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A pseudoclassical integral-equation method for obtaining the equation of state, pair-distribution

functions, and static structure factors for partially ionized plasmas is presented. The electron-ion

charge distribution is separated into a localized, quantum-mechanical part and a delocalized, nearly

classical part. The Planck-Larkin method is used to separate the electron distribution. Localized-
electron distributions are obtained from solutions of the Schrodinger equation. Distribution func-

tions for ions and free electrons, including weakly bound electrons, are obtained from solutions to
the classical hypernetted-chain (HNC) integral equation. Pseudopotentials that have two-body

quantum mechanics built in, but which preclude strong bound states, are used as input to the HNC.
The results are applied to H and Ar plasmas.

I. INTRODUCTION

The equation of state of partially ionized plasmas has
been calculated from an activity expansion of the grand-
canonical partition function. For multiply ionized plas-
mas, such that the ions are strongly coupled while the
electrons are moderately coupled, further progress has
been made by summing all orders of classical ion-ion
correlations. The resulting activity expressions have no
restriction on ion-ion coupling and the stI ength of
electron™ion coupling determines the range of validity. A
shortcoming of the activity-expansion method is that it
does not yield pair-distribution functions and partial
structure factors which are required in electrical conduc-
tivity, line shape, and a number of other applications. In
the present work we will use the results of the activity ex-
pansion to develop a classical integral-equation method
for obtaining distribution functions. This is justified
through the use of a weak pseudopotential that precludes
strong bound states. In this approach, bound states ap-
pear as new composite particles. In so doing we take ac-
count of the nearly classical long-range, many-body diver-

gencies and at the same time remove the short-range,
few-body divergencies by inclusion of quantum mechan-
ics. Differences arise between the two methods because
we will (1) ignore density dependence of the pseudopoten-
tials arising from multiparticle quantum-mechanical
corrections, (2) consider only single-electron bound-state
excitations, (3) assume that ion cores interact pairwise,
and (4) use the hypernetted-chain integral-equation ap-
proximation.

Due to the reliance of the present work on the results of
previous analysis, '"' a brief account of that work will be
useful here. A more complete summary is given in Ref. 6
(hereafter referred to as I).

The procedure of I starts with the usual procedure of
expanding ihe logarithm of the grand-canonical partition
function in powers of the activity, such that each term
z b„, n =2,3, . . . sequentially turns on two-body interac-
tions, three-body interactions, etc. , where the z-" are activi-
ties and the b„are ctuster coefficients. The second step is

a formal elimination of the activity through the density
constraint, yielding a density expansion whose nth term is

p 8~, where the p„are densities and the b„are virial coef-
ficients. The Lagrange inversion method for obtaining the
virial series used by Kahn for one-component systems is
most relevant here, since a somewhat similar inversion
procedure will be used in subsequent steps. Schematically
the first two steps in the procedure expressed in terms of
the pressure are steps (1) and (2):

V 'ln=~»( Iz; I, I b, I )~PP( Ip; I, IB, I ),
where the index i ranges over electrons and nuclei. Steps
(1) and (2) are appropriate for short-ranged potentials, but
not for the Coulomb potential, since each of the b, and Ba
are individually divergent. For Coulomb systems, as is
well known, it is necessary to switch on the full X-body
problem at the outset while only partially turning on
Coulomb coupling. Higher-order Coulomb terms are then
switched on in a systematic way to obtain results for a ful-

ly coupled X-body system.
Specializing to Coulomb systems, the next step in the

procedure of I is step (3):

»(Ip I I& I )»(Ip I IS I »
where the S„/p-" are closely related to virial coefficients
for a screened potential which approaches the Debye™
Huckel potential when the Debye length is greater than
the thermal de Broghe wavelength. The S„were first de-
rived by Abe for the classical one-component plasma
(QCP) and are generally referred to as "Abe nodal func-
tions. " The S„are related to the nonideal free energy ac-
cording to

(F Fo ) /kT = —VS =——V Sg +QS, , (1)

where S is the Mayer S function. In step (2) S is express-
able as an infinite sum over virial coefficients for un-

screened potentials. In step (3) S is completely resummed
graphically and a screened potential is introduced. The
leading density term comes from the ring diagrams and
yields the Debye-Huckel free-energy term,



wh««he Ca are gen«ahzed cluster coefficients. For ex-
ample

kT

is the Debye length and Z; is the ionic charge. Explicit
expressions for the Sa are given in Ref. (4). The
quantum-mechanical generalization of the S, has been
given by DC%'itt. They involve a dynamically screened
potential and are not readily evaluated. In the limit
y=X/&~ ~0, where X=A'/v'mkT ts the thermal de Bro-
glie wavelength, the quantum result is equivalent to re-
placing the Boltzmann factors for the Debye potential,
that appear in the classical theory, with Slater sums.

%%en y&0 the classical Debye-Huckel term Sx is re-

duced by a factor f(y). The odd powers in the expansion
of f(y) come from Bq, B3, etc., for the Coulomb poten-
tial, while the even powers result from many-body quan-
tum sums. ' The replacement procedure just mentioned

picks up the odd-power terIns but misses the even-power
terms, so that the error in this approach is o:S&y . This
is only a few percent at y=0.5. Similar considerations

apply to the virial-like terms. The even-power terms in

f(y), for example„can be approximately evaluated from a
properly chosen pseudopotential. '

When a substantial number of composite particles are
formed, the density expansion is nonconvergent. The
gI and-canomcal ensemble wol ks with physIcal clusters
and it is the natural enseInble to use in this case. Classi-
cally it is now necessary to carry out an Abe-type nodal
expansion which involves both irreducible and reducible
diagrams. Since real multicomponent plasmas are being
considered, quantum mechanics must be included. Due to
the demonstrated success of replacing classical Boltzmann
factors with Slater sums, that procedure is adopted here.
The many-body problem has already been solved in step
(3) and there is no need to actually carry out a diagram-
matic resummation of P({z;j, {bzj). Instead, this is ac-
complished by an inversion procedure similar to that
developed by Kahn, for the virial series but going in the

opposite direction. As a result, the next step in the
method of I is step (4):

pP({p,.j,{S,({p,.j)j) ~P({z,j,{O„S„({z,.j)j),

BS2
C3 =S3+—gz;2!, '

