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Local entropy production and Gibbs relation from the nonlinear revised Enskog equation
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A local formulation of the Boltzmann H theorem associated with the revised Enskog equation is

presented. For weak spatial gradients, one can prove that the entropy production is positive. If we

further restrict ourselves to near local equilibrium states, the entropy production takes the form of
products of thermodynamic forces by fluxes, i.e., the Gibbs relation, and the entropy Aux reduces to

the heat flux divided by the temperature.

I. INTRODUCTION

The Boltzmann kinetic equation has proved successful
.in giving a microscopic foundation to transport properties
in dilute gases. In particular, the H theorem associated
with the Boltzmann equation extends the definition of
thermodynamic entropy to nonequilibrium states.

A successful attempt to extend the Boltzmann kinetic
theory to the case of dense gases has been made by En-

skog who postulated the following equation for the time
evolution of the one-particle distribution function of a
fluid composed of hard spheres:

Bt
fi(ri vi;—&)+vi' -f)(r), v),'&)=J (f),f)), (l)

Br&

where

J~(f),f))=d J dvz I de'(e'v&z)O(e'V)z)[fz(r&, v &, r& —d&, v z;&) —fz(rl vl ~1+d~ vz r)l

and

fz(r& v& rz v»r) gz(rl rz
I
&(r»fi(ri vi r)fl(r»vz &)

e is a unit vector, d is the hard-sphere diameter, 8(x) is
the Heaviside unit step function and gz(r&, rz

~

n(t}}is the
equilibrium pair correlation function with the density re-

placed by the nonequilibrium density n ( r &, t)
= J d v jf&(r &, v &, t) evaluated at ( r ~+ rz)/2. Finally, the

postcollisional velocities are given by

v ) =v) —E(e v)z),

v zv +z6(E v)z) .
(4)

This equation takes into account two effects which be-
come important when the density is increased: the col-
lisional transfer, i.e., the instantaneous transport of
momentum from position r& to rz at collision, and the
change of collision frequency due to the covolume correla-
tions. Transport coefficients calculated from this equa-
tion compare favorably with experimental results for
moderately dense fluids.

The original choice of Enskog for g2 has since been
modified by van Beijeren and Ernst in order to make the
equation compatible with irreversible thermodynamics.
For instance, in a fluid mixture Enskog's original choice
leads to a violation of Onsager's reciprocity relation. The
origin of this discrepency can be traced back to the fact
that the nonequilibrium state is inhomogeneous and there-
fore gz should not only depend on n((r&+rz)/2;r} but

B(ns) +7 (nus+ J, )=o(r, t),
Bt

(5)

is necessary when we consider infinite systems. %hen in-

tegrating Eq. (5) on a volume V, we identify the true pro-
duction J dr o(r, t)=d;S jdt and the entropy exchange

~ ~

~

~

~

~dr V (nsu+ J, )=d,Sjdt. This paper concerns the
V.

derivation of Eq. (5), which has not been done up until
now. It is well known that the collisional transfer is re-

sponsible for the appearance of potential fluxes in the
equations for the conserved quantities. Although in the
case of entropy the transported quantity lnf ~ depends on

space, a procedure similar to that used to define the poten-
tial fluxes of momentum and energy can be set up. More-

also on its derivatives. By replacing g2 by the pair corre-
lation function for a fluid in an inhomogeneous equilibri-
um state, with the density replaced by the nonequilibrium

density, the equation, now called the revised Enskog equa-
tion (REE) has been shown to be compatible with irrever-

sible thermodynamics.
Taking advantage of the analogy of an out-of-

equilibrium Enskog fluid and an equilibrium fluid in an
external field, Resibois was able to derive an H theorem
for the REE. Indeed, Resibois defined the entropy as the
sum of Boltzmann entropy and of a correlated part which
is precisely the equilibrium correlation entropy but which
depends on time through the density.

The H theorem derived in Ref. 6 is, however, a global
result, valid for a finite system, as use has been made of
periodic boundary conditions. The extension of this result
to a local balance equation for the entropy density,
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29 LOCAL ENTROPY PRODUCTION AND GIBBS RELATION FROM. . . 927

over, the entropy production so defined is positive provid-
ed we restrict ourselves to states with small variations of
macroscopic density n (r, t) and velocity u(r, t) on molec-
ular scales. More precisely, expanding the entropy density
production, a nonlocal functional of n (r, t) and u(r, t),
around any point leads to a positive quantity when we
neglect third-order terms in the gradients.

In irreversible thermodynamics the Gibbs relation' for
the entropy production is obtained from the hypothesis
that local entropy has the same dependence on local inter-
nal energy and density as in equilibrium. For the entropy
production associated with the Boltzmann equation, one
derives the Gibbs formula provided one replaces f, by its
Chapman-Enskog solution and neglects second-order
terms in the deviations from local equilibrium. " We can
prove that the same is true for the entropy production as-
sociated with the REE, extending then the microscopic
derivation of Gibbs formula to a strongly coupled case.

