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Stationary nonequilibrium states by molecular dynamics. II. Newton s law
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We present molecular-dynamics results for a dense Lennard-Jones fluid near the triple point sub-

jected to the Couette flow. The method is based on the introduction of stochastic boundary condi-

tions to simulate the contact with a moving thermal wall. The method allows the simulation of bulk

properties of the system and the study of the local thermodynamical equilibrium. Furthermore, it

gives a physical description of momentum and heat transfer near a Couette wall. We found that the

shear viscosity depends on shear rate near the triple point (breakdown of Newton's law) while for a

point far from the liquid-solid coexistence line there is no appreciable deviation from Newton s law.

In the bulk region, where boundary effects are negligible, we found that the local thermodynamical

equilibrium holds for all simulated shear rates (up to 1.14&(10"sec '). Moreover, we do not find

any dependence on the number of particles used in the simulation. Last we compare the results for
the shear-dependent shear viscosity with theoretical predictions for nonlinear behavior.

I. INTRODUCTION

In a previous paper' we studied the limits of validity of
Fourier s law by introducing stochastic boundary condi-
tions in molecular-dynamics (MD) computer experiments.
There we showed how to use this technique to simulate
stationary nonequilibrium states, in particular the contact
of a MD system with thermal reservoir.

In this work the technique is implemented to simulate a
Couette flow, to calculate the shear viscosity of a dense
fluid and to look for the breakdown of Newton's law, the
linear phenomenological law for viscous transport.

In the past years equilibrium MD and several nonequili-
brium MD techniques have been used to study viscous
transport. They include the following:

(i) Computation of the Green-Kubo integral for the
tiine-dependent stress-stress correlation function.

(ii) Studies on models in which nonequilibrium boun-

dary conditions are used to shear a MD system. These are
the fluid walls model ' and several versions of the homo-
geneous shear model.

(iii) Solution of equations of motion subjected to an
external perturbing field. These are the sinusoidal trans-
verse force method' ' and the Doll's tensor Hamiltonian
method. ' Its use can require particular boundary condi-
tions as in (ii).

The techniques in (ii) and (iii) can be used to compute
the direct response of the system. Alternatively they can
be used together with the differential method. ' ' In this
last the response induced by a perturbing field or boun-
dary conditions is calculated as the difference between the
variable conjugate to the perturbation in perturbed and
unperturbed phase-space trajectories. The success of the
method rests on the cancellation of large thermal fluctua-
tions as a result of the differential technique. The homo-
geneous shear model, replacing the constant perturbing
field by a time-dependent sinusoidal one, has been used to

compute a frequency-dependent shear viscosity and to ob-
tain from its low-frequency behavior the long-time tail of
the stress-stress correlation function. '

The main results of the computer experiments are as
follows. In the equilibrium MD simulations near the tri-
ple point the stress-stress correlation function shows a
long-time tail and the results depend on particle number.
Moreover, the computed shear viscosity for the largest
system is -20%%uo greater than the experimental one. For a
state far away from this region these effects are less im-

portant. In the nonequilibrium MD simulations the re-
sults show an applied perturbation-dependent shear
viscosity, decreasing with increasing perturbation. Some
models ' and some results (for hard-spheres systems) in
the homogeneous shear model" show also a dependence
on particle number. This dependence is opposite to that in
equilibrium MD. In the hard-spheres simulation, " if an

dependence is assumed, the infinite size shear
viscosities are the same, within the statistical errors, for
all shear rates. Moreover, in some work' ' ' the pres-
sure and the internal energy also show applied shear
dependence with the consequent breakdown of local ther-
modynamical equilibrium.

There are two theories which attempt to describe the
breakdown of Newton's law and of the local equilibrium
hypothesis for increasing applied perturbation. They are
the Kawasaki-Gunton-Yamada (KGY) mode-mode cou-
pling theory and the Quentrec (Q) local-order theory. The
MD results have been explained in some work within the
KGY theory. However the numerical parameters ob-
tained by MD are very different from the theoretical esti-
mates.

The KGY predictions ' ' are

g(co) =qp —Aco'

P (co)=Pp+Bco
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o i(co) = Illy(co) —II~(co)=Cico

~,(~)=11 (~)—11 (~)=C,~'",
with ~ the shear rate, g the shear viscosity, P the pressure,
and II;~ the i,j component of the stress tensor. From now

on we define the shear rate co as co=c)v~/c)x and we write
the Newton law as II~ ——rjcp.

The Q predictions ' are

RN
rj(co) =v]p 1—

I +co

RI co
o'i(co) =2'rip

p2+ ~2

o2(co) = —,
' o i(co) .

Moreover, Hanley and Evans introduce " the relation

U(co) = Up+Dco i

to explain the dependence of the internal potential energy
U on the shear rate found in their computer experiments.