Bz;
(2)

which is easily shown to have the property C3~z-b3
for ordinary potentials, such that S3~—p-B3/2 and3

2S2~ —p-S2.
The advantage of expressing 13P in terms of the C, is

that they can be factored into terms that involve n-particle
bound st at es„(n —1)-particle bound states, etc.," which

enter the activity expansion effectively as powers of
z,z, . . . , zs. The sixth step in the method of I is to factor
out strong bound states as new components and to renor-

malize PP such that it involves an augmented set of activi-

ties {z;j, whtch now tncludes the orlglllal set plus addl-

tloIlal members corresponding to composltc particles:
Step (6) is

P'({z;j,{Csj) PP({z'j*{C'j»
where the Ca are an augmented set of cluster coefficients

corresponding to the {z;j. The C„do not involve strong

bound states since they have been used to define the aug-

mented set of activities, {z;j. They include only continu-

um states and weakly bound states.
In the present work due to its relative simplicity, partic-

ularly with regard to obtaining distribution functions, we

wish to develop a HNC integral-equation approximation
to the results of I. In some respects the HNC procedure
will have a greater range of validity than I. For potentials
that do not have a 1/r singularity at r =0, e.g. , a system

of charged hard spheres, ' we could simply use the HNC
approximation on step (2). Due to the presence of strong
electron-ion interactions at small r, this is not possible for
real plasmas. However, since the C~, exclude strong

bound states, they can be calculated from weak pseudopo-
tentials which approach a constant as v~O, but are pro-
portional to 1/r when r & A, . All that needs to be done to
apply the HNC procedure is to derive the rcnormalized,
but unscreened, density expansion PP({p; j, {B„j)con-

sistent with PP({z; j,{C„j). This is accomplished by
working backward from step (6), skipping step (5), since
we wish to keep strong bound states factored into new

components. Step (7) is, therefore,

where Os is a differential operator acting on S„.
The activity expression generated in s'tep (4) involves

the S& which are in the form of screened virial coefficients
that are appropriate for a density expansion or an activity
expansion for a nonreacting gas. Due to the exponential
behavior of bound states when ~PE

~
&1 the terms in

PP( {z;j, {O,Ss( {z;j ) j ) are not properly ordered in powers
of the activity. The fifth step in the procedure then is to
properly reorganize the activity expansion intc generalized
cluster coefficients for the screened Coulomb potential:
Step (5) is

pP({z, j, {O,S,({;j)j) PP({z;j»{C j»

Step (g) corresponds to going from step (4) to step (3) and

step (9) corresponds to going from step (3) to s«p (2):
Step (g) can be written as

PP({;,j, {O,S„({ j)j)-nP({P; j,{S.({~;j)j) ~

step (9) as

PP({)'j {S&({e'j)j) ~P({S'j {B'j)
Now, since pP({p; j, {B~j) involves weak, unscreened

pseudopotentials, it can be immediately calculated in the
HNC approximation, which is much easier than the Abe
procedure given by step (8). A formal method for going
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from step (2) to step (9) has been given by Vorob'ev and
Gleizer. ' Apparently only veI'y limited calculations have
been carried out with that method.

The justification of the calculations to be carried out in

the present work was just described. Additional details
will be provided when appropriate. Section II describes
how the weak pseudopotentials are constructed. Section
III describes the multicomponent HNC method and the
cqUations Used to obtain thc cquatlon of state. Section IQ
gives calculational results for hydrogen and argon plas-
IDRS.

Pu„.(r,P) = —lnIV„. ,

where 8'„. is thc iwo-particle Slater surD given by

eS',j
——S't.j + S',j

' 3/2
frpft y g (2(+ 1)qi+ (r)e ~ ill (r)

(4)

Pei yg=n' l=l'

' 3/22nPA.
C1

PCI
g(2l+ I) I %i(r,p)e

0

The concept of using the Slater sum to obtain a pseudo-
potential that has quantum-mechanics built in appears to
have started with Morita. "K.elb" and Fbeling" have de-
rived analytic results for hydrogenic potentials. Klimon-
tovich and Kraeft' have carried out similar work for
screened hydI'ogenic potentials. Barker has given an ex-
act, evaluation of the two-particle Slater sum for hydrogen.
Dunn and Broyles' and Pokrant et al. include X-
particle density dependence in the pseudopotentials.

In the present work we will apply a method similar to
that used by Barker' for hydrogen. The effective poten-
tials given in Ref. 21, which represent the interaction be-
tween an electron and a composite particle, will be used.
They have the form (in rydbergs)

rV„(r)= —2 (Z —X)+ g X„e (3)
@=1

where N is the number of bound electrons in the compos-
ite particle, X„ the number of electrons in the shell hav-

1Ilg princ1plc quantum number Pl, t/ 1s thc princ1pal qUan-
tum number of the valence shell, and the a„are screening
parameters. Thc A„were obtained by ItcIat1ng OD thc
Dirac equation to obtain Z —X dependent fits to experi-
mental isoelectronic ground-state energy levels. Thc re-
sulting analytic potentials are very similar to Hartree-
Fock self-consistent-field potentials.

Following Barker the effective potentials of Eq. (1) are
convcrtcd to pscUdopotcnt181s according to

(n', I') are the ground-state quantum numbers. The sum

in Eq. (6) starts at (n', I'), since by definition core states
Mc 811cady occupied RIld no Rddlt1onal particles
can become bound in these configurations. When
r & k„=A'/+2@„kT, u„~V„.. For r~O, u„—const,
whereas V„.—+ cc. In the present work we further decrease
the u„ interaction for small r by excluding highly occu-
pied bound states from the definition of Pu„. How this is
dQIlc 1s now described.

