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Coulomb-like effective interactions for electrons with parallel spins at high temperature
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Temperature-dependent and Coulomb-like interactions taking into account short-ranged quantum
effects are reviewed for nonrelativistic and hydrogenic pairs of pointlike charges of either sign in a
high-temperature plasma with ions of arbitrary charge Z. A particular emphasis is given to the
pseudopotential within a pair of electrons with parallel spins. Closed-form and accurate expressions
are derived and compared with numerical values.
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(p, ,z is the reduced mass). The
function g,z can be expressed in terms of the one- and
two-particle density matrices using the relations

I. INTRODUCTION

The pseudopotential method is an approach to small
(albeit significant) quantum corrections to the equilibrium
thermodynamics in a high-temperature plasma with
charges of either sign. This potential VJ (r) includes . the
quantum effects at short distances (r (klj, the thermal
de Broglie wavelength; i and j refer to the particle species).
It turns Coulombic at larger separations (r )X,z) and al-
lows for a classical treatment of canonical equilibrium
quantities.

The purpose of this work is to reiterate and detail a few
more significant properties about these effective interac-
tions. We thus supplement Ref. 1(a) (hereafter referred to
as I) with a few details for hydrogenic pairs (pairs of
point-like charged particles). Then, we pay special atten-
tion to the electrons-electrons (parallel spin) interactions.

More generally, the evaluation of V~(r, 8,@,T) for vari-
ous high-Z elements of the periodic table is more tedious
than for hydrogen. These potentials would be useful, for
instance, in the study of the plasma created during laser-
or heavy-ion-beam driven fusion. For this case it is
essential to have an accurate knowledge of the form of
VJ(r, T), not only for the different components of the (

T) plasma, but also for the plasmas arising from high
elements. The present formalism concerns plasmas w
fully stripped ions only. We take into account only t
possibility of bound states between an electron and a
cleus.
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for distinguishable particles, and

(r)= [p2( x ~ y ~ x~ y~ p) —p2( x~ y ~ y) x
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for electrons with parallel spins. The density matrices are
straightforwardly expressed through the corresponding
relative wave functions. At this point it should be appre-
ciated that the plasma (collection of field particles) itself
has been evacuated through a kind of thinking experi-
ment. Nevertheless, the pair selected out is still supposed
to remain in thermal equilibrium with the previous plas-
ma. Taking into account the possibility of bound states
(Z;ZJ (0), g;1 thus reads

gj(x, y, e) =g, (x,y, e)+ —,(1—e)gb(x, y), (4)

II. PSEUDOPOTENTIALS

As in I, the two-body pseudopotential V~J(x„y,e) is de-
fined as a function of the two-body radial distribution
fullctloll gtj (x,y, E) by

Xg
1/2

»[g, (x y e)]

expressed in a dimensionless form with

x =r/k;J, y=2(z;zie /kt1 TA,;J)

e=Z;ZJ/i Z;Z, i,

D
a superposition of bound- and scattered-state contribu-
tions explained, respectively, by Eqs. (2.12) and (2.19) in I.

This formalism is very general. It concerns any mass
and any charged particles, if it is possible to consider them
points (that excludes ions with an electronic cloud). We
computed g 1 (r) and VJ (r) for the electron-electron,
electron-proton, electron-positron, and proton-positron
systems. In fact, if we introduce appropriate units for dis-
tances and energies, the numerical results are valid for any
pairs of distinguishable particles. If the distances are
scaled in X,J- and the energies in Z;Zj.e /k, j., the results de-
pend only on the y parameter ( —1/'I) and on the
E (=+1 for like charge signs, —1 for unlike ones). This
can be seen directly from the general expressions for g;J
[Eqs. (2.12) and (2.19) in I] and from Eq. (1). Therefore,
we can give results without specifying the particle species.
Our results concerning the electron-proton, electron-
positron, proton-positron, and electront-electrons (anti-
parallel spins) systems can be used in the case of distin-
guishable particles for any mass and any charge.
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For instance, Table IX in I can equally well represent
the electron-3Li nucleus radial distribution function and
pseudopotential at T =9()u,e L;Ipe &)10, 9(tu, , L Itu, e z)10,
and 9()M, L;/)M, z)10 K, with all the distances divided by
3()Me t;/pe&), and all the potential energies multiplied by

Figure 3 in I can be employed for any system and is not

restricted to the electron-proton and electron-positron

pairs, while the high-temperature limit (y=O) always

rexnains Kelbg's potential:

V~(x)= —(1—e " )+~2~[1—$(~2x )] (5)

2.9

with/(u)=(2/Mvr) f e 'dt 3.0 6.0
I I I9.0

III. y,,(o, y, ~); THE ORIGIN BEHAVIOR

A significant result is that the (A,,.J/Z;Zze )VJ(O, y, e)

calculations for distinguishable particles may be accurate-

ly extended to any y (even y & 1) through"'

(~;J/Z;Z~& ) VJ(O, y), pseudopotential at zero separa-
tion for distinguishable particles with like and Unlike charge

signs.

g~j(O, y, e) =1—emmy

+ g, 1 —+1 g(n+2)y"/'+'
n=O nt 2

~ = 2+
3

— y d g.).)(0 y»

2

8 =2——v'my+ —1+4 f '1T

3 3 3

(9)

which generalizes Davies and Storer's result, and Eq. (1)
(see Fig. 1). g(m) denotes the Riemann zeta function.

Finally, it is also worthwhile to point out that when
spins are ignored, the relation"'

+-, g, r —+1 y"'+( —1)" n

n!

X[/(n+2) —g(n+4)] .

XfJ
Vi~(x, y, e)

i „0———2,
~x Z;Z)e

holds in all cases, as shown by previous authors. It works
also for the electron-electron interaction when an average
on the spin orientation is performed.

