+ 7(1—€)gy(x,7) , @)

a superposition of bound- and scattered-state contribu-
tions explained, respectively, by Egs. (2.12) and (2.19) in L

This formalism is very general. It concerns any mass
and any charged particles, if it is possible to consider them
points (that excludes ions with an electronic cloud). We
computed g;;(r) and Vj(r) for the electron-electron,
electron-proton, electron-positron, and proton-positron
systems. In fact, if we introduce appropriate units for dis-
tances and energies, the numerical results are valid for any
pairs of distinguishable particles. If the distances are
scaled in %;; and the energies in Z;Z jez/?cij, the results de-
pend only on the y parameter (~1/7) and on the
€ (=+1 for like charge signs, — 1 for unlike ones). This
can be seen directly from the general expressions for g;;
[Egs. (2.12) and (2.19) in I] and from Eq. (1). Therefore,
we can give results without specifying the particle species.
Our results concerning the electron-proton, electron-
positron, proton-positron, and electront-electron! (anti-
parallel spins) systems can be used in the case of distin-
guishable particles for any mass and any charge.
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For 1nstance, Table IX in I can equally well represent
the electron-JLi nucleus radial distribution function and
pseudopotential at T =9(i.pi/Hep)10%, I preri/pep)107,
and 9(u,. Ll/;u,,.,,)lo K, with all the distances divided by
3(pte-Li/Me-p)s and all the potential energies multiplied by
g(f-l'e-h/.ue p) (.u'e Ll/ﬂe-p) =~1).

Figure 3 in I can be employed for any system and is not
restricted to the electron-proton and electron-positron
palrs, while the high- temperature limit (y=0) always
remains Kelbg’s potential:®

7.2, — v )=—(1-—e_2" J+V2r[1—-¢(vV2x)] ()

with ¢(u)=2/V7) [ ‘e="ar.
II1. Vij(O,y,e); THE ORIGIN BEHAVIOR

A significant result is that the (%;;/Z;Z;e 2) V;i(0,7,€)
calculations for distinguishable particles may be accurate-
ly extended to any y (even ¥ > 1) through'®

gij(0,7,6)=1—€eVmy

n
—+1
2+

4 i (—e) r
n=0

— En+2y"2+ (6)

which generalizes Davies and Storer’s result,” and Eq. (1)
(see Fig. 1). £(m) denotes the Riemann zeta function.

Finally, it is also worthwhile to point out that when
spins are ignored, the relation!®

3 x
axzz 2

Vii(%,7,€) | x—o=—2, (7

holds in all cases, as shown by previous authors.® It works
also for the electron-electron interaction when an average
on the spin orientation is performed.

IV. PSEUDOPOTENTIALS FOR ELECTRONS
WITH PARALLEL SPINS

We already considered at length in I the electron-
electron interactions. Here, we intend to disclose closed-
form and quasianalytic formulas for the particular case of
parallel spins. Such a situation is of a particular concern
in strongly coupled plasmas, where a given spatial direc-
tion can be selected out through a steady (albeit small)
magnetic field.

First, let us recall [Eq. (3.43) of I]

172

eter(X,7)=B |x*+ x| +0(x*)

Y
2
(x <«<1) (8)

with

2.9
= €=-1
=
A< yJ-
~
9.5 Kelbg value = (2M)1/2
2.3] €=+1
3.0 6.0 Y 9.0

FIG. 1. (X;/Z,Z jez)V,-,-(O,y), pseudopotential at zero separa-
tion for distinguishable particles with like and unlike charge
signs.

d
B= |2 Y _ 4,86
T3, 8e1e1(0,7) o
2
B=2—4vVay+L 1+ T —ﬁ—ym
3 3 3
1w (= n /241
+3 —+1|y"
3n=0 2 ]
X[&(n+2)—E&(n +4)] .
Therefore,
) 172
-y em(xy)——~[—-— In(Bx?)—x +0(x2)
e Y
(x<<1). 10
On the other hand, there is the obvious relation
X e
eze Veter(x, 7/)———e Vete(x,7)
e e?
=—%Vee(x,y)=;1: x>>1).  aD
The spin average
gee(x97’)=%[getef(xfy)“"getel(x”y)] (12)
yields
—B{_Vetet(x’y)
=";E;;Ve1el(x77)
5 172
- |? In(2e~V¥/2hix)I_1) (13)

where
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TABLE 1. Parameters C, D, E, and F used in Egs. (16), (18), and (19) and maximum relative errors
(AV/V)max (=max[ | (Xee /€2)Vee —f | /(Xee /€2)V,]) for each case.