In principle, it would seem that it should be possible to
insert the pseudopotentials for point charges, given by Eq.
(5), into the coupled HNC equation and allow composite
particles to form out of the pseudopotential for pure
Coulomb interactions. However, the calculation of the en-

ergy levels of two-electron composites requires a precise
quantum treatment for the second electron, whereas the
current method only treats this interaction as a classical
1ntcl Rct1GIl bctwccn pMticlcs that interact through thc
two-particle pseudopotential. Aside from inadequate
physics this calculation cannot be pursued to low tempera-
ture since g„„ the electron-ion pair distribution function,
becomes strongly peaked and the iterative procedure I'e-

quired to solve the coupled HNC equations become un-
stable. The situation for both of these problems can be
improved by trcat1ng composite pMticlcs Rs Ilcw com-
ponents. In this approach the part of g„associated with
bound electrons is separated out and defines the composite
particle. As a result, the g„ that is calculated in the HNC
solution does not include occupation of strong bound
states (i.e., states having

~

E
~
~ kT). An additional reason

for making this separation is that electrical conductivity
calculations require partial structure factors for unbound
and weakly bound electrons. It remains to produce a de-
finite description of how the Sister sum is broken into a
part describing localized electrons (composite particles)
Rnd 8 pMt describing thc intcI'action bctwccIl dcloc811zcd
electrons and ions. An important question to answer is
this; what Rrc thc CGIIlpos1tc pMtlclc cncI gy lcvcls7 Thc
results of Refs. 2—4, 6, and 10 provide guidance.

IIl I 8 d18gi RIDmatlc RIlRlysls was Used to Icplacc thc
bare Coulomb potential with an exponentially screened
Coulomb interaction. The resulting eLectron-nucleus
screened energy levels, appearing in the Cii of step (5),
were expanded in a perturbation series of the form

Ze ~nle2 4

En((~a) =&ni+ +, +

where the E„( are isolated ion energy levels, Z is the nu-

clear charge, the A„I aI'e state-dependent constants and A,D
is a screening length fQI' an exponentially screened
Coulomb potcntlRl g1vcn by

A,gp
——IkT/[4me(z, +Z z )]J'~.

z, and z~ are electron and nucleus activities, respectively,
defined by

X %i(r,p)dp, (7) z; =(2s;+ 1)A,; e ' (1O)

~here p„ is the reduced mass, the E„I are the energy levels
foi' qiiaii'tuiil state (n, l), p is tlie i'ela'tive illoiileiltui11, aild 1,; =(2rrfi /m;kT)'~
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One-electron composite part1cle actlvit1cs, obta1ncd by
decomposition of Cz into effective one-body and two-body
components, were then defined as the product of the elec-
tron and nucleus activities weighted by modified
Boltzmann factors according to

z,"' =2'i'(2l+1)A, ,' (e "'—1+PE„,)z,z . (12)

The subtraction of the two leading terms of the
Boltzmann factor results from analytic compensation with
scattering states. The corresponding sum over all bound
states is referred to as the Planck-Larkin partition func-
tion 22

The first-order shift in the Coulomb energy levels given
by Eq. (8) is the same for all states and in Ref. (4) Eq. (12)
was rewritten in the form

—ze'gkr~~ ~t
&ee =& 8C

Z8 1 Z81— +-
kTAg 2 kTAD

z""=2' {21+1)X'

E„'i=E„i—Ze /A, D .

The Taylor-series expansion terms in the brackets of Eq.
(14), which are due to electron-ion bound states, are the
same order as terms due to electron-electron and ion-ion
interactions. After all terms of the same size are collected
together it was shown that all the terms in Eq. (14) are
redistributed into the terms that insert a composite parti-
cle activity in each place that fundamental particle terms
appear. The simplest example of this is the replacement
of the screening length given, by Eq. (9), by

' 1/2
kT j4~e'(z, +Z'z +(Z —I)'gz,"'

Pl, I

Generalization to include multielcctron composites was
also carried out in Ref. (4). The resulting activity expan-
sion resembles the fundamental particle expansion with
thc compos1tc partlclcs cntcr1Ilg Rs add1t10Ilal components.
However, since the activities used in that work were
screened by the plasma„ i.e., involve screened energy levels,
composite particle terms appear that have no counterparts
in the fundamental particle expansion. As a result, it is
not clear how to write down a Helmholtz free-energy ex-
pression, treating composites as additional components,
that does not mix up (double count) the screening correc-
tions.

The expansion {14) is always valid for screened
Coulomb energy levels, but is most useful when the first-
order perturbation term in expansion (8) is the dominant
correction. %'hen this is the case the wave functions are
only slightly modified, due to the second-order perturba-
tion correction, from those for an isolated ion. %'hcn
AD~A, ,"', the critical screening value for state {n,I), then

E„i—+0 and the expansion {14)becomes artificial. In this
case the level E„i is more appropriately treated on the
same basis as a continuum state. When A,D &A,,' compos-
ites do not form at all and the expansion reverts back to
the fundamental particle form. Since z~ &&p~ for strongly
coupled systems, the density at which this occurs is some-
what higher than predicted by the disappearance of the Is
state in a Debye screened potential, i.e., the screened ener-

gy levels that appear in an activity expansion are different
than those that appear in the density expansion at the
same (p, T) point, suggesting that possibly neither are true
energy levels of the many-body system. Since the activity
series works with physical clusters, it seems that activity-
dependent energy levels are more likely to be related to
physical observables.

It was shown in I that the screened composite activity
expression given in Ref. (4) can be renormalized such that
the activities for composite particles involve the isolated
1on cncrgy lcvcls. In this case the composltc actlvltlcs
enter the activity expression analytically exactly the same
as fundamental particles, i.e., the extra terms associated
with screened composite particle activities have been ab-
sorbed in the renormalization. This result can be immedi-
ately inverted to obtain a multicomponent expression for
the Helm holtz free energy in which the composite
particles enter as new fundamental components. This free
energy is thermodynamically re1ated to
PP( Ip;, I, [S~ ( I p; I ) J ) appearing in step (8).