In this work all these effects are studied for a Lennard-
Jones fluid. The main conclusion we can draw within the
precision of our calculation is that, near the triple point,
there is a dependence of the shear viscosity on the applied
perturbation but no breakdown of the local equilibrium
hypothesis. Also we do not find any dependence on parti-
cle number.

In Sec. II we give details of the model with stochastic
boundary conditions. In Sec. III we recall the microscopic
expressions for the local properties. In Sec. IV we
describe the computer experiments and study in detail the
boundary mechanism and the boundary effects. In Sec. V
we analyze the validity of local equilibrium hypothesis
and present the results for shear viscosity and their inter-
pretation. Section VI is devoted to some concluding re-
marks.

A Couette flow is produced in a fluid enclosed by two
parallel walls in uniform motion with a relative velocity
different from zero. The system is enclosed between two
y-z planes at a distance L„.The lower wall (the upper
wall) moves with a velocity + V ( —V) in the y direction.
It is assumed that (i) fluid velocity at the walls is equal to
the velocity of the wall, i.e., there is no slip, and (ii) the
transport coefficients are constant in the bulk. The slip at
the wall is discussed in Sec. IV.

The Navier-Stokes equations give for the bulk velocity a
linear profile

2V
Uy (x ) = x =cijpx

The phenomenological Newton's law assumes that the x,y
component of the stress tensor II is proportional to the
applied gradient

BVz
H~y ='g =7(6)p ~

c)x
(2)

where iI is the shear viscosity coefficient.
Moreover, if the walls are kept at constant temperature

T and there is no temperature drop at the walls (the tem-

perature drop is discussed in Sec. IV) the heat hydro-
dynamical equation gives the parabolic temperature pro-
file

2

T( )x=T + —x
'9o L 2

where A, is the thermal conductivity coefficient.
Stochastic boundary conditions are used to simulate

Couette flow. The boundary conditions are periodic in the

y, z directions, while in the x direction A is bounded by
stochastic walls realized in the way described below. The
equations of motion to be integrated are'

d2~
m z

———g V u(rj)+ f (r;), i =1, . . . , N
dr j (~i)

II. THE MODEL

(4)

where f~(r) is an impulsive stochastic force acting only
when the particle hits a stochastic wall. Its effect is to
reenter the particle into the box at the same place, but
with y and z velocities sampled from a Maxwellian distri-
bution at the wall temperature T~, mean y-component V
and mean z-component zero

We consider a system of X particles enclosed in a paral-
lelepiped A of sides L„,L~,L, (Lz L, (L„)interacting——
through a two-body potential of the Lennard-Jones type.
As in Ref. 25 the potential is truncated at a certain dis-
tance R, . The values chosen for R, are nearly the largest
consistent with the minimum image convention. They are
listed in Table I. The units are o for length, e for
energy, and r= (mo /48m)'~ for time. For argon,
0.=3.405 A, e= 119.8k~, ~——3.112&& 10 ' sec.

TABLE I. List of thermodynamic states and model parameters. p, number density; 1, temperature;
N, number of particles; m, number of different shear rates imposed to the given state; R„potential cut-
off; NL, VL, , I, number, volume, and thickness of layers, respectively.

0.75
0.8442
0.8442

0.8752
0.722
0.722

384
180
384

3.0
2.5
3.0

12
10
12

42.7
21.3
37.9

0.8736
0.8398
0.8398
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@(u~ ) = (2m-mk~ T„)'~ exp
m(u~ —V )

2k~ T

tensor. The computation of these values goes as follows. '

The local value of an observable A at point r is

e(u, ) =(2~mk, T„)—'"exp—
2

mU,

2k' TN

V =+ V on the right wall and V = —V on the left wall;
in the x direction the velocity component is sampled from

2
m mUx

@(u„)= u„exp (7)

III. STATISTICAL MECHANICAL DEFINITION
OF LOCAL PROPERTIES

The thermodynamic study must be performed from a
local point of view to monitor the gradients. For this pur-

pose the system has been divided into XL layers of equal
size parallel to the stochastic walls. In each layer we corn-

puted the smoothed values of local density, velocity, tem-

perature, internal potential energy, pressure, and stress

The set of coupled differential equations (4) is integrat-
ed with the central difference algorithm. The value of
the time step in our computations is always h =0.032.
The procedure used to take into account the stochastic im-

pulsive force f has been already described. '