T (K)
108 10 10¢
1.62 1.735 1.97
AVK f1) 11% 10% 7-7.5%
D 1.305 1.295 1.385
1.5%
A—;’ (f2) 8-8.5% 4-4.59% [~1%, if
x> (e2B/k..)]
E 1.58 1.77 1.94
F 1.30 1.22 1.25
5.5—6%
A—J/ (f3) 5.5% 4-4.59% [~i%, if
x > (e*B/Ke)]
7(, K 172 x
Ve (X,V) =5 Veres(X,7) +h (x,7) . (14) fiepm— | 2| In(Cx)+ =5V, 0,7)
e? e ’ y o2
In I we proposed
172 —2x+0(x?) . (17)

hix,y)= (In2)exp(—Cx?%/In2) (15)

Near x =0, we can approach much closer the numerical

values by taking C =B /g,,.,(0). In fact, for all distances,

C =2 [the high-temperature limit of B/g,;.,0] is a more
Kee convenient choice; however, the best is to determine C

F167)=—75Veres(x,7) empirically. The C data are given in Table L.

¢ We also propose two other formulas:

with C =2. The corresponding approximant is

172
_ _2_ ln[21—exp(—Cx2/1n2)__l] (16)
Y 1/2
Faey)=2ey, 2 i 2
with a short-range behavior 2BVI= e? ered(%7) = 7 Ei(=Dx7) 8)
TABLE II. Coefficients B, of Eq. (3.55) in L.
n BnO Bnl ' Bn2 Bn3 Bn4
W7 1 272 w2 T 4
2 2 v Lo 2 Vi le3)— T 4 AT T lag3)+ L2
3 3‘-!-77' 3 ar |&(3) 3+3 3 §()+15 ST+ 2T
3 by=—2(2y)"%,
4 4 34V 1,1, 112 2 o VoL 122 167 2 11 T 787 o, 248 3 206 4
- ~ 715 —3lzt+pmr—p5m) —Valg+mr—nsm+380)] Tw-g T T T s T
2 7e(3)
-5
s AT IR M2anyfRao 2wy T 1as0) - BRet Sl ~—-£[%+w§(3)¥+417

6371 5 1376 3, 43416
+5 T T T T s
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with Ei(—u)=— [ "(e=/t)dt (u>0), and
xee
f3(xr'}’)=7Vetet(x’7’)

Ex?

2 _Ex”
1+Ex?

Y

The parameters D,E,F are empirically evaluated and
displayed in Table I where the maximum relative
discrepancies (AV /¥)y., for the three approximants are
also given. These three formulas (f1,f>,f3) are contrasted
with the exact numerical data obtained in I, in Figs. 2, 3,
and 4, at T =108, 107, and 10° K, respectively. They are
obtained through a very efficient approximant!® (for

S1:f2, and f3):

exp(—Fx?) . (19)

172 [

10

FIG. 2. Comparison
(kee/ez) I/etet (

between  the
) and its analytic approximants:

pseudopotential

S1=(1/x){1—exp[ —Ax —x%A42/2)—2)]}

_(2/.},)l/21n[21—exp(—Cx2/ln2)_ 1]
(=),

f2=(1/x){1—exp[ —Ax —x¥A42/2—2)]}
—(2/y)?Ei(—Dx?)

(==,

F3=(1/x){1—exp[ —Ax —x*A4%/2)—2)]}
—(2/7)"In[ Ex? /(1 + Ex?)]exp( — Fx?)

(——). 1/x is also represented (---). Figure is given
for T=10® K (y=0.0031578, 4 =2.50076, C=1.62, D
=1.305, E=1.58, and F =1.30).
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FIG. 3. Same as for Fig. 2, with T=10" K (y=0.031578,
A=2.48825, C=1.735, D=1.295, E =1.77, and F=1.22).

FIG. 4. Same as for Fig. 2, with T=10° K (y
=0.31578, 4 =2.45022, C=1.97, D=1.385, E=1.94, and
F=1.25).
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ee

—5 Veres(X,7)
e

2
1—exp | —x4 —x? 142———2

} (20

1
T x

with A =(%,./e?)V,.,(0,7). So, at high temperature
(T =10% K) f3(x,7) can be recommended while at lower
temperature (T =10° K) f,(x,y) is the best known ap-
proximant.

As a consequence, we expect that Egs. (18) or (19) could
provide accurate approximants for (A, /e2)Va1e1(x,7) in
various statistical physics calculations (analytical, Monte
Carlo, or molecular dynamics).

Finally, in Table II we wish to supplement Table VII in
I, displaying the B, coefficients [Eq. (3.55) in I] used in

e+ 3 x|, @D

n=2

Vee(x,7)= Vee(0,7)—kpT

where

bn: EBﬂk7(¢+k)/27 n =2’3,47- .
k=0

and

0 for n even
=11 for n odd .
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