In general, each bound state could be treated as a
separate component. This is a clear concept for composite
states that R1c highly occup1cd but states hav1ng binding
energy large compared to kT should not need to be treated
in a special way. The Planck-Larkin partition function
gives an analytic way of separating the bound-state charge
densities into a part associated with composites and a part
which is treated as being delocalized. This result has al-
ready been used in Eq. (12) for screened charge densities.
When the first-order perturbation term of Eq. (14) is dom-
inant, use of the isolated ion energy levels in a Planck-
Larkin partition function provides a proper way of defin-
ing the charge density of composite particles. In this case
the interaction between unscreened composite particles in
excited states is large at fairly low densities. When the
free energy is minimized, as discussed in Sec. III, this
repulsion will tend to depopulate excited states. The total
pressure arising from particles in these states will
nevertheless always exceed that which occurs when they
are treated as ideal and having isolated ion energy levels.
This is qualitatively similar to treating particles in these
states as noninteracting but screened according to, for ex-
ample, the confined atom model.

A physical interpretation of the results of I is as fol-
lows. At high temperature a heavy ion moving through a
plasma will polarize the electron distribution such that
unbound electrons moving in its vicinity will spend a little
extra time passing by. This polarization screens the in-
teraction of the ion with other plasma particles. When
kT &

~
Eb ~, the binding energy, there is a possibility that

electrons will form stable bound states. In this case at
large distances the electron-ion interaction will again be
screened by the polarized free electrons which are within a
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FIG. 1. Hydrogenic electron-ion pseudopotentials for
kT =12.53 eV. —.—,Barker potential given by Eq. (4); ———,
Dunn-Broyles potential given by Eq. (21);,Planck-Larkin
potential given by Eq. (20).
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FIG. 2. Pseudopotentials for e-Xe+ interaction at kT =2 eV.
———,Barker-type pseudopotential with core states excluded;

, Planck-Larkin pseudopotential. Effective potential given

by Eq. (3).

B I
&ej S ej + W'ej

where 8'„ is the localized bound-state part given by

2 3/2
2m.PA

el
I ei

g(2l + 1)4'„I(r)
n, l

X (e "' 1+pE„,)+„,(r), —

and 8'„ is the delocalized part given by

sphere of radius ao/Z centered on the ion. After an elec-
tron enters a low-lying bound orbit the free electrons that
were initially spending a little extra time in the vicinity of
the ion move away but, now since the bound state is an ex-
treme form of polarization, the tendency for them to be
replaced by other free electrons is diminished. The result
is that the binding energies of deep bound states are con-
siderably less shifted than predicted by the static screened
potential. The equilibrium distribution of electrons
around ions is determined by free-energy minimization.
This picture of the plasma is consistent with the results of
I and also forms the basis for the present work.

When second-order terms in Eq. (14) become important
the results of Ref. (4) suggest that the composite particle
wave functions are polarized by the plasma, whereas the
expansion derived in I has redistributed these polarization
terms into the interaction correction. In the present work
a pseuodpotential constructed from two-body unscreened
wave functions, but excluding strong bound states, is used
in a many-body classical calculation. It is unlikely that
this will reproduce short distance quantum corrections
equivalent to a multielectron solution to the Schrodinger
equation. It should, however, be adequate as long as the
low-lying wave functions are not strongly modified. Us-
ing the Planck-Larkin partition function as a basis for
separating the two-particle Slater sum into a localized part
and a delocalized part yields

X g(2l + 1) f 4( (r,p)e "VI(r,p)dp
l

0

—g(2l + 1)%'"„~(r)(1 pE„I )0'„l—lr) . (19)

Each state that contributes appreciably to 8',; is treated as
a new component. The charge distribution of high-lying
bound states, a part of the charge distribution for low-
lying states, and the continuum states are all treated on
the same basis. They are used to define an electron-ion
pseudopotential that precludes strong bound states accord-
ing to

Pu, ;(r,P)= —ln W'„.

Equation (20) will be referred to as the Planck-Larkin
pseudopotential.

Figure 1 compares various pseudopotentials for
electron-proton interactions having kT=12.53 eV. The
Planck-Larkin- and Barker-type pseudopotentials were ob-
tained from numerical solutions of the Schrodinger equa-
tion. All the potentials approach e /r for large r. Th—e
Dunn and Broyles form is an approximate analytic form
obtained from the high-temperature S-particle Slater sum,
given by

—r/X,"
u,J. ——z;zje (1—e ")/r . (21)

Equation (21) includes a high-temperature correction for
bound states and thus lies between the Planck-Larkin and
Barker potentials.

Figure 2 shows some results for e-Xe+ at 2 eV. The
peaks in the potential occur at the nodes of the 5p state.
Higher states in the Slater sum keep the peaks in the pseu-
dopotential bounded. Pseudopotentials for composite ions
mould be difficult to fit and consequently they are tabulat-
ed at precisely those discrete values of r that will be used
to solve the coupled HNC equations. For r &A, + the
pseudopotential approaches the input effective potentials
given by Eq. (3), so that long-range, many-particle screen-
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ing is nearly classical.
Another consideration is e1ectron degeneracy and ex-

change. To account for this, W«can be split according to
1

~ee Y(~easel+ ~eyer) &

where W„„is given by Eq. (5) and
' 3/2

m fi28' „,=2
Bee

(22)

p 2/
X g (21 +1)I %i (~,p)e 4i(r p)dp .