The difference between the ideal mechanism and its nu-

merical implementation can give rise to errors in the in-

tegration of equations of motion. In particular, for high
boundary velocities or at high temperatures, a particle can
be moved in the nearest neighborhood of another particle.
In such a case the high value of repulsive potential energy
between the particles could affect the integration step. %"e

checked the validity of our procedure by monitoring the

energy of a canonical ensemble at very high temperature
[T=2.9, corresponding to ((u })'i =0.25]. This is the
highest value of the boundary velocity for Couette flow in

our computer experiment. The variation of the instan-

taneous total energy of the system, corrected for the con-
tribution of collision with the stochastic walls, is ten times

greater than the small variation corresponding to the mi-

crocanonical ensemble.
The main features of the present model can be summa-

rized as follows.
(i) The velocity perturbation is confined to the walls; the

dynamical evolution of the bulk is not altered.
(ii) The thermal mechanism acts only at the walls

without any scaling of the internal kinetic energy.
(iii) The velocity and temperature of the walls have a

precise statistical meaning.
(iv) The model affords a physical description of Couette

flow which can be compared with the analytical solution

of Navier-Stokes and heat equations.
Because in this model the boundary conditions in the x

direction are not periodic, there are no "images" of parti-
cles beyond the stochastic walls. Thus surface effects af-
fect some "local" thermodynamic properties. Since the
size of a typical MD system is small, these effects could

be relevant. However, it is possible to control such effects
as we shall see later (Secs. IV and V).

~( )=(&(
~
I;,p;I';= )},

where the quantity to be averaged can be written in gen-

eral as the sum over the particles of the corresponding

property defined for each particle. Thus

N

A(r
i I r;, p; I,':i )=g 2;(Irj, pJ jjj=i )5(r —r;) (9)

where A; is equal to (i) 1 for density field p(r), (ii)

[3k&p( r }] 'm [v; —( v ( r ) ) ] for temperature field T( r ),

(iii) [p( r ) ] ' v; for the velocity field v ( r ), and (iv)

[2p(r)] 'g. ~+,.iu(rij. ), where r J
——r; —rz and u(rl) is

the pair potential, for the internal potential energy field

U(r).
For the stress tensor II( r ) one has

A; = —m[v; —(v(r) }][v;—(v(r))]

j (~i) ij
(10)

The pressure field P(r) is equal to minus one-third the

trace of the stress tensor.
The value of a given observable in layer o.

(o.= 1, . . . , Xi ) is finally

(tr;, p;I,'=i )= f, ,
dry(r

~
[r;,p;I,':i },

Vl. ~)

II~(r) = f u'(r)p(r+R}g(r, R}dR,
2 R"'

U(r)= —,
' f u(R)p(r+R)g(r, R)dR.

Under the hypothesis of slowly varying density,

p(r+R)=p(r) and g(r, R)=g(R). Moreover, for R )R„
g(R)=1. Neglecting the terin R ' of the Lennard-Jones

potential, one obtains in reduced units

o, ~WP
II p( r

i
R )R, ) =

3R,'3 [p(r)], a=P

U(r IR)R, )=— p(r) .
3Rc

where VL(o) is the volume of layer o.. The smoothed

values of thermodynamic fields in each layer are then ob-

tained by averaging in time the corresponding observables

(9). VI is chosen by a compromise between two opposite
requirements: (i) the local thermodynamic analysis sug-

gests the use of a small Vl, and (ii) the number of parti-
cles in each layer should be high to improve statistics.

As the potential is cut off at R, the potential terms in

internal energy and stress tensor must be corrected to take
into account long-range contributions. The potential
terms can be written as
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The computation of thermodynamical fields allows us

to test the validity of the local-equilibrium hypothesis.
The weak form of the latter we use is

where X(r) and Y'(r) are two independent thermodynami-
cal variables. In our simulations the pressure should be
constant through the bulk while density and temperature
vary from layer to layer. Therefore, we compared the ex-

perimental equation of state p,„~,=p(T(r), P} and the
internal potential energy U = U( T( r ),P), obtained by
standard equilibrium MD, with the computed p(r) and

U(r), respectively. The results confirm the validity of the
weak local equilibrium hypothesis and are discussed in
Sec. V.

IV. COMPUTER EXPERIMENT

m(v —V )
f(v )=(2m.mkiiT ) '~ exp

B o
(12}

where [see Eqs. (1) and (3)]

V =(O,cox,O),

( —1000), while a stationary linear profile requires more
than 4000 time steps. Moreover, the temperature in-
creases with time. The stochastic walls give ordered ki-
netic energy to the system. This energy is used both to
create a profile in the velocity field and to increase the lo-
cal temperature by dissipation.

To reduce the relaxation time we selected a new starting
point given by equilibrium configuration for positions and
local Maxwell distributions for velocities. The velocity of
any particle in layer o is sampled from

T

The first part of the computer experiment consists in
the realization of a chosen thermodynamic equilibrium
state at T=T,q. In this stage the system has the usual
periodic boundary conditions and constant total energy.
At time t =t' the two yz boundaries are transformed into
stochastic Couette walls while the other boundaries
Iemaln peI1odlc.