This article is organized as follows. Section II is devot-
ed to basic definitions needed for Enskog theory. We then
define the local entropy density by analogy with the defi-
nition of local thermodynamic potentials for inhomogene-
ous fluids. Section III is devoted to the proof of the local
H theorem obtained when neglecting third-order terms in
the spatial gradients expansions. A short version of this
result appeared in Ref. 12. Next, the Chapman-Enskog
solution of the REE is introduced and entropy production
and flux are calculated up to first order in the deviation
from local equilibrium. Finally, we make some remarks
about related works' ' and possible extensions of our re-
sults.

II. REVISED ENSKOG THEORY
AND LOCAL ENTROPY

A simple way of presenting the REE is to start with the
following nonequilibrium grand-canonical ensemble:

N

Q W, (x;;t)
i=1

where O,J
——0 for

~
r; —rj

~

&d, 1 otherwise; x;—:(r;, v;),
dI "=dx&dx2 . . dx„, and W~(x;;t) is a one-particle
function related to the more familiar reduced distribution
functions through the relation

f~(x), ~ ~ ~, x~)t)= g dx„+) ' dx~p~(t) .
X—n!

(8)

The distribution given by Eq. (6) is, of course, very
similar to the equilibrium distribution' for a hard-sphere
fluid in an external field. It is quite remarkable that the
single assumption that the exact distribution function
p~(t) may be approximated by p&(t) leads to the REE for
f, (x;;t). ' Of course the assumption can hardly be justi-
fied except for short times, "before velocity correlations
have been built up in the system for instance. One knows
that these correlations are quite important for dense
fluids'; however, there is a range of densities where En-
skog theory is quite satisfactory and results obtained for
transport coefficients compare well with experimental
data. "

The assumption made by approximating the N-particle
distribution function by Eq. (6) permits us to express
f2(x~,x2', t) as a functional of f&(x&,t) and then to obtain
a closed equation for f~, which turns out to be the REE.

To be more explicit, let us define the time-dependent
"fugacity" z, (r, t) by

z, (r, t)= f dv W~(r, v;t) (9)

E =0, 1,2, . . . (6)
and the time-dependent one-particle potential Q&(r;t) by
(n =1)

Wi(x;;t)

Q„(r&, . . . , r„;t)= g
l=n

(10)

From Eqs. (8), (9), and (10) one has

n(r, t)= f dv f, (r, v;t)=Q~(r;t)z~(r;t)

which is the equivalent for nonequilibrium states of the equilibrium expansion of the density in terms of z&(r;t) This.
relation can be inverted leading, in particular, to the expansion in the nonequilibrium density of z&(r;t); more general-
ly, this permits us to derive for any quantity which depends on time through z&( r;t), or equivalently n (r;t), a nonequili-
brium expansion in zq(t) or n (r;t) For instance, fo.r ln=(t), one has (see Eq. 19 of Ref. 18)
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ln=(t)= dr, n(r„t) 1 —g drz. . . driSi(1, 2, . . . , 1)n(rz, t) . . n(rt, 't)(I —1)

1=2
(12)

where St(1, . . . , I) is the set of all irreducible Mayer graphs which connect, at least doubly, I particles (biconnected
graphs) (Si ——1).

For lnQi(t) one obtains

lnQi(r;t)= g drz . drin(rz, 't) . n(ri , t)S'i(l, . . . , I) .
(I —1)!

(13)

The time-dependent direct correlation function may then be obtained simply

C(ri, rz
I
In( rt)])= g dr3 . dr(n(r3', t) . . n(r(, t)Si(1,2, . . . , I);

I —2)!
(14)

one also easily obtains that the pair correlation function gz( r i, rz
I I n ( r, t) ] ) defined by

gz(ri, rz
I
In(r;t)I)= Qz(r i, rz, t)

Qi( r i', t)Qi ( r z, t)

is linked to C(ri, rz
I I n(r, t)I) by an Ornstein-Zernike relation. The definition of gz permits to obtain the following

density expansion (the value of gz when
I

r i —rz
I
=d is indeterminate because of Oiz,' as usual it should be understood

as the limit r ized from nonoverlapping configurations):

gz(r»rz
I
In(r;t)I )=Oiz 1+y, f dr3 drin(r&', t) n(rt', t)Vi(1, 2

I
3, . . . , I)

1=3
(16)

where now Vt(1,2
I
3, . . . , I) is the set of all I labeled par-

ticle Mayer graphs which are biconnected when adding
the bond fiz, the Mayer factor ( Vz = 1).

From Eqs. (8), (10), and (15) one can deduce that the
approximation made on the 1V-particle distribution func-
tion leads, for the reduced two-particle distribution func-
tion fz, to the following functional dependence:

and replacing p~(t) by its value gives

S(t) =S (t)+S (t)

with a Boltzmann part

S (t)= —k f dridvifi(ri, vi, t)

X [lnf i(ri, vi', t) —1]

(19)

(20)

fz(rl vi rz vz t)

=gz(ri, rz
I
In(r, t)J)fi(ri, vi,'t)fi(rz, vz,'t) (17)

and a correlation part

S~(t)=k f dr n(r;t)[lnQi(r;t) —1]+kin=(t) . (21)

The definition of entropy density is then straightforward:
which is assumed true for all times.

