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Hydrodynamics of three-dimensional stacked hexatic liquid crystals
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The hydrodynamic equations for three-dimensional stacked hexatic liquid crystals, i.e., for
hexatic-8 and its tilted analogs, smectic-E and smectic-I, are presented. Differences and similarities
to the hydrodynamics of smectic-3 and smectic-C are discussed and the role of the additional vari-
able characterizing the bond orientational order is elucidated.

I. INTRODUCTION

The smectic phases studied so far in thermotropic
liquid crystals can be divided into three classes: (i)
smectic-A and -C which are fluid inside the layers
(short-range order); (ii) smectic-8 (crystal}, E, -6, H-, -J, -

and -E which are isomorphic ' to a crystal inside the hy-
drodynamic regime, since the center of mass of the mole-
cules is ordered in three dimensions; and (iii) hexatic-8,
smectic-F, and I(Refs. 5-—9). Class (iii) is believed to
show short-range positional order inside the layers, al-
though it is considerably longer in range when compared
to smectic-A and -C. In addition, hexatic-8 and smectic-I
and Fshow a certai-n degree of fluidity inside the layers.
Thus, it seems to be very interesting to study these phases,
which are intermediate between in-plane fluidity and in-
plane crystalline order.

In the present note we give a hydrodynamic description
of these three-dimensional stacked phases. They are dis-
tinguished from smectic-A and -C by the existence of
long-range bond-orientational order inside the layers, i.e.,
there exists a hexagonal pattern of the bond directions be-
tween neighboring molecules. ' '" Thus, we have broken
rotational invariance but translational invariance is still
guaranteed. Since the bond structure is hexagonal the
viscosities and static susceptibilities are still isotropic in-
side the layers. The hexatic-8 phase' can be viewed as a
smectic-A liquid crystal with additional bond-orientational
order inside the layers which gives rise to one additional
hydrodynamic variable; smectic-E and -I are tilted ver-
sions of hexatic-B and therefore resemble closely smectic-
C with additional bond-orientational order in the layer
planes. On a macroscopic level, smectic-F and -I are iso-
inorphic but are distinguished microscopically (e.g., by x
ray) by a director pointing to the corner (F phase) or to the
apex (I phase) of the unit cell. An extended discussion of
the structures (including drawings) of hexatic-B and
smectic-F and -I can be found in Refs. 9 and 7, respective-
ly. Like srnectic-C, smectic-E and -I are biaxial. In analo-
gy to smectic-C it is also possible to chiralize E and I thus
obtaining F* (Ref. 13) and I' (Ref. 14) which are uniaxial.

In Sec. II we give the linearized hydrodynamic equa-
tions for hexatic-B and in Sec. III those for I and E. The

role played by a relative rotation between tilt of the mole-
cules and bond-orientational order will also be discussed
in Sec. III.

II. HYDRODYNAMICS OF HEXATIC
SMECTIC-B PHASE

—X; d(V;8) . (2.1)

The other hydrodynamic variables are the conserved
quantities density p, momentum density g, and the entro-
py density o. The thermodynamic quantities T, p, , v, P,
Q,J, and X are defined by Eq. (2.1) as partial derivatives of
the energy density e. Expressing the thermodynamic
quantities by the variables constitutes the statics of the
hexatic phase. This is done by pure symmetry arguments:
the only quantities, which are odd under time reversal, are
v and g. The vector P defines an axis (layer normal)
without specifying up and down direction. Thus, we can
treat p as a polar vector and make use of the additional
symmetry p ~—p, which implies M~ —50 and
5R++—5R and P;++—Pt, O';1++—0;J, and I;++—1;, since
e is i~variant under this additional symmetry. The other
possibility is to treat p as an axial vector, which implies
58 to be a scalar and 5R to be a pseudoscalar quantity (in
addition, PJ is an axial vector, 4;J. is a tensor odd under
parity, and X; a polar vector since e is a scalar and V; a