The two thermodynamical states chosen as starting
points for setting up Couette flow are given in Table I.
The point at higher density is near the triple point of ar-
gon and has been extensively studied while the other has
been used only to test the present model. The parameters
of our computer experiments are given in Table I.

A. Shear rate limitations

The Reynold number criterion for laminar flow is

2m p V~I.
„ (E,„,

fl

where R,„,between 10 —10 . Our V~ are always much
below this turbulence threshold.

The applied shear rate must produce average values of
the stress tensor greater than its spontaneous fluctuations.
These last can be measured by monitoring the fluctuations
of the unperturbed components of the stress tensor II~
and II~, . Another limit to the shear rate is due to heat ef-
fects in the bulk fluid; this upper limit is attained when, to
obtain a prefixed stationary bulk temperature, the boun-
dary temperature must be put to zero.

B. Toeboard the stationary state

The relaxation time needed to establish the stationary
nonequilibrium state is very long if one starts from the
equilibrium state. In a test run (p=0.75) we applied a
boundary velocity V =+0.25 and a boundary tempera-
ture T =0.8752 to the system in equilibrium.

The system enters in a transient stage where the local
values of thermodynamic quantities are time dependent.
This time evolution can be observed by taking averages
over short time intervals (250 time steps). A linear profile
of the velocity field is reached in a few time steps

2 2

T~ = Tw+
'gQ) ~x
2k 4

with x being the coordinate of the center of the layer to
which the particles belongs, and g and A, the experimental
values of the shear viscosity and thermal conductivity.
The temperature at the walls T„ is such that
(llXL ) g T is equal to the temperature of the initial

equilibrium state.
These initial conditions ensure a fast relaxation to a sta-

tionary state (of the order of 2000 time steps). However,
the relaxed linear profile is smaller than the one imposed.
This is caused by slip and temperature drop at the walls,

as we shall see. The mean temperature reaches a value

greater than the initial one due to some residual dissipa-
tion.

To reduce the temperature increase, the velocities are
sampled from Eq. (12) as explained but the walls are as-

signed a temperature T~ =aT~, and a velocity V~ =pV~.
The parameters a ( 1 and p& 1 are numbers estimated in
an empirical way to improve the efficiency in the choice
of the final thermodynamical state. The choice of a and

p could be made less arbitrary by considering the effects
of slip and temperature drop.

C. Slip and temperature drop at the wa11s

When the stationary state is reached the velocity gra-
dient of the system is lower than the one imposed at the
boundaries. The velocity profile of the internal layers is
linear although the boundary layers are usually outside the
linear profile. Their velocity is between the wall velocity
and that obtained by extrapolating at the wall the internal
profile (Fig. 1).

Thus the results are characterized by the following pa-
rameters.

(i) The slope obtained by linear least-squares fit through
the internal layers (shear rate)

(13)

(ii) The slip at the walls defined as
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FIG. 1. Imposed and obtained velocity profiles. L„distance
between stochastic walls, I thickness of atomic layers, V velocity

of the walls, . local velocity V (o.=l, . . . , XI. ), —- —— ap-

plied gradient, linear least-squares profile through XL, —2

internal layers, ——— local gradient across the outermost

layers. Average density p=0. 8442 and particle number X=384.

~ Vier~ = Vier~+ V

where Vj,~, and V„'.zh, are the velocities extrapolated at the
walls of the internal profile.

(iii) The local gradient at the walls defined as

~Vl ft (Vl ft+ V)/I

V'V„sh,——( V—V "sh, )/I,
where V~'d, and V„"gh,are the velocities at the border of the
region in which the velocity profile is linear and I is the
layers thickness.

The velocity slip is a well-known effect in the kinetic
theory of gases. A molecule colliding with a solid sur-
face may not acquire the velocity and energy correspond-
ing to thc state of thc surface. Some molcculcs arc elasti-
cally reflected, the rest enter the material and later leave it
with the temperature and velocity of the wall. For a sys-
tem in equihbrium this effect is immaterial because the
wall and the system have the same mean velocity (namely,
zero) and the same temperature. Under nonequilibrium

conditions this effect can become important. If there ex-
ists a relative motion between the gas and the waH, veloci-

ty is transferred between them. If there exists a tempera-
ture difference, heat or energy is transferred. If, on the
average, a molecule does not acquire the velocity of the
wall in a collision, one says that there is "slip." If, on the
average, a Inolecule does not acquire the energy corre-
sponding to the temperature of the wall in a collision, one
can say that there is "temperature drop. " Therefore,
under slip conditions the velocity of the molecules near
the wall is different from that of the wall. The same is
true under temperature-drop conditions. Since these are
collisional effects they are important only in a region of
the order of the mean free path.