The time-dependent entropy of the system may then be
written as

n(r;t)s(r;t)=n(r;t)[s (r;t)+s (r;t)]

with

(22)

N=0
(18)

n ( r) ts( str) = —k f d v if i ( r &, v &, t) [lnf & ( r &, v i,'t) —1]

(23)

and [see Eqs. (12), (13), and (21)]

n(r;t)sv(r;t)=kn(r;t) g —f drz . drtn(rz;t) . n(ri, t)Si(1, . . . , I)'.
1=2

(24)

We refer to Appendix A for a definition of ns independent of the virial expansion.
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III. BALANCE EQUATION

A. Boltzmann entropy

We shall now turn to the question of the balance equa-
tion for ns =n ( r; t)s ( r;t). Let us first consider the
Boltzmann entropy density. From Eqs. (23) and (1) one
has

= —k f dv lnfl(r, v;t)

B(ns ) + V.(nus + Jsx )

= —k f dv[»fl(r, v;t)]J'(fl fl)
with the usual definitions of the velocity density

n(r;t)u(r;t)= f dv vf1(r, v;t)

and of the kinetic part of the entropy flux

Jsx ——k f dv[v u(r—;t)]

(27)

X —v f, (r, v;t)+J (f„f,)
Br

(25)

and, after integrating by parts,

X [lnf, (r, v;t)]f1(r, v;t) .

The right-hand side of Eq. (26) contains two parts; one
associated with the collisional transfer or the potential
contribution to the flux, and the other which can be iden-
tified with a source term. This separation is most easily
done if one applies the identity

F(r, r+de)
1

, [F(r,r+—de)+F(r de, r)—] +—V. f da eF(r ada, r+—(1 a)de—) . (29)

Applications of Eq. (29) to a conserved quantity g(v) gives [dp=(e v12)8(e vl2)de'dvldvI]

f dvlp(vl)J (fl,f, )= s f dp[p(vl)+p(v2) —g(v I) f(v 2)]—
X [f2(r„v '„r, de, v 2,'t) —f2(r „v l,—r I+de, v2,'t)] —V' Jyp,

where the potential flux of g is

3 1

J~p dp ——da[g(v l) f(v I )]fI—(rl ada, vl, rl—+(1 a)dc, v2, t) .—
2 0

(30)

(31)

We have written the collision operator in terms of f2 simply to shorten the formula but whenever we shall meet fz, from
now on, it means the factorized form given by Eq. (3). The expression given by Eq. (31), when expanded in a Taylor
series around r l, is identical to the usual expressions for the potential fluxes.

From Eqs. (2) and (26) we have

T= —k f d v J~(f„f,)[lnfl(r, v;t)] (32)
r

kd fl 1~ lt ~ ~ ~dpln [fI(rl, v l, rl —de, v 2,'t) —f 2(r ,Iv ,Ir l+d E, v,2' t)] .
2

(33)

To go from Eq. (32) to Eq. (33) we have taken v 1, v 2 and E '= —6 as new integration vanables and then taken half of
the sum. We now apply Eq. (29) to the expression in Eq. (33) with the correspondence F~ln[fl(r»vl)/fl(r»v'l)]
Xf2(r I, v I, r I dE V I); we g—et

T —Tdlv + TsoUI'ce (34)

7 source f dp
kd

4
f (r, v;t) I ~ ~ ~ I f I +dE v

ll, V l I'I — E, V2't + Il 2(I'I+ 6 V I Il V I' t
fl(r „v '„t) fl(rl+de, v ', ;t)

fl I'l, vl,'t fl(rl —dE, vl,'t)—ln fI(rl, vl, rl+de, vI', t) —ln fI(rl de, v„r—l, v2,'t)
fl(r l, v l, t) f1(r de, v l,t)—

(35)



930 M. MARESCHAL 29

and

kd'- f,(r, +ad@,v, ;t)
T '"=+ V ~ da dp e ln fz(r&+ada, v z, r& —(1—a)de, v'~', t)

0 f~(r ~+a d e, v '&', t)

f, (r( —ad@, v ~', t)
+ln

' '
fz(r& —ada, v~, r~+(1 —a)de, v 2', t)

f&(r& —ad@, v '&, t)
(36)

In the second and fourth terms of the right-hand side of Eq. (35) we use the symmetry property f2(x ~,x2) =f2(x2, x
& )

and change integration variables v~, v2, e to v2, v~, —e so that it becomes
P

4 f&(r&, v ~, t)f&(r~ —de, v z', t)

f&(ri, v~, t)f i(r i+d 2, vq', )—ln f2(r~, v&, r&+de, vz, t
f&(r&, v I, t)f&(r&+dc, v 2, t)