I even

Like-spin and unlike-spin electrons are treated as separate
components' having interaction potentials given by

Pu„„= ln W„—„&

Pu„„=—in@;„, .
(24)

When a third electron is also within a de Broglie wave-
length of the interacting pair, diffraction corrections be-
tween pairs of particles are accounted for but interference
scattering between these diffraction patterns is ignored.
By studying the X-particle ring diagrams it was shown in
Ref. (10) that this makes the pseudopotential more repul-
sive at small distances. Three-electron and higher ex-
change terms are also not included. Due to the added
complexity of treating the electrons as two separate com-
ponents we will generally use an averaged potential given
by Pu„= —InW„, which is equivalent to using Eqs. (24)
in the range where the two-particle exchange approxima-
tion is strictly valid.

III. THE INTEGRAL-EQUATION METHOD

The activity method of I, on which the current
tegral-equation method is based, is restricted by several

parameters:
(1) the electron-ion plasma parameter

A„=pg; e /A. D ( I,
where g; is the net charge Z; —X;;

(2) the diffraction parameter

y; =X;J/A, g) (1;
(3) the degeneracy parameter

8, =(A,, /a, ) ( I,
where A,, is the electron thermal de Broglie wavelength
and a, =(3/4np, )'; and

(4) the screening overlap parameter

'P=l'/A. D ( 1

where r is the mean ionic core radius.
It is also limited such that there is no appreciable overlap
of the charge density of electrons on neighboring ions.
Since all orders of Coulomb coupling are included in the
HNC equatio~, the present method removes the restriction
on A„. The pseudopotential given by Eq. (20) approxi-

+2ZaZHS aH +Z HS HH + . . (25)

In Eq. (25),

AD =
I kT/4~e'[z, +Z'z +(Z —1)'z„+ . ]j' ', (26)

2/2 kT
se'a=V2k, a —f g(21+1)dp e

Bp

+(wp —wi )

+ 7TAD
2 kT (27)

where I is the angular momentum, p is the relative
momentum, 5& is the phase shift for the screened Coulomb
potential,

wp
——g (21+1),

n, l

w&
——g (21+1)

kT '

and g; is the net change on species i. s„and s~~ are given
by equations similar to Eq. (27) except, since there are no
bound states wp ——w~ ——0. The last two terms in (27), cor-
responding to first- and second-order perturbation theory
are subtracted from the scattering state term because they
were used in constructing the screened potential. The two
leading terms in the high-temperature expansion of the
bound-state partition functions are included with the

mates the many-body part of f(y), discussed in Sec. I,
thus relaxing the restriction of y&J. Some relaxation of the
restriction on core-core interactions is also obtained, but
the other restrictions remain. As a result, the current
work will be most useful for multiply ionized high-Z plas-
mas, such that the ions are strongly coupled while the
electrons are only slightly degenerate and moderately cou-
pled. However, most previous theoretical work has been
applied to hydrogen and we will make some contact with
this work in what follows.

Equation (42) of I gives an activity expression for PP, as
a function of the renormalized Mayer S function, for
reacting partially ionized Boltzmann plasmas [see step (7)
of Sec. Ij. Equation (61) in I is a similar result with Fermi
statistics used for the elec& ~ns. In the present work we
incorporate quantum diffraction and exchange corrections
into pseudopotentials, which are to be used in classical ex-
pressions so that Eq. (42) of I is the correct form to use.
As discussed in Sec. I, this was obtained by starting with
an expression derived in Refs. 3 and 4, which obtains PP
from a differential operator acting on S(z„za), and carry-
ing out a renormalization to obtain PP from a differential
operator acting on S(z„z,zH, . . . ), where

1 CS( e&Za, ZH& . . )=
3 +z~ s«+ 2z~z~se

12m', d

c 2+2z, zHs&H +zQ«
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scattering state contribution since they almost precisely
compensate terms appearing in the scattering states.
The Planck-Larkin part of the two-particle trace has been
factored out and used to define the augmented set of ac-
tivity variables. In the Coulomb limit (AD ~ ao ), the weak
pseudopotential defined in Sec. II Eq. (19) corresponds
pseudopotential defined in Sec. II Eq. (20) corresponds
s,'~ approaches the electron-nucleus component of 82 ap-
pearing in step (9). In the present work screening is intro-
duced via the HNC iteration procedure. Similar but
slightly moxe complex considerations apply to s,'H, s'H,
etc. ' In complete generality these later contributions cor-
respond to at least three-body interactions. In the pxesent
work, as described in Sec. II, we introduce two-body effec-
tive potentials to account for these terms. It is also as-
sumed (definitely an approximation) that the interaction
potential is not altered by the presence of additional parti-
cles.

Since composite activities enter Eq. (42) of I analytical-
ly exactly as fundamental particles it can immediately be
inverted to obtain the corresponding Helmholtz free ener-

gy. Utilizing the connection between S( Ip; I ) and
S( Iz; J ) derived in Refs. 3 and 4 the result is

F=F, +F +gF, VkTS(Ip—; I), (28)

E, = N, kT[ln(—g,p, 'A,, )+1],
F = —N kT[ln(g p 'A, )+1],
F, = N, kT I lnfg—,p, 'A,, (e ' —I+PE, )]+1I,

(30)

(31)

S is the interaction part of the Helmholtz free energy
given by Eq. (23) of Ref. 4, the subscript a refers to bare
nuclei, and the subscript c refers to composite particles.
In this form S is explicitly divergence free. For the pur-
pose of defining a set of coupled integral equations, hav-
ing composites explicitly factored out and treated as new
components, we decompose S(Ip; I) into virial coeffi-
cients for the bare potentials [see step (9) of Sec. I]. It is
now possible to apply the multicomponent hypernette-
chain integral-equation method to treat this many-
component, many-body problem. In addition to the ap-
proximations implicit in the pseudopotentials, we have
now also assumed the bridge diagraIn contribution to be
zero, Numerical simulations have shown this to be a good
approximation. The HNC includes all orders of pertur-
bation for both electrons and ions and should be better
behaved outside the range of plasma parameters for which
the approximations are appropriate. When better pseudo-
potentials are developed this approach will be useful over
a large range of the plasma parameters.