In our computer experiments the fluid is dense and the
concept of mean free path is not clear. Nevertheless we

can define an effective mean free path corresponding ap-
proximately to the thickness of an atomic layer. Indeed
the region near the Couette walls, where there is slip, has a
range of the order of our layers.

Following Ref. 27 we can write, after some elementary
substitutions,

5V, =g t~2-VVt, i =left, right
1

PI. TI

where the coefficient g depends on the state of the fluid
through the shear viscosity coefficient and the fraction of
molecules striking the Couette wall which enter the ma-

terial and leave it with the temperature and mean velocity
of the wall.

In Fig. 2 we show the value of b V; as a function of
VVtlp;T'; (p; and T; are the density and temperature,
respectively, of boundary layers) for all shear rates at aver-

age density p=0.8442 and number of partic1es 180 and
384. We have a linear pattern and no dependence on par-
ticle number. The linear least-squares fit gives for all data
the value /=0. 45+0.04. If we consider only data with

the same particle number we have g =0.48+0.05 for 108
particles and /=0. 42+0.04 for 384 particles, i.e., no ap-
preciable difference.

For higher gradients, in which also the parabolic tem-

perature profile is appreciable, there is also a temperature
drop at the walls (Fig. 3). Proceeding in a similar way we

6V

0.15

0.05

I

0.10 v v, yp jj 0.20

FIG. 2. Velocity slip AV; as a function of VV;/p;T . V'V;

local gradient, p; local density, and T; local temperature near the

wall. Average density p=0. 8442; , %=384; 4, , %=180.
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TT; local gradient, p; local density and T; local temperature

near the wall. Average density p =0.8442, , X=384,
Jk,N = 180.

VT;/p;T; for the highest gradients, average density

p=0.8442 and number of particles 180 and 384. We have

a fairly linear profile and no appreciable dependence on

particle number. The linear least-squares fit gives the
value y =0.87+0.20.

The thermal conductivity coefficient A, may be estimat-

ed from the fit of the temperature profile, see Eq. (3), us-

ing calculated shear rate and shear viscosity. The value of
A, is affected by a standard error which is given by the
combined errors of (i) the quadratic coefficient of Eq. (3),
a =geo /2A, , (ii) the calculated shear viscosity g (see Sec.
V), and (iii) the actual shear rate co

where T,
" is the extrapolation of the internal profile at the

walls, and (ii) the local gradients at the walls 2$g+ 4 Sa+ 2 Sa
4a 4a a

1/2

VT; (T;" T)/1, i =le=ft, rig—ht

where T;" is the temperature at the border of the region in
which the temperature profile is parabolic. Then

bT; =y
&&2 VT~, i =left, right

1

PI &]

where ya:g.
In Fig. 4 we show the value of hT; as a function of

The results (Table II) obtained for thermal conductivity
are consistent with experimental data.

V. RESULTS

A. Local thermodynamical equilibrium

A local thermodynamical analysis of the simulated sta-
tionary states has been performed to check the validity of

~expt

TABLE II. Thermal conductivity estimated from temperature profiles. P, pressure; T, temperature;
N, particle number; k, thermal conductivity; sq, standard deviation of thermal conductivity; A,,„p„exper-
imental data from Ref. 28.

I' A, +sg

1.0147
0.0405
6.8412
0.6975

1.1500
0.6594
0.8310
0.7977

384
384
384
180

0.85 +G. 15
0.70+0. 15
1.04+0. 15
1.61+0.37

0.79
1.08
1.03
1.04
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the weak local equilibrium hypothesis. We compared the
layer density p~ (o = 1, . . . , NL ) and the internal potential
energy U~ with the experimental density, p,„~,=p(T,&),
and the equilibrium MD internal potential energy,
U~ MD ——U( T~,I' ), respectively.

We report in Table III the results for the most critical
cases, i.e., the highest shear rates, for the two different
system studied (%=180 and 384, respectively). Pressures
are the averages of the XL —4 internal layers computed as
shown in Sec. III. We excluded the local pressures of the
four outermost layers from the average because they fall
systematically outside the range of the internal values.
Indeed, the microscopic expression used to compute the
pressure is valid only in the bulk and does not apply near
the walls, where the force field on the particles is altered
by the absence of images beyond the walls. This effect,
however, does not extend farther than two layers; there-
fore, the bulk value of the pressure can be obtained from
the remaining XL —4 internal layers.