(37)

or, changing integration variables v ~, v2, e to v ],v z, —e in the second term, we have

kd2

2

f((r), vi, t)f t(r) de, v—2, t)

f, (r~, v '~, t)f~(r~ de, v—2', t)
(38)

Equation (38) contains a term of the form —y ln(x/y)
so that, if we apply the inequality (x,y & 0)

kdI(r;t) = d e n(r;t)n (r de;t)—
2

Xg2(r, r —de [n(r, t)])
X—y ln — )y —x (39)

X E [u(r de;t) —u(r—;t)] . (42)

to Eq. (38) we obtain

kdTsource& jd&[f (r v
' r de. v

' ~ t)

Equation (42) has been obtained by changing variables
v ) v 2 E to v ), v2, —6' in the first terms of the right-hand
side of the inequality (40) and then integration over veloci-
ties has been performed. Collecting now Eqs. (41), (42),
(36), and (26) we obtain

—f2(ri vi ri —«v2' )]

which can be put in the form

Tsource &I ( r .t )

with

(40)

(41)

with

and

B(ns )
B

Bt
+ V' (ns u+ Jsx. + Jsp)=o (r, t)

B(~ t ) Tsource &I (

(43)

(44)

kd 1

J sp —— f dp I da e [ ln[f ~ ( r
~
—a d e, v &, t)]—ln[f ~ ( r

&

—a d e, v ~', t)] ]

Xf2(r ~ ad e, v „r,+—(1 a)d e, v2, t)— (45)

is our definition of the potential flow of entropy. We have
obtained this expression from Eq. (36) by a change of in-

tegration variables v&, v2, e to v i, v 2, —e in the first
terms of the right-hand side of the equation. Let us point
out that Eq. (45) is quite similar to the definition of poten-

tial fiuxes of conserved quantities, Eq. (31), except for the
fact that the transported quantity —k lnf ~ depends on the
space variable r.

Before turning to the question of the time evolution of
ns let us point out that integrating Eqs. (43) and (44)
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over r leaves us with the basic inequality needed for the
global H theorem [see Eq. (40) of Ref. 6].

through n (r;t) which of course satisfies the continuity re-
lation

B. Correlation entropy

The time dependence of ns is somewhat easier to ob-
tain as the correlation entropy depends on time only

"dn (r;t)
Bt

+V [n(r;t)u(r;t)]=0.

From Eq. (24) one has

(46)

B(ns ) - ~
" 1

Bt
—+ V' (ns u) =kn (r;t) g — dr2 . drtI!

X n(r2,'t) n(rz,'t)u(r~, t) SI(1, . . . , 1)
Br1

we replace BS1/Br1 by its value

—(l —1) [ n(rz, t)u(rz, t)] n(r3', t) . n(r~', t)S~(1, . . . , l)
Br2

(47)

BSI Bf(2 rjf„df„
VI( 1,2

~

3, . . . , l) + VI( 1,3
~
2,4, . . . , l) + . + VI( l, l

~

2, 3, . . . , l —1 )
Brl Br12

' ' '
Br13

' '' '
ar11

' '

so that Eq. (47) becomes

a(ns') -, v-„,
Bt

= k (nr&, t)u(r&, t) dr2n(r2, 't) g dr3 drIn(r3', t) n(rh, t)VI(1,2
~

3, . . . , l)
~fiz " (l —1)

~r12 1=2 l!

+kn(r&, t) dr2n(r2, t)u(rz, 't) g dr3 d1 j n(r 3't) n(rt, t)Vj(1,2 3, . . . , l)
~f i2 " (l —1)

8r12
j' f

(4&)

+kn ( r „t)f d r2d r 3n ( r2,'t)n ( r3 t) u(12 t)

dr4. drIn(r4, t) n(r~,'t)V~(2, 3
~

1,4, . . . , 1) .(l —1)(l —2)

1=2

Let us remember the definitions of gz, Eq. (16), and of I( r;t), Eq. (42), to give Eq. (49) the following form:

B(ns ) -~ y y+ V' (n us ) = I ( r; t) +R ( r;—t) =o.
Bt

where

(49)

(50)

[u(r &, t) —u(r2,'t)]F(1,2;3)
3r12

a
[u(r2, t) —u(r3,'t)]F(2, 3;1)

R (r;t) = — ' dred r3n (rq', t)n (r3 ,t)'kn (r;t)
2

(51)

The function I' ( l, 2;3) is a symmetric function under interchange of r ~ and rq variables (but not of r3),

+(1,2;3)= g d r4 d r~n (r4, t) . n(rt, 't)V~(1, 2
~

3,4, . . . , l) .(l —1)(l —2)
l!1=3

(52)

C. Balance equation cr( r, t) = [cr ( r, t) +cr ( r, t) ])R ( r; t) . (54)

Collecting Eqs. (42), (43), and (50) we obtain that

B(ns) + V.(n us + J, ) =cr(r, t),
Bt

(53)