The pair distribution functions in the HNC approxima-
tion aie given by

g J(r) =exp[ 13u;~(r)+h,z(r) cj(r)]—, —

where the u,z are the bare pseudopotentials discussed in
Sec. II, the h;J are the total correlation functions, and the
c,J are the direct correlation functions. The h,z and c,i are
related through the Qrnstein-ZerniI{. e relations which,

written in k space, for m components, are

h;J(k)=c;J(k)+ gp„h; (k)c„i(k) .
@=1

(33)

where p =g~pg and xg =pg /p. The excess pressure ls
given by

= ——', mPp gx~xj g;; (r) r'dr . (35)

The usual method to obtain the free energy is to integrate
over a coupling constant which is equivalent to integrating
the following thermodynamic relations from high tern-
perature T' to T at constant corn.position and voluxne:

TP) T 1 E(8)d8
g2

Hansen et al. have derived a result for the Gibbs free en-

ergy in the HNC approximation which requires only an
integration over the distribution functions. This method
is much easier to apply than Eq. (36). In the present case
the potential is temperature dependent and it is necessary
to verify that the Hansen et al. result is still valid. In this
case

U(r&, r2, . . . , r&,A)= g A u(r& JA) + g u(rj) (37)
j=2 2&i &j&X

and it follows that

i'
Bu~j(r, k, )

Pp,'"=p I dA. I dr gxJ-P h;J(r, A). .
j=i

(38)

Now the derivation of Hansen et al. follows through
without change except it involves P(Bu;~/BA, } instead of
Pu;J with the result

j' 00

Pp,"=g xJ —,
' g h;J(r) Ihi(r)[h;i(r) —cj(r)]r dr

j=1 0

—c f)(0}J (39}

where c';J(0) is the transform of the direct correlation
function with —Pu,J (0) subtracted off. The total
Helmholtz free energy is given by

C

F=F, +E, + gF, +g¹Pp;'"+PP'"V/No, (40)

where E, , F~, and E, are the ideal free energies, the sum
on e ranges over all composites, and I"" is given by Eq.
(35) with i,j now also ranging over composite particles.
The charge densities that were subtracted off appear in E,'
as new ideal components. The total energy is obtained
from

It is necessary to iterate to obtain self-consistent solutions
to Eqs. (32) and (33). The methods used here are
described in Ref. 12.

The excess energy per ion is given by

PE cx .a(pu, j)
=2mPp g x;x~ gj(r)r dr,
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FIG. 3. Comparison g,„of current work with the density-
functional method (Ref. 27). ———, density-functional
method; HNC method for fully ionized plasma reference
system using the Barker pseudopotential;, HNC method
for fully ionized plasma reference system using the Planck-
Larkin pseudopotential.

E= =Ek,„+E'"+Eg,B(pF)
8

where

(41)

Ek,„—,N, +N~+ g——N, kT, (42)

&'" is given by Eq. (34), and Es is the energy of bound
electrons

N, E,(e ~ c —1)

~ (e ~ c —1+PE, )

The total pressure is correspondingly given by

2EkP= +P'" .
3V

(43)

(44)

IV. RESULTS

A major goal of this work is to obtain the equation of
state, pair-distribution functions, and structure factors for
multiply ionized dense plasmas. It is desirable to compare
the results with experiment and other theoretical calcula-
tions. However, most of the experiments have achieved
a relatively low-level of ionization and only a few first-
principles calculations have been published. Recently
Dharma-wardana and Perrot (DWP) applied the
density-functional method to nearly fully ionized hydro-
gen at ~, =1 and 2 for a number of temperatures, where
r, =al aao=[3(4m. ) 'g, p;]'~, and i ranges over all
ions. The equation of state of partially ionized argon was
studied in I. In the present work calculations for hydro-

V V'„.= 4me Z;5—(r)+ $ Zjplh~j.
j(~i)

(45)

Taking the Fourier transforms of Eq. (45) yields

4m.e Z;V'„=—
k e

(46)

gen and argon have been carried out under conditions
similar to those studied in these two works.

The DWP hydrogen calculations for r, =2 and
kT = 12.53 eV can be treated by both of the approaches
considered here: (1) the fully ionized plasma reference sys-
tem using pseudopotentials given by Eq. (4), and (2) the
partially ionized plasma reference system using pseudopo-
tentials given by Eq. (20). In view of the relatively small
number of hydrogen atoms that form under these condi-
tions it is most appropriate to work with a fully ionized
plasma reference system. In order to work with a partial-
ly ionized reference system utilizing the Planck-Larkin
pseudopotential, it would be necessary to factor out hy-
drogen atoms as a new component and carry out a free-
energy minimization to obtain the number densities. At
low temperature it mould, in addition, be necessary to fac-
tor out H, H2+, and H2 as new components. This re-
quires a number of ion-atom, atom-atom, etc. , interaction
potentials and will not be undertaken in this work. Figure
3 is a comparison of g,„obtained from the present work
with that of DWP. The agreement is good. The Planck-
Larkin result for fully ionized hydrogen is also shown.
This calculation is incomplete since strong two-body
bound states have been completely neglected but it should
be a reasonable approximation when these states are not
highly occupied. It is included in order to evaluate the
importance of strong bound states at this temperature and
density, indicated by the difference from the complete cal-
culation. Calculations were also attempted at r, =l and
kT=12.53 eV. The HNC procedure did not iterate to a
convergent solution with the Barker-type pseudopoten-
tials, while the fully ionized Planck-Larkin pseudopoten-
tials gave distribution functions close to those tabulated in
Table II of DVPP. r, =1 is too dense to expect the two-
body quantum corrections used in this work to be applic-
able and X-particle corrections similar to those obtained
by Pokrant et al. are required.