In hexatics, the two broken continuous symmetries,
translational order parallel to the layer normal and bond-
orientational order in the layer plane give rise to two addi-
tional hydrodynamic variables: The displacement 5R (or
sometimes called u} along the layer normal (characterized
by the constant unit vector P ) and the rotation angle 58
describing rotations of the hexagonal bond order within
the planes. ' M is one component of the (polar) displace-
ment vector R(M =R P ) and 58 is one component of the
(axial) angle vector 8(58=8 P ). In equilibrium, i.e., in
the undisturbed structure, 58=0 and 5R =0. Since homo-
geneous displacements M or rotations M lead generally to
different states without changing the energy density e,
only gradients of 5R or of 58 enter the Gibbs relation'

T der=de lsdp v dg t—tij—d(V. JR—) —Vti d(V;VIR)
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polar vector). In any case, we find the linear relations

Poci=gi ~

5T= Tpc„'5o.+y 5p+y~; V;R,
5p=A, 5p+y 5o.+ygr; V;R,

g 2) aIld

Be Be
Bo Bp ' B(VjR)

'

Be'

B(V';V',R) ' '
B(V,.g)

'

Pi=P;P jXIIVjR+yIP g 5P+y2P; 5o. ,

+J =&JVm~i~m&

g, —MJVJO.

Thereby, C„, y, and A, are a representation of the usual
three susceptibilities of a simple liquid; gll ss the stiffness
constant of the layers (sometimes called &) and yi (y1)
describe static cross couplings between layer displacement
and density (entropy) (or pressure and temperature) and
vice versa. The tensor

u;=Be/Bg; .

In writing down Eq. (2.3), we have assumed that the
bond-orientational order is truly three dimensional. If this
is not the case, Mll =0 and one has to keep a term of the
form —,'Ks(VIIO) in Eq. (2.3) and the corresponding corre-
latlo11 funct1011s [ (MJ k I +Ksk

I
I)] are of the (columnar)

discotic type. ' Srm~larly, Milk ll
must be replaced, in this

case, by Ksk
II

in all expressions which follow below.

The dynamic equations have the linearized form

M; —Mllp ip +MI(5j —p;p )

s a long1tud1nal (Mll) and a transverse (M&) stiff-
ness constant of the bond structure. If the layers are only
weakly coupled, one can assume that the bond structures
in different layers are also only weakly coupled, which im-
phes that Mll rs a small quantity compared to Mq which
describes the stiffness of the bond structure within a layer.
The tensor K;ji describes fluctuations 5p; of the preferred
direction p;; in linear order they are described by trans-
verse gradients of 5R, i.e., 5p;= —(5;j P,p j)VjR—and

K;J( takes the form

K;,i =(5, p~P' )[KI(5—,I P';p i)+K3P—';p I j.
The K's are the usual Frank constants. Since longitudinal
gradients of 5R are already present in first order (Pj), one
usually neglects the second-order terms -+37'll+ agarns

all%'llew. The inclusion of higher gradient order terms
V;VjR is justified (and necessary) because first-order
terms T;R are restricted to longitudinal gradients VllR.
This is a point to be made for all smectic systems. In a
nonlinear theory, however, other higher-order gradient
terms would also have to be kept.

The constitutive equations (2.2) are equivalent to the
fI'cc-cncI'gy expression

p+ V;g; =0,
g +V P +VJ0 J 0 VJo J QJo J

e+ V (eo+po)u +V kjk

o+~ioo~i+~i j j.
-( )

T '

(2.&)

j; V;T+o jViju;+& (Vjpj V;Vj'P,j)+Y' —V';X;

must be zero or a pure divergence (j '=Toj ' in the
linearized theory) while for the dissipative parts (super-
script D) we have

8+X=0,
0+ F=o,

where eo, po, and o.o are the equilibrium values of the ener-

gy density, the pressure, and the entropy density, respec-
tively. The dissipation function D is zero on the reversible
level (i.e., o a conserved quantity) and positive for the ir-
reversible contributions. The entropy production is
J(D/T)dV The pres. sure is given by the (linearized)
Gibbs-Duhem relation 5p =pp 5p+ Tp 5T.