Therefore,
' 1/2

V„«(x,y)= — — ln(Bx )—x+O(x )
e

(x «1) . (10)

Qn the other hand, there is the obvious relation

~88 88

2
—V„„(x,y) = V„„(x,y)2

IV. PSEUDOPOTENTIALS FOR EI.ECTRONS
WITH PARALLEL SPINS

We already considered at length in I the electron-
electron interactions. Here, we intend to disclose closed-
form and quasianalytic formulas for the particular case of
parallel spins. Such a situation is of a particular concern
in strongly coupled plasmas, where a given spatial direc-
tion can be selected out through a steady (albeit small)
magnetic field.

First, let us recall [Eq. (3A3) of I]

The spin average

~ee 1
V„(x,y)= —(x »1) .

X

1

gee(x~y ) = 2 [ge)et(x~ Y )+gete)(x~ Y)]

yields

~ee
2 V, „„(x,y)

e

(12)

g„„(x,y)=B x +
2

with

]I /2

x +O(x )

(x «1) (g)

where

V„„(x,y)2

' 1/2

ln(2e —v r/2h(x) 1)y.
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TABLE I. Parameters C, D, E, and F used in Eqs. (16), ( 18), and ( 19) and maximum relative errors
(hV/V) ( =max[

~
(k„/e )V„f—

~

/(k„/e ) V„])for each case.

C
6V

max

1O'
T {K)

10

1 .735

10%

1O'

7—7.5 %%uo

V max

1 .305

8—8.5

1 .295

4—4.5

1 .385
1 .5%%uo

[=1%, if

x & (e P!k„l]

(f3)
V max

1 ~ 58
1.30

5.5%

1.77
1 .22

4—4. 5

1 .94
1 .25

5 ~ 5—6

[=1%, if

x ) (e P/k„)]

V„(x,y)= V„„(x,y)+h (x,y)2 e 2
(14)

1 /2
2fl(x y)=
y

ln(Cx )+ V 7„(O,y)

In I we proposed
1 /2

h (x,y) = 2
'Y

L

( ln2) exp( —Cx /ln2 )

j /2

In[21 —exP( —cx /ln2)

y

with a short- range behavior

with C =2. The corresponding approximant is

(16)

—2x+O(x ) (17)

1 /2

f2(x,y)=, V, „„(x,y) — — Ei( Dx')—

Near x =0, we can approach much closer the numerical
values by taking C =8/g«„(O). In fact, for all distances,
C =2 [the high-temperature limit of 8/g„„O] is a more
convenient choice; however, the best is to determine C
empirically. The C data are given in Table I.

%e also propose two other formulas:

TABLE II. Coefficients B„k of Eq. (3.55) in I.

8„3

2
'1/7r g1 3 )—

3 3
4(13 )+ ——', ~2+2~

3 15

b3 ————(2y ) b

~17[ 18 + 45 77 135 77 + 1 1 ~ 787 2 248 3 206 4
1 80 270 + 135 2025

18

176V 2
45

1592V 2m.

675
~2

(41 1792 512 ~1
5

~2&
[

41 + 14@13)
2732 2+ 664

]

5 erg(3 l

[—+m.g(3) +41~
135

6371 2 1376 3 4 3416
]15 5 225
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with Ei( —u)= —f (e 'It)dt (u )0), and

~ee
f3(x r)=

1/2
2

ln
y

Ex
exp( Fx—) . (19)

1+Ex

The parameters D,E,F are empirically evaluated and
displayed in Table I where the maximum relative
discrepancies (b V/V), „ for the three approximants are
also given. These three formulas (fi,fq f3) are contrasted
with the exact numerical data obtained in I, in Figs. 2, 3,
and 4, at T =10, 10, and 10 K, respectively. They are
obtained through a very efficient approximant"' (for
fi f2 andf ):
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FIG. 3. Same as for Fig. 2, with T=10 K (y=0.031578,
A =2.488 25, C = 1.735, D= 1.295, E = 1.77, and F= 1.22).
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FIG. 2. Comparison between the pseudopotential
(«/e ) ~g fe f ( ) and its analytic approximants:

fi=(1/x){1—exp[ —Ax —x (A2/2) —2)])

(2/&)1i21n[2i ~xPt' —c» n~2) 1]

(——)

f2 ——(1/x){1—exp[ —Ax —x (A /2 —2)]I
—(2/y )' Ei( —Dx 2)

(—.—),
f3=(1/x){1—exp[ —Ax —x2(A /2) —2)]]

—(2/y}'i 1n[Ex /(1+Ex }]exp( Ex)—
(—"—). 1/x is also represented ( . ). Figure is given
for T =10 K (y=0.0031578, A =2.50076, C =1.62, D=1.305, E=1.58, and F=1.30).
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FIG. 4. Same as for Fig. 2, with T =10 K (y
=0.31578 A =2.45022 C=1.97 D=1 385 E=1.94 and
F= 1.25).
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~ee
V,„„(x,y)

e

1
1 —exp —xA —x

X 2
(20)

Finally, in Table II we wish to supplement Table VII in

I, displaying the B„k coefficients [Eq. (3.55) in I] used in

V„(x,y)=V„(O,y) k~—T (2y)' x+ g b„x"
ll =2

with A =(k„/e ) V«„(O,y). So, at high temperature

(T =10 K) f3(x,y) can be recommended while at lower

temperature (T =10 K) f2(x, y) is the best known ap-

proxim ant.
As a consequence, we expect that Eqs. (18) or (19) could

provide accurate approximants for (A,„/e )V„„(x,y) in

various statistical physics calculations (analytical, Monte
Carlo, or molecular dynamics).

where

and

y(P+k)/2
pg 2 3 4

k=0

0 for n even

1 for n odd.
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