Figure 4 gives electron-electron pair distribution func-
tions for the same conditions as Fig. 3. Electrons of oppo-
site spin penetrate well inside the Landau length while
Fermi repulsion helps prevent significant penetration by
electrons of like spin. The total electron-electron distribu-
tion function is ~0.5 at r =0 due to Coulomb repulsion.
It is believed that the two-body diffraction approximation
allows too much clustering of electrons at high density re-
sulting in the HNC convergence problems at r, = 1.

A quantity of considerable interest is the statically
screened electron-ion interaction potential. This arises
naturally in the density-functional method but is not part
of the HNC method being developed here. However, since
the pair-distribution functions are obtained, it is a simple
matter to calculate the screened interaction between two
free particles from Poisson's equation
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FIG. 4. Electron-electron distribution functions. Like-spin
and unlike-spin distributions are indicated. g„ is the average of
these two distributions.

FIG. 5. , electron-proton static screening function
—rV', p(r) given by the transform of Eq. (46); —.—,ratio of
V',p(r)/VDH, where VDH is the Debye-Huckel potential; ———,
Debye Huckel screening function that just supports a 1s state.

where e is a screening function given by
1/2

—I g + y J IJ
j(~j) l I i

and the S;J are partial structure factors. When the
Planck-l, arkin pseudopotential is used to obtain S;. the
bound electronic charge density should be added to Eq.
(45). This should have little effect on e when there is no
appreciable core overlap. In this case, to lowest order, the
bound-state charge plus the neutralizing part of the nu-
clear charge acts like a neutral point as far as e is con-
cerned so that Z ~g' in Eq. (47). The transformed
screened electron-ion potential for composite particles is
given by

the ion-ion interactions are dominated by the Coulomb
tail, so that VJ g;gze /——r The co.rresponding electron-
ion interactions are given by Eq. (4). Since the ion-ion in-
teractions are classical the HNC equation treats this part
of the calculation correctly, except for the neglect of the
bridge functions. In order to make comparisons with the
results of I, calculations have been carried out for Ar.
Figure 6 compares the nonideal compressibility factors
AI'V/XokT of the current work with those of I for
kT&10 eV and p=l g/cm . The 9'„ functions are a
series of approximations to PI'( Iz; J, tOs Ss I ) constructed

—1.75

4m.e W„

)k +u„
4me g;

k~e
(4&)

where the sum is over Fourier transforms of the short
range parts of Eq. (3).

Figure 5 shows the screening function rV', ~(r) corr—e-

sponding to the same conditions as in Figs. 3 and 4. As
already discussed, in the current. approach this is expected
to apply to scattering states and weak bound states but not
to strong bound states. The screened potential is stronger
than a Debye potential for distances less than 0.7a0 but is
weaker than a Debye potential for greater distances. For
the purpose of comparing with DWP, the Debye potential
that will just support a 1s state is also shown. It indicates
that a potential having the strength of V',

~ is close to being
able to support a bound state. This is consistent with the
results of DWP who obtain a static screened potential that
just supports a 1s state.

The present method can readily be applied to multiply
ionized plasmas such that the electrons are moderately
coupled while the ions are strongly coupled. In this case

I

100
I p

1000

FIG. 6. Nonideal compressibility factors in various approxi-
mations for Ar at 10.2 eV and p=1 g/cm . ——, , and

are the H2, H3, and H4 approximations of I, respectively;
———,HNC result of present work; —"—,ratio of the kinetic
pressure I'k;„ to the total pressure obtained in the 9'3 approxi-
mation of I (right-hand-side scale).
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FIG. 7. Various plasma parameters as a function of tempera-
ture for the conditions of Fig. 6. , ion-ion I defined in
text; ———,A„ in canonical ensemble defined with Z=Z;
——,A„ in grand-canonical ensemble also with Z =Z;, y„.

to converge rapidly when the heavy ions are strongly cou-
pled. The nonideality correction of the current work was
calculated from the ionization equilibrium obtained with
the H3 approximation of I. At any given temperature
only three ionic charge states are appreciably occupied. In
the HNC calculations only these states are considered.
This requires a straightforward contraction of the equa-
tions given in Sec. III. The H4 approximation of I is in
somewhat better agreement with the current calculations,
particularly at high temperature. It appears that inclusion
of high H„would further improve the agreement. The
higher H„present difficult numerically problems and
were not calculated. This is also the reason results for H4
were not obtained at low temperature. The disagreement
between the equation of state is not as large as indicated
by Fig. 6. This is because the ionization equilibrium is af-
fected by the degree of nonideality with the result that the
total pressures and energies are in somewhat better agree-
ment than are the partial contributions. It appears that
inclusion of higher order &„would further improve the
agreement. Figure 6 also shows the ratio of Pk;„/P for the
H 3 approximation.

Figure 7 shows various plasma parameters as a function
of temperature for the conditions of Fig. 4. The deriva-
tion of I only applies when A„&1 and y„( 1 which
occur for kT &70 and 25 eV, respectively. Figure 4 shows
that the H4 calculation and the HNC results are in
moderate agreement for kT &90 eV. I is the ion-ion
strong-coupling parameter given by I =Z e /kTa. It has
a maximum value of 7 at kT =29 eV. This is the point of
least accuracy for %3 (see Fig. 1 of I) and accounts for
the abrupt minimum at this temperature. Using the R3
ionization equilibrium as initial input the free energy was
minimized according to Eq. (40), at kT=10.2 eV and

p = 1 g/cm . The dominant species obtained by the
activity-expansion methods were Ar +, Ar +, and Ar +
with 57%%uo of the ions being Ar + and Z=2.83. The cor-
responding HNC free-energy minimization gives Z =2.90.
Some differences are to be expected since (1) the activity
calculation considered multiply excited electronic states
whereas the current work was limited to single-electron
excitations, (2) only two-particle quantum effects were in-

0.4 0.8
r/g

1.6

FIG. 8. Electron-ion distribution functions for the conditions
of Fig. 6. . . , e-Ar + distribution; ———,e-Ar'+ distribu-

tion;, e-Ar + distribution.

eluded in the pseudopotentials, (3) the HNC approxima-
tion does not include the bridge functions, and (4) the clas-
sical ion corrections were calculated in an approximate
way in I.

