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A new approach to the partial response functions in multicomponent plasmas is introduced. Cen-

tral to the approach is that the density response function responding to the total (plasma plus exter-

nal) field and a newly introduced dielectric matrix in species space are regarded as the primary
quantities. A considerable simplification is achieved this way. Correlational terms to 0{y) and

pair-correlation functions both for ion-electron and binary-ion-mixture plasmas are calculated. Fi-
nally, the partial response functions in the mean-field-theory approximation are analyzed and it is

shown that the consistency requirement based on the required symmetry of the response function is

not always satisfied.

I. INTRODUCTIGN

The crucial role played by the dielectric and other close-
ly related response functions such as polarizabilities, den-
sity response functions, etc. in the theory of plasmas and
other many-body systems has long been recognized. One
of the important ways through which information from
the response functions is generated is the set of relation-
ships known as linear and nonlinear fluctuation-
dissipation theorems (FDTs). They allow one to calculate
correlation functions and static and dynamic structure
functions from the usually more easily accessible response
functions. Nevertheless, for multicomponent systems
these relationships lead to a peculiar problem which is due
to the fact that for systems consisting of, for instance, E
species, the number of physical polarizabilities is K, but
the number of correlation functions and structure func-
tloiis 1s 2 E (K + 1). Some tlnie ago Vashlshta, Bliatta-
caryya, and Singwi' suggested a way of handling the mul-
ticomponent situation. They introduced the concept of
"partial" response functions (partial density responses and
partial polarizabilities) describing the response of the sys-
tem to fictitious external fields which act on each of the
species independently. In their paper Vashishta et aI. ' de-
rived simple relationships for the partial response func-
tions in the framework of the Singwi-Tosi-Land-Sjolander
(STLS) mean-field-theory approximation. In a subse-
quent work the present authors exploited the concept of
partial response functions to set up a general framework
for various static approximation schemes for strongly cou-
pled plasmas. In particular, the two mean-field theories,
STLS and TI (Totsuji-Ichimaru ), and the more general
velocity-average approximation due to Golden, Kalman,
and Silevitch (GKS) were discussed. The concept of par-
tial nonlinear response functions was also introduced in
that paper. In a later work, the results were reviewed by
Kalman. Even though we were able to achieve consider-
able progress in the development of' a two-component for-
malism and in establishing general relationships, the for-

malism very soon became rather unwieldy and lost all
transparency. In a recent work Golden and Lu discussed
nonlinear external (quadratic) partial response functions in
the random-phase approximation, but the formalism suf-
fered again from lack of transparency.

While the concept of partial response functions is a
powerful formal tool, it should be clearly understood that
it is not more than that. Partial response functions are
not directly observable quantities. This is so because the
fields that we contemplated in the definition of partial
response functions, namely, fields that act on one type of
plasma species only, never occur in actual physical sys-
tems. Nevertheless, the concept is perfectly reasonable.
All that it requires is that each plasma species, in addition
to its actual electric charge, be endowed with a (weak) fic-
titious "species charge" ' which can interact only (i) with
its corresponding perturbing field, or (ii) with another par-
ticle carrying a similar species charge. Even though such
"species charges", in general, do not exist, there is nothing
physically inconsistent in adding them to the system and,
once they have completed their task, in letting them van-
ish.

In the present paper we take a fresh look at the general
formalism of partial response functions and at their appli-
cation in strongly coupled plasma approximations. Our
present approach is based on a few simple observations,
which, however, not only render the existing formalism
incomparably more transparent, but also allow one to do
the calculations with ease much beyond the point they
have been carried to previously. First, we adopt a matrix
formulation in species space and we introduce the new
concept of partial dielectric matrix. Second, while previ-
ous discussions were directed exclusively at the external
partial response functions, we define and analyze the
structurally simpler total (as contrasted to external) partial
response functions, i.e., response functions responding to
the combined total (external plus plasma) field. Third, for
the correlational calculations we base our work on the rep-
resentation of correlational effects through the quadratic

Qc1984 The American Physical Society



THEORY OF PARTIAL RESPONSE FUNCTIONS IN. . .