However, R (r;t) has no definite sign. From Eq. (51) it is
clear that R (r;t) is a difference between an average quan-
tity times n(r;t) [the part with E(2,3;1)] and a local
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property [with E(1,2;3)]. It is only when we integrate
over r

&
that both terms cancel so that we recover the glob-

al H theorem. In general, there is no definite sign to the
local entropy production. But we shall now show the im-
portant property that, when expanded in powers of spatial
gradients of n and u, R ( r;t) vanishes up to second-order

terms. Let us expand in Eq. (51) the density and velocity
around r&, we have

R(r, t)=R"'(r, , t)+R' '(r, ;t)+

where

(Vu): f dr2dr3 r)2 E(1,2;3)—r23 E(3,2;I) (56)

The overbar in F(1,2;3) means that all local densities are
evaluated at r~. A simple change of variables will make
clear that both terms in Eq. (56) give the same result, thus
canceling each other. Therefore, because of this compen-
sation between the local and average contribution, the
first-order term vanishes:

R'"(ri, t)= 0. (57)

The second-order term also vanishes but for different
reasons. Indeed, as it is shown in Appendix 8, all the
terms involved in R' '(r&, t) vanish separately for symme-
try reasons and therefore

(58)

If we similarly make such an expansion for the local en-
tropy production

(59)

o'"'(r, t) being the local entropy production of order (V"),
one has that o' ' is of course vanishing, and Eq. (58) to-
gether with (54) tells us that

I

seems to suggest that the Gibbs relation could possibly be
not true; however, the entropy density defined in this last
work [see especially Eq. (77b) of Ref. 13] is different from
ours in that the logarithm of the time-dependent sum over
state ln=(t) was localized by taking N 'n(r, t)ln=(t)
which gives the same result as ours when we integrate
over r but which is not a true local quantity. There is no
unique way of localizing a global quantity; however, an
argument in favor of our choice is that we succeeded in
proving a local H theorem and that, as it will be seen
below, we recover the Gibbs relation.

A. Chapman-Enskog solution

We shall consider the simplest possible case of a one-
component system. For this system it is known that the
Chapman-Enskog solution of the REE does not differ
from that of the original Enskog equation ' up to
second-order terms in the gradient expansion. The
Chapman-Enskog procedure starts by expanding all local
quantities around r in J (f„f,); using

(60)

which proves that when spatial gradients of density and of
velocity are sufficiently weak the local entropy production
is positive. No such property seems to hold for higher-
order terms, o' '(r, t) and so on, and therefore our local 8
theorem is limited to states with density profiles which
vary slowly on molecular scales.

f& ( r &+1e, v &, t) =f, (r &, v &, t)+d e +0 ( V2) (61)
Br&

gz(r&, rz
~ ( ( ntr)))

IV. CHAPMAN-ENSKOG SOLUTION

r)+ r2
+O (V') (62)

The question we want to examine now is whether or not
the entropy flux and the entropy production have the
form postulated by Gibbs. ' The first microscopic foun-
dation of Gibbs formula has been given by Prigogine in
1949 (Ref. 11). Inserting the Chapman-Enskog solution
of the Boltzmann equation in the entropy associated with
that equation, he obtained that, up to first order in the
gradient expansion, entropy flux was equal to the heat
flux divided by T, the temperature, and the entropy pro-
duction was the product of forces by fluxes. That proper-
ty is not true any more for second-order terms. Since
then, this result has been extended to systems other than a
dilute gas. ' ' However, no EI theorem has been proven
for a kinetic equation describing a strongly coupled sys-
tem except for the REE. In this case, a recent result'

r2& ~g2
=g2(r, 2 ~

n(r„t))+ — +O(V )
81

(63)

(64)

Equation (62) is the expansion of the local density around
—,
' (r, + r2) in g2 which is known to give a vanishing first-

order contribution, g2 is the homogeneous pair correla-
tion function (depending then only on the absolute value
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of the relative distance ri&). Equation (63) is then the usu-

al expansion of gz around r, . We then write f, in the
and

~"'(fi fl)=o

3/2

(66)

f, (r, v;t)=fl '(r, v;t)[1+/"'(r, v;t)+ . ], (65)
f' '(r, v;t)= n(r;t)

2mkT(r;t)

where P'"'(r, v;t) is of order n in the thermodynamic gra-
dients which are assumed weak.