We now express the unknown currents o.,J, jk', and jk '

and quasicurrents X and F by the thermodynamic conju-
gates. These currents are not independent but are related
by Eq. (2.1). For the reversible parts of the currents (su-
perscript R) this means that the sum

f=fo+ &+II ~IIR + &KI(~-LR) +T
+ , M(V, e) +(V-„R)(„5.+„5,)

j; V;T+o'jVju;+X (V'jpj V;Vj4j)+F V—;X;=D)0.
(2.3)

In the present case, the reversible parts of the currents
I ~p
p .E"kV U

fo= .C. 'To(5o)'+ ,'~(5p)'+-y 5p5o+ -g'-
2p

is the free energy of a simple liquid. Since f has to be a
positive definite form, we obtain the following restrictions
for the susceptibilities: C„, A, , Xll, KI, Mll, and Mz are all
positive and ToCu A &y ~ ToC~ +Il+y2' and kill&y
The equations (2.2) were obtained from (2.3) by taking
partial derivatives

g ~o 1 ~o
Irij p i(4j'V iq ij ) Tp kekij ~p&p

~Rj; =0,

(2.5)

are pinned down completely by the nature of the broken
symmetries: Since the momentum is the generator of
translations, M, which describes the breaking of the
translation symmetry (along p ), is canonical conjugate to
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g.p and R =v.p . In the same way, 58 is canonical con-

jugate to the angular momentum J p and 8=co p
where ro; =(I/2)e, j„VJU„ is the vorticity. Other reversible
contributions to the currents, e.g., flow alignment
terms' ' ' like in uniaxial and biaxial nematics, are
ruled out by symmetry (isotropy in the layer plane). For
the irreversible paris of the currents sym. metry allows for

~ = —pVX;,
X = —g( V;P; V; V~ 4—

;~ ) gp; V—;T,
rg = —&~gkt~tUk ~

pM +—v
2 Po

2

pM
po ] po

1/2

(2.7)

M =Miikii+Mgkj,
2

For kq ——0, there are two decoupled diffusions
= —i.M~~k~~ and = —rpo, k~~ of 58 a d g (p Xi),

respectively. For k~&0, 58 and co~~ exhibit a coupled dif-
fusion as long as

2

k&M & pM ——v
PQ

'
Po

«J ~J—~ ks"' (~—krak ~k~j'pkj ) .
0

The heat conduction tensor ~,J and the viscosity tensor are
of uniaxial form and contain two and five independent (ir-
reversible) transport parameters, respectively. There are
three further transport parameters present, i.e., p, g, and

g, the latter describing a dynamical cross coupling be-
tween layer displacement and entropy (temperature) fluc-
tuations. The positivity of entropy production requires
the constraints p, g, ~~

~

and ~r to be positive and ~~ ~g & g .
The physical impact of linearized hydrodynamics is

best discussed by looking at the normal modes. In linear
order in k (ro-k) hexatics behave like smectic-A liquid
crystals: There are two soundlike excitations (ro=+ck)
coupled together (first- and second-sound or ondulation

mode) mainly built up by 5p k. g 5R and p g Both
sound velocities c

& 2 depend on the direction of k relative
to p . (For the special cases kz ——0 or k~~ =0 one of the
sound modes decays into two diffusion modes. ) In the
next k order (co-k ), the sound modes acquire diffusive
contributions to co( ik ), a—gain direction dependent,
which involve 5o (or 5T) additionally. The heat conduc-
tion mode co-iEk with directio~ dependent E, besides
5o (or 5'1), also involves M and 5p. The motion of 58,
which discriminates hexatic-8 from smectic-A, is general-

ly coupled with that component of g, which is perpendic-
ular to both k and p, g. k =0= g.p but decoupled from
the rest. The mode structure is

in the reversed case, Eq. (2.7) describes a strongly damped
propagating wave with dispersion [co-k (a+iP)], which
can be called a "bond-vorticity" wave. The structure of
(2.7) strongly resembles the director-shear modes of
nematics' (there are two of them in nematics) or the orbit
"waves" in He-A. From the experience with the latter
systems it would be, however, a surprise, if this "bond-
vorticity wave" would not be overdamped (purely dissipa-
tive).