The agreement between experimental versus computed
densities and equilibrium MD versus computed internal
potential energies is satisfactory and makes one confident
in the validity of the weak local equilibrium hypothesis.
The only relevant deviations are, as expected, two boun-
dary layers for densities (one for each side) and four boun-
dary layers for internal potential energies. These devia-

tions, due to the absence of images, affect configurational
quantities like local density, internal potential energy, and
stress tensor, but are essentially irrelevant for kinetic
quantities. For internal potential energy as for pressure
the microscopic expression is significant in the bulk but
not near the walls. The inhomogeneity of the density in
the boundary layers depends, as we shall see later, from
the bulk compressibility factor. From Table III it is ap-
parent that for dense fluids near the triple point the local
equilibrium hypothesis can be confirmed at least up to
shear rate of the order of 0.035(48m/ma )'

B. Newton's law

All simulated stationary states have a fairly linear ve-
locity profile through the NI. —2 internal layers, while the
velocities of the two boundary layers are outside the pro-
file due to slip at the walls. Thus we define the shear rate
~ by doing a linear regression through the XL —2 internal
layers velocities. The stress tensor off-diagonal com-
ponent II„~has been calculated using Eqs. (8)—(11) with
the further average

(II„„)being the local stress in layer cr. As usual two

TABLE III. Local equilibrium test. T and p local temperature and density, respectively; p,„p„interpolated and/or extrapolated

experimental data from Ref. 28 for density corresponding to (T,P); 4p, percentage difference between computed and experimental

density; U, local internal potential energy; U~ MD, interpolated or extrapolated equilibrium molecular dynamics (eq Ml3) data from
Ref. 25 for internal energy corresponding to (T,p ); b U, percentage difference between computed and eq MD internal potential en-

ergy.

Layer per pexpt

hp
(%) (%")

1

2
3
4

6
7
8
9

10
11
12

1

2
3

5
6

8
9

10

0.675
0.802
0.850
0.913
0.917
0.911
0.833
0.899
0.896
0.830
0.759
0.633

0.732
0.830
0.858
0.876
0.843
0.837
0.830
0.793
0.759
0.619

0.8770
0.8665
0.8471
0.8309
0.7984
0.8133
0.8193
0.8070
0.8143
0.8679
0.8781
0.9108

0.8496
0.8319
0.8437
0.8285
0.8146
0.8208
0.8339
0.8628
0.8727
0.8835

(a) P=0.8412, N=384, m=0. 0345
0.9016 2.7
0.8559 —1.2
0.8386 —1.0
0.8160 —1.8
0.8145 2.0
0.8167 0.4
0.8268 0.9
0.8240 1.7
0.8210 0.9
0.8458 —2.6
0.8714 —0.8
0.9168 0.6

(b) P=0.6975, N=180, co=0.0354
0.8725 2.6
0.8368 0.6
0.8267 —2.1

0.8201 —1.0
0.8321 2.1

0.8343 1.6
0.8368 0.4
0.8503 —1.5
0.8626 —1.2
0.9135 3.3

—4.06
—5.54
—5.78
—5.71
—5.67
—5.65
—5.69
—5.74
—5.81
—5.87
—5.71
—4.20

—3.89
—5.37
—5.72
—5.80
—5.80
—5.83
—5.88
—5.86
—5.60
—4.09

—6.34
—6.07
—5.95
—5.79
—5.58
—5.68
—5.75
—5.66
—5.70
—6.03
—6.19
—6.69

—6.10
—5.88
—5.95
—5.81
—5.76
—5.80
—5.89
—6.07
—6.12
—6.50

36.0
8.7
2.9
1.4
1.6
0.6
1.0

—1.4
—2.0

2.7
7.8

37.1

36.2
8.7
3.9
0.2

—0.7
—0.5

0.2
3.5
8.5

37.1
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TABLE IV. Results for the shear viscosity. co, shear rate; p~, bulk density; T, temperature; P pressure; P/p&kT, compressibility
factor; X, particle number; g, computer shear viscosity and s„standard error; g,„~„experimental value from Ref. 28; g'", shear
viscosity adjusted to a temperature To ——0.722, and density p=0. 8442. The corresponding experimental result is g,„~,=22.75 (Ref.
28). For the point at negative pressure the experimental result is taken at zero pressure.