The zeroth-order term f l
' is the local-equilibrium one-

particle distribution function which solves the equation

m [v —u(r;t)]
2kT(r;t)

(67)

with T(r;t) being the local temperature.
The first-order term P'" satisfies the integral equation

n ( r;t)g2(d)W(p"') = —f i ( v l) 1+ n (r;t)d g2(d)
2m
15" ' 2

& ——' g VinT
2kT 2

1+. n (r;t)g2(d)d
4m

15" ' ( g g T~g I):(Vu) (68)

where g= v —u(r, t) and

n (r;t)W(F)= —d f dvz f de(E'vl2)8(e'vl2)f', '(rl, vl, t)fi '(r„v2, t)[F(v'l)+F(v 2) —F(vl) —F(vp)] . (69)

We have dropped most of the r and t dependence to sim-
plify an involved notation. {As much as possible we fol-
low the notation of Ref. 2—see their Secs. 12.4 and 12.5
for more details. )

An important property of the first-order solution is that
it should satisfy the subsidiary conditions

d'J ~p) —O,

d PP'-(Vu)&0,

d J gp-4 (2)

(72c)

(72d)

f dv,f i '(vl){j)"'(vl)=0,

f dvlvlf1 (Vl)p (vl)

f dvi fUI '(v, )P"'(vi)= 0

(70a)

(70b)

(70c)

which imply that the exact particle, velocity, and energy
densities are the moments off l

'.

A word of explanation is necessary before we proceed
with the evaluation of the fluxes at different orders of the
Chapman-Enskog solution. Indeed, here, as for the global
H theorem, the only state with no entropy production is
the absolute equilibrium state. Therefore, the local equili-
brium solution f',", unlike in the Boltzmann case, is re-

sponsible for an entropy increase. Indeed, when we calcu-
late the potential fluxes, we use the following expansions:

i.e., at local equilibrium, the potential fluxes are respon-
sible for the dissipative transport.

Therefore, as usual, we must define the zeroth order of
the Chapman-Enskog solution as the local equilibrium
with, for the potential fluxes, the first terms of the expan-
sion (71), i.e., those proportional to d . This approxima-
tion leads to the exact equation of state for the hard-
sphere fluid, together with the Euler equations. The next
approximation contains the kinetic fluxes and the part of
the potential fluxes proportional to d, evaluated with

fl f'l 'p'", togeth——er with the part of the potential fluxes
proportional to d, evaluated with f, =f ', '. This approxi-
mation leads to the Navier-Stokes-Fourier equations.

B. The entropy flux

Pp ——d P'p'+d" P p +
3 (&) 4 (2)

Jgp ——d J gp+d J gp+

(71a)

(71b) J sx. ———k f dv nfl '(v)ln[f i '(v)] (73)

The kinetic part of the entropy flux is easy to treat.
Indeed, from its definition, Eq. (28), at zero order

These expressions are obtained from Eq. (31) by ex-

panding the corresponding functions around r& and in-
tegrating over u. The first term is proportional to d, the
second to d, and so on. When we insert the local equili-
brium solution fl f l

' in the series (71) we ob——tain

(72a)

which becomes, with the help of Eq. (67),

mf d g
4 f(ol( )sK= T

v
2 ) v

(O)

=0,JgK
T

(74)

(75)
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where J &z is the zeroth-order contribution to the kinetic(0)

part of the heat flux. The next order gives

J (&)

J (I) d~ g
mg f(0)(~)y(1)(~)

(76)

where we have used Eqs. (67), (70), (71), and (72).
The potential flux requires more care. Indeed, its defi-

nition, Eq. (45), is not a local quantity and we first have to
expand it around r and integrate over a. The result is (we

drop the r dependence in the notation), using Eqs. (45),
(61), and (62),

JsI'= J dp egz(d)f, (v, )f&(vz)ln + f dpgz(d)f&(v&)f~(vz)e e. ln
kd fi vi kd 8

fi(vi)
fi(vi)
f, (v', )

I dp e gz(d)f](V])f](Vz)»
kd fi v i

4. fi(vi)

Inserting the solution f& fI ', we ——have

0 fr(vz)
ln

ar f, (V, )
+ 0 ~ ~ (77)

~ (0) 1 d 3 mg)
2

Js = J dpT 2
gz(d)f I"( v i)fI"( v»

2
(78)

=—J =0& -(0)
QPT

as the potential heat flux vanishes at zeroth order. To the next order,
~'

(79)

1 d 3 2

J SP= dPe
mg)

gz(d)f I"(v i)fI"( vz)

(80)

(&)J gp

T
(81)

Collecting results of Eqs. (81), (79), and (76), we conclude that J, = J (2/T up to first-order terms. This relation is
violated in the next-order approximation as it is in the case of the Boltzmann equation. "'

C. Entropy production

The entropy production is given by [see Eqs. (38), (53), and (54)]
r

kdo(r;t)= — dp fz(r&, v ~, r& —de, v z, t)ln
2

fi(r i v i't)f i(r i «vz t)—
f&(r&, v &, t)f, (rz dE, v z', t)—I ( r; t)+R (r; t)—. (82)

Here again, we first expand around r and, neglecting second-order terms in the gradients, we obtain

R(r;t)=O(V ),
kgz(d)n (r, t) Q, zI(r;t)= f drzrzi .(Vu)+O(V )

2 Br~2

2 d3
kn (r, t)gz(d)V. u(r, t)+O(V ) .