In experiments, these modes can be excited by an
externally-imposed inhomogeneous rotation along p (or
an inhomogeneous shear stress within the layers). If the
inhomogeneity is parallel to P (k~~&o,kr ——0) one can
measure the two diffusion constants pM~~ and (1/po)v3.
If the inhomogenelty is pe~endicular to p o(kll =O,kl~o),
one finds either the bond-vorticity wave or the coupled
diffusion described above. If a propagating wave is found,
then

I
2p~'Mr —6v~ —1I & (1+12v~)'~'

limits the possible values for Mr; if @vs « 1 this implies

3 &zMg~—
4. PQ

and Mr &(I/puu ). If v2 is known from other experi-
ments, p and Mr can be obtained from Eq. (2.7) for
k,~o,k~( =o.

In concluding the section on the hydrodynamics of
hexatic-8, we will briefly discuss the hydrodynamic as-
pects of a so far hypothetic nematic phase with additional
bond-orientational order. ' In this case, one has a uniaxial
phase with three additional variables: The two director
deviations 5n; from the preferred direction n;, character-
izing the broken rotational symmetries of a uniaxial
nematic and, in addition, the bond angle 8 (rotations about
n; ) For th.e statics we refer to Ref. 21, but we only men-
tion in passing that E4 E'6, via integ——ration by parts, if
the corresponding surface term vanishes (we use the nota-
tion of Ref. 21). For the reversible currents one finds a
mere superposition of the results for uniaxial nematics
and for the bond angle in hexatic-8. For the irreversible
currents, we get, in addition to the terms present in uniax-
ial nematics and hexactic-8 (for the bond angle) a separate
cross coupling in the entropy production which reads

(n;5g~+nq5, 'k )(7';8)(VJnk ) .

III. HYDRODYNAMICS OF SMECTIC-E
AND -I LIQUID CRYSTALS

Smectic-F and -I are similar to hexatic-8 with respect
to the layer structure and the bond-orientational order
within the layers. In contrast to hexatic-B, however, the
molecule axes are, on average, not directed along p (the
layer normal), but are tilted away from p by a tilt angle
% 0 i.e., there is a second preferred direction n with
n p =cosg T—his gi.ves rise to a preferred direction
within the layers c which reads in normalized form

'—p '(P'"')][1—(P'"')']
n or c break rotational invariance (about p ) and 5c
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Since the dynamics (and statics) involving the variables
e(cr), p, g, and 5R is (in structure) the same as in smectic-
3 or hexactic-8, we will not repeat the appropriate formu-
las in Sec. II. The only difference is the biaxiality in
smectic-F and -I, which causes the material tensors K;zl
a;J, and v,jl to be of a more complicated form.

We will concentrate in the following on the dynamics of
58 and 5P. For the statics symmetry allows

X, =M,,V,8+N„V,P,
h =85/,
~, =PJ Vqp+N~V J8,

which is equivalent to the free-energy contributions

f=fg+,'~~J(&;8)(V,8)+ ,'&;,(V;p)(V;$)—

(3.2)

+N;, (V;P)(V,8)+B(5$)', (3.3)

where fz is the free-energy part of the other variables and

the susceptibility tensors M, I', and X take the form
~Q~Q ~Q~Q ~Q~Q ~Q~Q

U~j
——Ulp;p 1+U2c lc)+ 3(,J p;p~ ——

(3.4)

The energy B(5$) expresses the fact that bond-

orientational order and the direction c cannot rotate free-

ly against each other even in the limit k —+O.

For the dynamics we find,

0+ F=O,
P+Z=0,

(3.5)

(with c .5c =O=p 5c) is the appropriate hydrodynamic
variable. This is a situation similar to smectic-C. ' '
Alas, things are more complicated in smectic-F and -I.
The bond-orientational order aIso breaks rotational invari-
ance about p . 5c and 50 describe physically distinct
operations: The former rotations of the long molecular
axes about the centers of mass and the latter rotations of
the bonds, i.e., of the centers of mass. In equilibrium,
however, the bond-orientational order and the c vector
are locked together: Either c is parallel to one bond
orientation (smectic-F) or it is perpendicular to it
(smectic-I). Thus, even a homogeneous rotation
(p XC ).5c&0 with 58=0 (or a homogeneous rotation
58&0 with 5c =0) will produce a (homogeneous) restor-
ing force. Only a combined rotation, 58+(p Xc ) 5 c, is
the true hydrodynamic variable connected with the broken
rotational symmetry, while all other linear combinations
of 58 and (p Xc ) 5c are microscopic variables. If the
homogeneous restoring force is weak, however, their
motion will be slow and quasihydrodynamic. In the fol-
lowing we will take 258=58+(p Xc ) 5c as a hydro-
dynamic variable and 25$—:58—(p X c ) 5 c as a
quasihydrodynamic (macroscopic) variable; in addition,
there are, like in smectic-A, the other variables p, g, F and
5R.