response function; the equivalence of this approach to the

more conventional BGY hierarchy for the one-component

system has already been demonstrated.
Prominent among the multispecies systems to which the

partial-response-function formalism applies is the
electron-ion plasma (tcp). The classical treatment of such
systems is, however, fraught with difficulties, which stem
from the inadequate description of bound states. A sim-

ple way to avoid the difficulties was suggested by a num-

ber of workers. It consists of the introduction of a modi-
fied (softened) Coulomb potential between electrons and
ions [i.e., of replacing the bare Coulomb potential P(r) by
(1—e "')P(r)]. At the same time quantum diffraction ef-
fects in the electron-electron interaction and the effect of
the van der Waals repulsion between ions can also be
phenomenologically described through similarly modified
electron-electron and ion-ion interactions, but with a dif-
ferent value of p. Similarly, exchange effects can be in-

cluded through a more general expression given by
Deutsch et al. ' In each case the effective interaction
can be considered as an analytic approximation to the ex-
act quantities derived from the corresponding Slater sum.
Thus the effective-interaction potential itself can be
represented by a matrix in species space as well. In the
present work we use this effective-interaction matrix
without any restriction; in particular, we do not assume
that the various interspecies potentials have the same spa-
tial structures or, in other words, we allow for the deter-
minant of the effective-interaction potential

~
~P(r)

~ ~

to be
different from zero. As a result, the emergence of

~ ~f~ ~

leads to important structural effects in the formalism.
This work goes substantially beyond the results of ear-

lier approaches. In addition to setting up the formalism
along the line outlined above in Sec. II, in Secs. III and IV
we give a succinct derivation and generalization of the
linear and quadratic partial response functions in the
random-phase approximation (RPA). In Sec. V we go
beyond the RPA (although limited to static response func-
tions) and calculate first-order correlational corrections.
Combining the results into the full (as contrasted to par-
tial) dielectric response function, we recover the earlier re-

sult of Coste. ' In Sec. VI we apply the results of Sec. V

to derive second-order corrections to various pair-
correlation functions. Since we do not exploit charge neu-

trality for the noninert species, our results pertain to
binary-ionic-mixture plasmas as well, for which the
derivation of these higher-order pair-correlation functions
is new. For the charge neutralized tcp, the earlier results
of Yatom and Shima" are recovered.

In Sec. VII we focus on strongly coupled plasmas in the
mean-field approximation. We discuss the derivation of
the partial response functions in this approximation,
which in the present formalism can be done without fur-
ther specifying the approximation scheme. In further dis-

cussing the individual mean-field theories, we pay atten-
tion to a question that has already emerged in our earlier
work (but was not correctly answered): whether the re-

quired symmetry in species space is observed in the partic-
ular scheme. Our results in this section can be regarded as
a generalization of the results of Vashihta et al. ' and as a
further development of our earlier work.

II. FORMALISM

We consider a system consisting of two species. The
two species might be thought of as electrons and ions,
with the charge neutrality linking their respective densi-

ties, or as two species of ions, with independent concentra-
tions in a neutralizing background, etc. Actually, restrict-
ing the number of species to two, rather than allowing for
a multispecies system with an arbitrary number of com-

ponents, is not important and most of the results of this

paper can be trivially generalized to apply to such sys-
tems.

The interaction Hamiltonian is taken as

(1)
k (~0)

V is a compensating constant whose precise value is not
relevant for our purpose, the volume factor W will be om-
itted in most of the sequel ("unit volume" ). Summation

over repeated and barred species indices is understood and
will be followed (but no summation over unbarred repeat-
ed indices will be implied).

The matrix of the interaction potential P. , apart from
k '

being symmetric, is not restricted in any way. That is, no
relationship is assumed between the various elements P,
P, and P (3&8). The introduction of such a general
potential is motivated by a number of different considera-
tions: (i) Quantum diffraction effects and screening by the
core electrons for high-Z ions render the ion-ion, ion-

electron, and electron-electron effective interactions not
only different from the bare Coulomb potential, but also
substantially different from each other; (ii) the various
mean-field theories invoked for the calculation of response
functions in strong coupling situations are based on the
idea of "effective potentials" which are necessarily species
dependent, even when the physical potentials are not; (iii)
in order to contemplate a partial response by the individu-
al species to an external perturbation, one constructs a
model in which, in addition to the physical interaction, an
additional fictitious interaction, diagonal in species space,
operates between the particles (which are endowed with a
fictitious species charge X~e allowing them to interact
with members of their own species only).

For the case of the bare Coulomb interaction

is distinguished by the property

With diffraction and other corrections

where the factor 8- is usually taken as
k

2
Pwa

2 +k2
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Finally, with the fictitious species interaction added, we

have

W =0-„+&~XB&"'0-.

The details of the interaction potential will be, however, of
little consequence, except that for the bare Coulomb case,
the vanishing of II/II will lead to important simplifica-
tions.