3

(83)

(84)

(85)

As for R (r, t) the second-order term in the gradient expansion of I(r, t) is vanishing. Therefore the neglected term in

Eq. (85) is at least of order three in the gradient. We rewrite Eq. (85) as

(P) ~I(r, t) = —— I:(Vu) (86)
T
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with p' ' the potential contribution to the hydrostatic pressure and I the unit second-rank tensor. We then rewrite cr( r;r)
as

(&)

( )
p IVu

T 2 f dpgz(d) f, (v ') )f, (V,')ln
f)(v))f)(v2)
f)(v ))f)(vz)

kd' ~g2(d)+ f dp e f)(v ))f)(v2)ln
Br

f)(v))f)(v2)

f, (v ', )f)(v 2)

kd' ~f)(v 2)+ f dp e f)(v ) )g2(d)ln
Br

f)(v))f)(v2)
f)(v ') )f)(v 2)

f d(u g2(d)f)(v ) )f)(v z)& ln
' ' +0(V') . (87)

At zero order, one has

(88)

(P' ' —p( )I) (VLi) =0
T

(89)

as, in local equllbAum, J (Qp) =0 and P p(0)=p(P) I. At first order, we obtain

(T("(r;t)= k f dv n (r;t)g2(d)P")(v))W((t"))

+ gz(d) f dV ~ (v z)f')" (v ) )[0"'(v))+0'"(v2)—0 "(v'))—0'"(v'»

f) '(v 2)—e- ln
Br f' '(v )

f')"(v ) )fI"(v 2)[0"'(v ) )+0"'(v 2)]

f(o)( I )f(0)(~t)~[y(])(—+0)y())( I )]-
Br

(90)

(7 (r;&)= —( J g)r+ J gp).()) - ()) - ()) V(lnT)
T

(pre'+p~"): T—
so that, collecting Eqs. (89) and (91), one has

(91)

(, )
Jg. V(lnT)

0'
T

II:(Vu)
(92)

The evaluation of these terms is made in Appendix C and
the result reads

V. CONCLUSIONS

Because of the involved technical aspect of this paper,
let us summarize our results. We expect the REE to apply
to an infinite system and, therefore, the global aspect of
the H theorem known up until now is quite restrictive.
Our first result is to show that the extension to a local for-
mulation is, although not trivial, possible. We can write a
balance equation with a positive source term provided we
expand the particle and velocity densities in Taylor series
around any one point and neglect third-order terms in the
expansion. This is important because it permits one to ob-
tain a balance equation for the entropy of any subvolume
V in an infinite volume as

with II=P—pI. As for the Boltzmann case, this form is
not satisfied at larger orders. "' dSv d Sv d;Sv

dt dt dt
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with

and

= f dX (nus+ J, )
dt

di ~v = f drcr(r, t))0.
dt

(94)

(95)

Note added in proof .Since this article was submitted,
Professor J. Piasecki suggested to me a proof, independent
of the gradient expansion, for the positivity of the entropy
production. The result described here can therefore be ex-
tended to the general case of strong spatial gradients.
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APPENDIX A

In this appendix we present the definition of local ther-
modynamic state functions using a variational formal-
ism. " The starting point is the time-dependent sum
over states =(t) given by Eq. (7), and used here as a gen-
erating functional. We then define

Q ( )
1 5 (t)

=(t) 5Z, ( r; t)
(Al)

At equilibrium 1nQ~(r) is a one-body effective potential
which determines in a self-consistent way the density pro-
file. We define the direct correlation function by

C(1»)=«ri r2
l

In (r t) I ) = 51nQ)(r), t)

5n (r2, t)

The pair correlation function is defined by

(A2)

g2(1,2) =g2(r], r2
~ I n (r, t) I ) = (A3)

Q2(r[, r2
~

In(r, t)I)
Ql(rl t)Q1(r2 t)

with

Q2( r „r2 / I ( ntr)
$ ) =

=(t) 5z, (r„t)5z,(r„t)
(A4)

and, as in equilibrium, these two functions are related by
an Ornstein-Zernike relation: let G (1,2) =gq(1, 2) —1,
then

G(1,2;t)= C(1,2;t)

+ f dr3n(r3, t)C(1,3;t)G(2, 3;t) . (A5)

1 51n= Bn (r, t)
ln=(t)=In=(no)+ f da f dr-

0 5n (r, t)

(A6)

From Eqs. (Al), (A2), and (11) one obtains

=1—f dr2n(r2, t)C(1,2;t) .
5n(r, t)

As ln" (no) =0, from Eqs. (A7) and (A6) one has

(A7)

In order to get a local expression for the sum over states (a
time-dependent local pressure), we proceed as usual. ' Let
n (r, t) be a function which reduces to n(r, t) for a= 1

and a constant n0 for a=0; let us take, for instance,
n (r, t) =an (r, t),
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1

in=(t) = f d r n(r, t) f da 1 —a f d rzn(rz, t)C(r&, rz
~

n (t))

From Eqs. (21) and (A8) one can then write
1

S (t)=k f dr n(r, t) lng~(r, t)+ f daa f dr zn( rzt)C(r&, rz~ n (t))

(A8)

(A9)

which is the variational formulation of the local correlation entropy. Using Eq. (12) for the virial expansion expression
of ln=(t) and the definitions given by Eqs. (Al) and (A2), one obtains Eq. (24) for the virial expansion of the correlation
part of the entropy density.