Figure 8 is a plot of free-electron —ion distribution func-
tions as a function of r /a for the calculation just
described. The minimum around r=0. 18a=0.86ao is
due to exclusion of electrons from the region of the filled
L shell. The three distributions have very similar shapes
except g ~ 3+ crosses g 4+ around r =a and tails off to
unity much slower than g 4+ or g ++. This crossing
has a pronounced effect on the small-k behavior of the
partial structure factors as shown in Fig. 9. Figure 10
gives the corresponding ion-ion distribution functions for
ions of like charge. The behavior of gA 3+ ~ 3+ is different
than for the other two ions. It goes above one for r &a
which is apparently due to the long-range tail on g 3+.

Figure 11 gives g„ for the same conditions as in Figs.
6—10. The HNC calculations were carried out for two
different models of free-electron interactions: (1) classical
electrons and (2) the pseudopotential given by the aver-
aged version of Eq. (24). The classical electron distribu-
tion function has a peak well above unity for r in the vi-
cinity of 0.4a. This results from a compromise between
the long-range attraction of several electrons toward the
multiply ionized ions and the mutual repulsion between
the same electrons. The electron distribution obtained
from the pseudopotential, including the net effect of quan-
tum diffraction and quantum statistics, is somewhat dif-
ferent than the classical distribution. The quantum effects
reduce the Coulomb repulsion at short distances and also
allow electrons of opposite spin to both be near r =0, thus
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FIG. 9. Electron-ion static structure factors corresponding to

the conditions of Fig. 6,e-Ar + structure factor; ———,
e-Ar + structure factor;, e-Ar + structure factor.

accounting for g«&0 at r =0 and the higher maximum in

g„near r =0.35a.
Figure 12 gives the screened Coulomb part of Eq. (48}

for e-Ar + and e-Ar + interactions. The corresponding
Debye potential and the screened potential obtained using
the activity method of I are also shown. Results for
e-Ar + interactions are not shown but they lie close to the
e-Ar + curve. Since few positive ions approach each oth-
er within 0.5a, the screened potentials are somewhat
stronger than the Debye-Hiickel potential. The functional
forms of the various electron-ion potentials are different,
which is another difference with simple Debye theory. It
is also noted that the ion of largest net charge is preferen-
tially screened by the electrons, especially for r & a. Small
oscillations in the screened potentials (not shown) set in

for r & 2.3a. These oscillations are due to long-range ionic
order and become more pronounced as the coupling is in-

creased. The corresponding ion-ion potentials have attrac-
tive wells. The screening function obtained in the grand-
canonical formalism is much longer ranged than those ob-
tained by the current method. This results from the fact
that the strongly coupled particles contribute very little to
the screening in the grand-canonical formalism so that,
for the particular conditions being considered here, the re-

I
I

I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
r/a

FIG. 11. Electron-electron distribution functions for the con-
ditions of Fig. 6; ———,assumes free-electron interactions are
classical; —,electrons are assumed to interact through two-

body pseudopotentials discussed in Sec. II.

suiting screening parameter is close to the electron Debye
length.

V. DISCUSSIGN

It has been shown that pseudopotentials obtained from
the two-particle Slater sum give good results for partially
ionized plasmas when inserted in classical integral equa-
tions. In order to apply classical equations in regions
where composite particles form, the charge density of lo-

calized electrons was factored out and treated as new corn-

ponents. In so doing the charge distributions of bound
electrons within the composite particles were obtained
from solutions to the Schrodinger equation. The charge
distribution of weakly bound electrons and unbound elec-
trons was obtained from the HNC equation. Screening of
the composite energy levels does not occur explicitly in
this formulation; contrary to Debye-Hiickel-like formula-
tions. Instead we have used the results of I, which showed
that bound-state screening terms are the same size as
terms appearing in the electron-electron and ion-ion per-
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FIG. 10. Ion-ion distribution function for ions of like charge.
———,Ar +-Ar + distribution;, Ar'+-Ar'+ distribution;
~ . Ar4+-Ar4+ distribution.

FIG. 12. Static electron-ion screening functions for the condi-
tions of Fig. 6; ———,l3ebye-Huckel; ~ - - e-Ar + screening
function; ——,e-Ar + screening function;, screening
function that occurs in the grand-canonical ensemble method of
I.
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turbation expansions in the activity, and have treated this
screening on the same basis as interaction terms. As a re-
sult, the energy levels for composite particles that enter
the theory are unshifted by the plasma. The results of
Ref. 4 show that at some high densities there are no bound
states, so that it is not reasonable to use the current
method at high density. A complete formulation of the
problem would allow the composite particie energy levels
to shift, but by a much smaller amount than predicted by
the Debye potential.

The method developed here gives the equation of state,
pair distribution functions, and their transforms. A num-
ber of approximations were made. The most serious is
probably the neglect of several-particle diffraction and ex-
change effects when several free electrons are within a
sphere of size I, Approximations similar to those dis-
cussed here work reasonably weil for the zero-temperature
electron gas. The pseudoclassical problem itself was
solved only approximately, due to the neglect of the bridge
functions. Multielectron bound-state excitations do not
present conceptual difficulty, but were neglected due to
numerical expedience.

In future work we plan to study the effect of several-

particle quantum corrections to the pseudopotential. "
The quantitative accuracy of the calculations can be im-

proved by including the bridge functions. Several
methods for doing this are available. The Rosenfeld-
Ashcroft method is based on parametrized hard-sphere
bridge functions. It works well for monotonic repulsive
potentials, but some modifications will be required to ap-
ply it to electron-ion bridge functions. The work of Iye-
tomi and Ichimaru calculates the lowest-order bridge
function for any potential that does not diverge at r =0.
These authors apply a "stretching function" to obtain
higher bridge functions.
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