Consider now the perturbation of the system by a (ficti-
tious) external species field acting, by definition, on one

species only. The corresponding potential of the external

force, 4 for species 8, and the resulting first-order densi-

ty perturbation in species A are linked by the (external)

density response function matrix X":

The physical (scalar) dielectric function can convenient-

ly be defined through the charge-density response. The

charge density of species A is

PA
——eZA n A

and the total charge density is evidently

eZ ~A Z yA8(yB

(16)

(17)

The perturbation, in general, cannot of course be ex-

pressed merely in terms of the charge density. However,

in practice, the perturbing wavelen th is long enough to
justify k &&p" . In this situation =ZAQ-ZB and

k k

=Z Z n-
~ (1)A ~AS@S (6)

Similarly, when the total field @, including the plasma
field 4

v'

(7)

1 4-ZB—P .
k

Combining (17) with (18) results in

P=~kZA~ ZB&

(18)

(19)

is considered as the perturbation,

n (1)A yAS@(1)S

providing the external polarizability of species A, cz, and

the full external polarizability a as

It is understood that g" =X" (kco), etc., that is, all the

response functions are wave-vector and frequency depen-

dent.
Obviously,

(j) A PB B +By B C(p C PUB CC C

from which it follows that if we define the dielectric

response function matrix e by

~A
y Z~y ABZ

a= ga"= —tr(QX) .
A

Similar relations exist for the total polarizabilities

~A y Z yABZ

a = g a"= —tr(QX),
A

(20)

(21)

(g) A +BC (1)B

then (in simplified matrix notation)

(10) leading to the usual relationship between the polarizabili-

ties and the dielectric response function e,

e= 1+a=(1—a)

and, defining g =e

g=I+gX.
The relationship between 7 and g is then

X=X7l .

8=—= ——tr(QX)
CL 1

(13)
and as

(23)

There is no immediate relationship between the scalar e
and the matrix e" . Also, there is a lack of consistency
between the expressions obtained for a as

a=I —Xf .

In view of the fact that both g and g are symmetric (this

latter property is discussed below), e AB=@B".
The dispersion relation for the longitudinal collective

modes of the system now derive from the consistency con-
dition of the system of equations (10) with the external ex-

citation e A=O:

(14)

I
I& I I

= jL —«(@&)+I Ill I I I&I I

=0 .

Equations (6)—(13) are rather obvious, , though not quite

trivial generalizations of the corresponding single species

relations. Note, however, the order of the various quanti-

ties, in particular in (13). Note also that e &e ". We

will also need

a=tr(QX)= —tr()~Xe ') . (24)

Moreover, (23) and (24) are identical since

"&z(I+&)~ =t )'+
l l)'l l

r=f&
y=cofactor of y .

(25)

(26)

All this is not surprising in view of the approximate char-

acter of the derivation for a. Nevertheless, as long as the

long wavelength limit is consistently imposed, or f is oth-

erwise factorizable with II/II =0, the consistency is re-

stored and, as comparison of (15), (21), and (22) shows,
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X4 (p,p)k (q, v)5 5(to —p —v} .

(27)

In the following we will omit the explicit indication of the

p, q, p, and v summations and integrations, and the nota-
tion

(2)A y AB C(y BC C (2&)

will be understood to be equivalent to (27). A similar defi-
nition yields P

(2)A yAB Cq)(1)B@(1)C+yAB@(2)B

Comparison of (28) and (29) provides, in view of (10), the
relationship

X ABc PAXP g R gB Rc (30)

Quadratic polarizabilities can be derived within the long
wavelength approximation as before

(2) Z (2)A
A

eZ X A B cd Dgc E~~ D~~ E
p

=eZAX" ZBZDZcZEQ p n n
p

ABC AA=—Zgx ZBZpp $-p p .
e p q

(31)

In contrast, however, to the linear theory where the two
popular definitions of a, namely, a = —5p/5p and

a= 5E/5E are equi—valent, in the quadratic theory the

corresponding quantities —5 p/5P5P and 5E/5E5E—
are not. While (31) leads to a "polarizability" based on
the first relationship, we would rather adopt the electric
field related polarizability which then acquires an addi-
tional factor, with the result

a= ga"=i(P X)
A

and

(32)

Two additional remarks are in order at this point.
First, there is a certain arbitrariness obtained in defining
e through the potential-potential response. Should one,
for example, adopt the field-field response as the quantity
around which e evolves, P X would be replaced by
(ZB/ZA)air X . Nevertheless, as it is easily seen, the
only quantity of direct physical relevance 11e11 would
remain unchanged. As a second observation, one should
note that we have avoided the definition of a partial polar-
izability a" . The introduction of such a quantity is nei-

ther natural, nor especially useful.
We now turn to the review of partial quadratic response

functions. Again, the central role is played by the

density-potential response functions X " and X" . The
second-order-density response is expressed as

n' '"(k, to)= g J dv f dpi' (k, to;p, u, q, v)
2m W

a"( p,p; q, v) =i/"- X" ( p,p; q, v),

a= gaA=i($ .X) m
A

with

(33}

ABC
3

ZA ZBZC
pe I p+ q I

(34)