1s

APPENDIX B

In this appendix we analyze the first two terms appearing in the expansion of R (r, t) [Eq. (55)]. The first-order term

Br &2 Br23
(Bl)

r12
5(r12 —a) .

The first integral becomes

f d- f'2- y ( )(l )" (r t) f dr . . . dry(12~3 l) f d- f»-
y( )

Brp)

while the second integral of (Bl) is

f 00
1 —3 ~ ~ ~ 23

drz3 rz3 g (l —1)(l —3)n' (r, t) f dr3. drip&(3, 2~ 1,4, . . . , l) = f drz3 rz3p'(rz3) .
1=3 Br23

(B3)

(B4)

Indeed, to any graph appearing in (B3) corresponds a graph in (B4) with particles 1 and 3 interchanged. Integrating
ov« l —2 ~elative distances keeping rz1 fixed in the first graph gives the same function of r~z as that of rz3 obtained
when integrating while keeping rz3 fixed in the second graph.

The second-order term is

kn (r, t) dn(r, t),t ~fez
V u ' 12 13 14112141

kn (r, t)+ 2' z3 1

kn (r, t) rtn(r, t), , ~fz3+
Br BI 23

,
1=4

(B5)
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A11 these terms vanish for symmetry reasons. Indeed, one has, in general, that

f dr3. . . drtr3&It(1, 213, , t)= —,
'

rzi f dr3 dr(&((1,2
~

3, . . . , 1)

(see, for instance, Ref. 3). The first integral in (BS) reduces then to

3 12a
—, f «21r21r21 ~(~~p)

Br&z
(B7)

which obviously vanishes. For the same reasons the second and the third terms of (B5) vanish.
In the fourth term one has to evaluate

dF~3FQ3 f dr3 dr~(rz&+r3, )V((2, 3
~

1,4, . . . , 1)~ ~ ~

Brg3
(B8)

but for any graph, the average ( rz&+ r3&) when integrating over r3 to r~ is zero due to the spherical symmetry of the po-
tential. The same is true for the sixth term.

Finally, the fifth term vanishes because the average of rz& rz& and of r» r» are the same. So that

Z &"(r,t) =0.

APPENDIX C

We have to calculate Eq. (90) using Eqs. (68)—(72) and the definitions for the fluxes, i.e.,

0 —T] + TQ +T3 +T4

T~ kn (r, t——)gz(d) f dv~P'"(v~)W(P"'),

kd a ',"(-.;)
T, = gp(d) f dp e. fP'(v'))[P'"(v))+P"'(vp) —P'"(v'() —P'"(vp)],

(Cl)

(C2)

(C3)

kd P'(v HT = — (d) f d 1 f' '( ')f"'( ')[P"'( ') P'"( ')] (C4)

T4— kd
gz(d) f dp e. [P"'(v') —P'"(v )] f'"(v')f'"(v')

2 r
(C5)

The first term in (Cl) is readily evaluated, see Eq. (68):

T~ ——— 1+ n (r, t)d gz(d)
2& - 3-
5

Jgg V'(lnT)

T

r

4~ 3
II «'.(V u)

1+ n (r, t)d gz(d)
15 T (C6)

The second term can be written

kd g(0) ~ g(0)
(d) f d f(0)(~l )f(Q)(~i )P())(~)~BJ12J12 (C7)

replacing the logarithm by its value, derivating with respect to r and using the subsidiary conditions one has

2

T =d'g (d) V' —. deaf' '( ')y' '( ')y'"( )~
mgq

2

:f dp e(m j~ —mg z)fP'(v~)fP'(vq)P'"(vq) (C8)

If we integrate over v ~, vz, and e, after some long but not difficu1t manipulations,
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T2= n(r;t)g2(d)d J g~ V
4~ -. — 3- (i) ."
15 T 15

n(r, t)g2(d)d T (C9)

The third term is easier to obtain, as

T3 ——kd g2(d) f d f(1)( ' )f(1)( ) . ~ m (g'2 g2)
ar

(C10)

this simply reduces to

T3 ——J gp V
T

Pp. (V'u)

T (Cl 1)

Finally, the last term can be written as

(()(v
T4=kd'g, (d) f dp f"'(v, )f' '(v, )e.

Br

we integrate (C12) over e to

(C12)

(C13)

2mkd
(C14)

the integration is then straightforward,

2mn(r, t)d g2(d) (, ) 1 P~'.(Vu)
J (&) .q (C15)

Co11ecting Eqs. (C6), (C9), (Cl 1), and (C15) we have
~(&) (&) (&) (&)

(Jg~+ Jgp)'V(lnT) (P~ +Pp ):(Vu)
cr("(r, t) =— (C16)
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