The Gibbs relation takes then the form

Tdo =dE pdp ——v.d g pj d(VJR —) —O';Jd(V;VJR )

—X; d(V';)8) —h dp m~ d(VJQ) —. (3.1)

with the reversible quasicurrents

X [(ale;+a2P, )(c Xp ), +(i~j)] .

The dissipative parts of the currents are

Y = —PlV;X;+P2(h —V;m;),

Z =r(h V;vr;) ——P2V;X; .D

(3.7)

(3.&)

Again, the term ~h shows the nonhydrodynamic character
of 5$. Since 58 couples not only to pZ p but to all com-
ponents of the velocity and because of the biaxiality, the
mode structure is very complicated and all variables are
coupled together. Of course, there is one nonhydro-
dynamic relaxational mode with cu(k~0) =i' con—nected
with 5$. In general, there are two soundlike modes (ex-

cept for certain directions of k), a heat-diffusion mode,
and two coupled-diffusion modes (vorticity parallel to p
and combined bond orientation and c vector); the possi-
bility that the latter can have a propagating part (as in
hexatic-8) is suppressed in smectic-F and Iif r8 is-
greater than the k-dependent hydrodynamic frequencies.

Aside from the analysis of the normal mode structure
which can be detected, e.g., by light scattering or sound
absorption, another possibility for future experiments
emerges immediately from the basic equations for
smectic-I and I'. Whereas it is-clear from Eq. (2.5) that
hexatic-B will not show flow alignment, such a possibility
exists in the tilted phases I and F. From Eq. (3.6) we ob-
tain

I (3.9)
cos(28)

for V'~U2&0, where p has been chosen to be parallel to
the three-direction, i.e., the layer normal. However, it is
not quite dear whether this flow alignment is observable,
since the degree of freedom, which is responsible for the
effect (i.e., rotation of the molecules, 58) is coupled to a,

rotation of the bond-orientational order 5P. Equation
(3.9) can only be obtained if 58 and 5$ are decoupled.
Flow alignment measurements could, therefore, give new

p &+ z (Dlc l+A2pl )(p Xc )k(V kUI+Vl Uk)

Z z (Alc 1+D2p l )(p Xc )k(Vkvl+VIUk ) .

shows the usual coupling to the antisymrnetric gra-
dients of v (co), which comes from the physical nature of
5(9 describing rotations about p . Such a term is absent in
Z, because 5P describes a relative rotation, where such
terms cance1. The coupling to the symmetric part of V„U~,
characterized by two reversible transport-parameters u&

and u2 (in nematics there is only one, usually called 2), is

due to the fact, that (p Xc ) 5c is the pmjection onto the
component of the director n, which is known to couple to
the symmetrized velocity gradients even on the reversible
level. The situation is quite similar to that in smectic-C,
but different from that in hexatic-8, where 58 was a pure

rotation angle and where no c axis was present.
Vanishing entropy production requires the following

counter terms in the stress tensor

1 ~Q 1

2p k—&kj- V l&l 2(h—+ V l&l V l~l—)
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information on that coupling. Of course, if ~a&
~

& l,
flow alignment cannot occur but tumbling can occur. The
same conclusions follow for the phase discussed in Ref.
21.

It is obvious that the inclusion of the nonhydrodynamic
variable 5$ into the set of macroscopic variables is some-
what arbitrary. At least in the vicinity of the phase tran-
sition to the hexatic-B phase, the tilt angle f (also a
nonhydrodynamic variable) is also a good candidate of be-

ing a macroscopic variable. Thereby f couples reversibly

to (p Xc ) co and has static and dynamic (dissipative)
cross couplings with 58 and 5$. Such a treatment would
go, however, beyond the scope of this paper.
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