(a b) is the contraction of a and b.
Finally, we discuss the symmetries of the linear and

ABquadratic partial response functions. X" (k, co) satisfies
the fluctuation-dissipation theorem which links it to
(nA-(co)n'-(co)) from which its symmetry under &~&

k k

interchange follows. X" (k, to) obeys a similar symmetry
as can be seen by recalling that X=X(1+/X) ' and by
representing (I+/X) through its infinite series. These

symmetries, however, as has already been pointed out, do

not induce a similar symmetry in e" ( k, to), which, in gen-

eral, is an asymmetric matrix.
The quadratic X" (p,p;q, v) satisfies the nonlinear

fluctuation-dissipation theorem which links it to
(n'" (p+v)n (p)n (v)). This establishes the sym-

p+q p
metry of X under the interchange of the last two indices
accompanied by the simultaneous interchange of the cor-
responding wave-vector and frequency arguments. There
is, however, no symmetry with respect to interchange with
the first index, since the analytic behavior of X
with respect to the frequency co=p+v on the one hand,
and with respect to p and v on the other hand, are dif-
ferent. Nevertheless, in the static limit (p=O, v=O) the
"triangle symmetry" with respect to the three vectors
—k = ( p + q ), p, q is not broken and therefore,
X" (p, O;q, O)—:X" has a complete interchange sym-

p q
metry with respect to any two of the three indices, accom-
paned by the simultaneous interchange of the wave-vector
variables. Similar symmetry relations prevail for
X" (p,p;q, v) as is easily demonstrated by examining the

relationships X =e X ~ e~ e

III. RPA CALCULATION: LINEAR RESPONSE

The approach employed by earlier workers and also by
our earlier work for the calculation of the partial
response functions generates the external (screened)

response function X. Indeed, the total response function X
is not even defined in these formalisms. The usual
method, however, in the theory of the ordinary response
functions emphasizes the total response function as the
primary quantity. Such a method is feasible and not only
more natural but also more expedient in the present case
as well, and is discussed below.

ABThe essential difference between X" (k, co) and
X" ( k, co) within the RPA is that while the former, in gen-
eral, possesses both diagonal and off-diagonal elements,
the latter is always diagonal. This follows immediately
from the fact that once the total species field is regarded
as a perturbation, since it acts on its own species only,
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there is no mechanism by which it could couple to the
density of any other species. In contrast, the external field
as a perturbation is accompanied by the perturbations ori-
ginating from all the other species indirectly excited by it

through the interspecies coupling. This statement can be
corroborated by the inspection of the Vlasov equation, as
written down for the case when the external perturbation
is explicitly displayed,

i—(ro k—v)F"' (k, ro;v) i P—-n'" (k,co)k +4"(k,co)k F' '"(u)=0 (35)

and when it is subsummed in the total field

i (co ——k v)F"'"(k,co; v) i—4'""(k,co)k. F' '"(u) =() .
Bv

(36)

yAB gABy (37)

where X~ (or Xo in index-free notation) is the surviving di-

agonal part of X, also,

Since in (35) both F'" (i.e., n'"") and n"' are linked to
, while in (36) only F'"" is linked to W, the difference

is evident. Thus,

X~ ( k, 0) = Png—=Xg . (40a)

Equations (39) and (40), in a somewhat lesser generality,
have already been given by Refs. 1 and 3. The explicit

RPA expression for X (k, co) is identical to the familiar
A

one-component plasma (ocp) expression. " Here we note

the simple static result

y AB y AB
A I

Explicitly we have

X "=X,(1—y22X, )

X "=X,y'-'X, =X",

with

(38)

(39)

RPA CALCULATION: QUADRATIC RESPONSE

Considerations similar to those given above apply to the

difference between the quadratic external and total partial

response functions. The latter is diagonal in the RPA,
while the former is not. Again, a comparison of the qua-

dratic Vlasov equation written down with the external

perturbation

i (co —kv)F' ' —(k,co;v) iP n' —' (k,co)k F' ' (u)
k gV

g J dp p n (q,p)q' +@ (q,p)q F (k —q, co —p;v)=0
2m W

q

(41)

and in terms of the total field, only

i (co —k v—)F' '"(k,co;v) iP n—' ' (-k, co)k. F' '"(u)

1 1 g I dp 4'""(q,p)q. F'""(k q, co p—;v)=0—,(1)A ~ ~. ~ (1)A
'2~ ~ Bv

q

(42)

with the defining equations (28) and (29), proves the asser-
tion.