0.032
0.0032
0.0053
0.0068
0.0082
0.0092
0.0094
0.0119
0.0185
0.0345
0.0354

0.7438
0.8568
0.8624
0.8529
0.8499
0.8523
0.8484
0.8499
0.8538
0.8343
0.8368

1.1500
0.6858
0.6295
0.7080
0.7096
0.6394
0.7365
0.7326
0.6594
0.8307
0.7977

P

1.0147
0.1773
0.0066
0.3173
0.1180

—0.2093
0.4414
0.3768
0.0405
0.8412
0.6975

P/p gkT

1.19
0.30
0.012
0.53
0.20

—0.39
0.71
0.60
0.07
1.21
1.04

384
384
180
384
180
180
384
384
384
384
180

11.27 +0.36
25.50+2.42
28.62+2.97
24.09+2.36
24.45 + 1.24
25.32+ 1.59
19.69k 1.23
19.17+1.22
17.70+0.61
16.14+0.65
16.21 +0.91

gexpt

11.07
27.25
32.11
26.92
23.38
30.27
25.52
24.88
28.01
23.09
23.97

21.29
20.28
20.36
23.79
19.03
17.55
17.53
14.38
15.90
15.39

outermost layers are excluded.
The shear viscosity g is given by Newton's law, Eq. (2).

Its standard error is the combined error on II„„and~
rl= (dgldP)rP+ C

for the pressure dependence at constant temperature. The
extrapolated shear viscosity g,„ztis given by

zS~= Sg + ~ S~
Qp "y 6)

1/2
pt(Pp Tp ) =ge p)(P T ) + ( Bg/BP )z'(Pp —P )

+2 [exp(B/Tp) —exp(8/T) j,
where s is the standard error on the shear rate

r

co 1 —f' 2

S~=
r 4

(r is the correlation factor) and sII is the standard error
xy

of n.y obtained assn ——s&H. )/mn wheres&H. ) is the
xy xy xy

standard deviation of (II„~) for a given layer and n is ob-
tained by taking an independent layer every three layers,
i.e., n =(NL —2)/3.

In Table IV are reported the results for the shear viscos-
ity. The calculated results must be ascribed to the bulk
density p~ obtained as the mean on the XL —2 internal
layers. The density of the two boundary layers is different
from its "true" value due to the lack of images beyond the
Couette walls. It is increased or decreased with respect to
the average value depending from the compressibility fac-
tor I'/pzkT. ' If the compressibility factor is smaller or
greater than 1, the bulk density is, respectively, greater or
smaller than the average density. This can be seen in
Table IV where the compressibility factor is reported to-
gether with the bulk density, temperature, and pressure.

The calculated shear viscosities at (p&,P, T) are com-
pared with the experimental values of Ref. 28. For ther-
modynamical points in the liquid-solid coexistence region
it is necessary to extrapolate the experimental data up to
these points. Extrapolated results are obtained as follows.
We use the data of Ref. 28 at (P, T) together with the
empirical law

g=A exp(8/T)

for the temperature dependence at constant pressure, and

where I', T are the actual and I'p, Tp the desired pressure
and temperature, A and 8 are calculated from experimen-
tal data at pressure Pp, and (Bq/BP)r is calculated from
experimental data at temperature T. For the point at neg-
ative pressure the extrapolated shear viscosity corresponds
at zero pressure.

The comparison between experimental and computer re-
sults gives a good agreement for the test case at lower den-

sity, for a shear rate co=0.032. In the triple-point region
the agreement between experimental and computed results
is satisfactory up to a shear rate co=0.0082 for the cases
both of 384 and 180 particles. There is no significant
dependence on particle number at all shear rates. At
higher rates the shear viscosity depends on the applied
shear.

C. Nonlinear effects near the triple point

The results obtained for the shear viscosity must be re-
ported at a chosen thermodynamical state, equal for all
shear rates, in order to compare with theoretical predic-
tions. We selected the point pp=0. 8442, Tp ——0.722 (near
the triple point) and adjusted all results to the chosen
point, assuming the same percentage difference between
experimental and calculated values. The adjusted values
are given by

ad
Qexpt

Iad
Qexpt

where q and q,„~tare the computed and experimental
shear viscosity in the computed thermodynamical state,
and gexpt ——22.75 is the experimental shear viscosity at
pp Tp. In Table IV are also reported the adjusted values.
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In Fig. 5 we plot the adjusted shear viscosity versus the
shear rate for the cases both of 180 and 384 particles. We
also show the fit of the shear dependences for both KGY
and Q theories. Table V gives the parameters resulting
from both fits and compares these values with experimen-
tal and theoretical ones. In Table V we also list the values
of the same parameters obtained by fitting data of Refs.
12—14. Our results compare reasonably well with those
obtained from the homogeneous shear model.

For the thermodynamical state studied here the theoret-
ical estimates of the parameters predict a much weaker
dependence from shear rate. The theoretical estimate for
A of KGY is 6&(10 times greater than the computed one.
The theoretical value for I, the most important parameter
of Q theory is 2&(10 times greater, For 8 of Q theory
our value is much more near to the predicted Q.

As pointed out previously the local thermodynamical
hypothesis is confirmed for all simulated states. There-
fore, we do not find any dependence of the pressure and
internal potential energy on the shear rate. Finally in
Table VI for completeness we list our results together with
all other previously obtained results by equilibrium and
nonequilibrium MD.

VI. CONCLUSIONS

We introduced stochastic boundary conditions to pro-
duce stationary shear rates at a fixed boundary tempera-
ture in a molecular dynamics system. We analyzed the lo-
cal thermodynamical properties by dividing the MD sys-
tem in layers with thickness of the order of the interatom-
ic distance. %'e applied this technique to study the bulk
properties of a system subjected to an applied shear rate.
In the bulk, where surface effects are negligible, the local
therm odynamical equilibrium holds for all simulated
shear rates (up to 1.14X10" sec ') for different system
s1zes.

In the boundary layers, where surface effects are dom-
inant, we studied the slip and temperature drop. These ef-

20—

0.01 0.02 0.03

FIG. 5. Shear viscosity adjusted to the point p=0. 8442,

T=0.722 as a function of the shear rate. , %=384;
X= 180; the vertical bar is the standard error;
Kawasaki-Gunton-Yamada fit to data; ——.—.Quentrec fit to

data. The arrow indicates the experimental result.

fects, well known in the kinetic theory of gases, are impor-

tant over a region of the order of a mean free path. In our

experiment the fluid is dense. Nevertheless we found that
these effects are important in a region of the order of the
interatomic distance. The validity of the empirical kinetic

laws was tested in our computer experiments and found to
be in good agreement with the results of simulations.

We computed the shear viscosity from Newton's law,
the phenomenological linear law for viscous transport, and

looked for its breakdown. In the triple-point region we

found this breakdown for shear rates co & 2.64&&10' sec
and obtained a shear viscosity dependent on the applied
shear. We could not detect any dependence of the shear

viscosity on the number of particles.
Finally, we compared the calculated shear rate depen-

dence with soine theoretical prediction: (i) the mode-mode

coupling theory and (ii) the local order theory. Both

TABLE V. Theoretical predictions and computed estimate of the parameters appearing in the theory of KGY (Refs. 20 and 21)

and Q (Ref. 23). qo, extrapolated at F0=0 or experimental shear viscosity; A, R, l, fit parameters; o, standard deviation of the fit.

We also show the parameters obtained by fitting all the results of homogeneous shear model (HSM) in Refs. 12—14. All the results

are for T=0.722, p=0. 8442.

Present work
KGY fit
Q fit

Experimental

Theoretical

HSM
KGY fit

Q fit

'Reference 20.
Reference 23.

'Reference 21.

g0

24.12+ 1.78
22.61+2.18

22.75

22.44+0.37
20.25 +0.39

49.96+ 14.90

0.0088'
0.0051'

27.90+1.82

0.37+0.08

0.53b

0.41+0.03

0.011+0.006

0.212

0.046+0.007

2.01
1.94

0.89
1.04
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TABLE VI. Comparison between present results and results from equilibrium and nonequilibrium molecular dynamics methods.
The experimental result is also reported. T, temperature; X, particle number; g, shear viscosity and s„standard error; HSM, homo-

geneous shear model; FWM, fluid wall model; FDHSM, frequency-dependent HSM; DM, differential method; eq MD, equilibrium
molecular dynamics. p =0.8442.

0.722
0.722
0.722
0.715
0.722
0.722
0.722
0.722
0.728
0.715
0.722
0.722
0.722
0.722
0.722

180—384
180—384
108—324

864
108
108
108
256
108
256
256
500
864
864

Yf +S~

24.12+1.78
22.61+2. 18
20.44+ 1.39
20.78+1.04
21.96+0.21

18.71
21.82
20.62
20.6
20.2

18.0+0.7
22.2+1.4

26.7
27.9+2.0

22.75

Source

KGY fit on present results

Q fit on present results
HSM and FWM (Ashurst-Hoover) Ref. 17
HSM (Hoover et al. ) Ref. 17
HSM (Evans) Ref. 13
HSM (Heynes et al. ) Ref. 14
FDHSM (Evans) Ref. 13
HSM with DM (Singer et al. ) Ref. 19
EMD (Levesque) Ref. 4
EMD (Levesque) Ref. 4
EMD (Pollock) Ref. 5

EMD (Pollock) Ref. 5
EMD (Levesque) Ref. 4
EMD (Levesque et al. ) Ref. 3
Experimental data Ref. 28

theories predict a shear rate dependence much weaker
than the one we found. Nonetheless both theories agree
with our results in predicting an insignificant breakdown
of the local thermodynamical equilibrium. This last result
could indicate a weaker dependence on the shear rate of
the trace of the stress tensor as compared with its indivi-

dual components. Work is in progress to clarify these
possible effects.
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