The simple result is [see Eq. (30)], with Xz as the sur-

viving diagonal part of X

(44)

k= p+ q, co=p+v .

X "~c(q,p;p, v)= qM"(k, ~)X~(q,p;p, v)gM'(q, p)

xq (p, ),

X" (q,p;p, v)=5" 5 Xz(q,p;p, v)
The two elements from which the others can be trivially
generahzed are explicitly given as follows:
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X"'= [ (1—l(-„X2)&((1—p-X2)(1 —Q-Xp)
v

+(g'-„'X, )x,(g"X,)(g"X,)], (45)

X'"=[ (1—1(-„X2)x)(1—Q-X2)(p-'Xg)

+(Q-„X))&2(Q-'X))(1—p"X()]

k =p+ q, co=p+v, (46)

with an obvious assignment of the wave-vector and fre-
quency arguments. A less general equivalent of (45) and

(46) where, however, the identification of the simple origin
of the rather complicated final expressions is missing, has
been reported before. The explicit expression for

XA(q, p; p, v), similarly to its linear counterpart, is identi-

cal to the ocp expression. ' Again, we note the simple
static result

XA(q o P,o')= 2P'nA=XA

by
2

ABc = P SABc
pq 2 vq (50)

e

k ~ k2 q q k —q k
q

Using now successively (47) and (50), one finds

(1)A p p y k QBSAB c +p pABSB c

q

This should be compared with the corresponding linear re-

lationship

X AB pSAB
k k

The calculation of the correlational contribution to X
now proceeds by considering the first equation of the
BGY hierarchy which states that

V. CORRELATIONAL CONTRIBUTIONS
FOR %PEAK COUPLING

—nA5 AC C
k (52)

where S" is the usual (linear) structure factor
q

(47)

The weak coupling correlation correction [to first order
in the plasma parameter (y =~ /4mn)] is. of interest both
structurally and as to the physical information it provides.
From the structural point of view X, to this order, ceases
to be diagonal but shows an interesting factorization prop-
erty. The most important physical information that can
be inferred from the results of the calculation concerns the
pair-correlation function and the static structure factor.

The calculation presented here is done in the static limit

(co=0) only. The full co-dependent calculation of X(k,co)

to order y would be an affair of much greater complexity
and difficulty, as can be judged from the corresponding
one-component calculation. ' The method we follow for
the static calculation is based on the variant of the qua-
dratic fluctuation-dissipation theorem' which relates the

perturbed two-point function ( (nx&)n (x ))2"' and the

equilibrium three-point function ( n ( x
~ )n ( xz) n ( x 3) ) ' '.

In terms of their Fourier transforms one has

k.~+BXAB c

q

pnA(—SAc+p-'X'-„') +'-„ (53)

or

&X=Xp+U,

with

(54)

k q, q
q

QB gAB yABX

(55)

Equations (54) and (55) provide the correlational contribu-

tion through U to arbitrary order in the coupling. To ob-

tain the lowest, i.e., first-order contribution, we set

X =So+5X (56)

and replaces X" by its RPA value [cf. (44)]
P

gg AB CA~ CB

(48) P MA SBX ~ k ~yMN SM SN

q

(57)

From the relationship X=Xe it follows that

57 =6'5g E'

p=k —q.

(58)

Another formulation of the quadratic FDT which will be

used relates S to the quadratic response function XABC ~ ABC

p q p q

gXAB y k ~PN BN BAX ~ k ~q (59)

q
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The required symmetry of X (or of X) (g" =g ") is not
manifest. It can, however, be observed by the explicit cal-
culation of its elements which we now display:

5X-„=—p k-q

n =n1+n2,

P =P(x)= tan
1 1x

k 2x 2

Thus (62a) and (62b) can be combined into

(65)

&&(4'q' —»I lf q I
l)(1 —@'p'»)&i *

2 2
AB KA KB

5X = —ypn „p-„.

iz p k.q 12 120-4-&i&z, p=k —qk' -, II&-, Il ll&pl

(60)
5a-=yg 2 P-„.21 (67)

The correlational correction to the polarizability can be
evaluated according to (20);

p~ =ZAZgf~~

One easily finds

(61)

In our earlier work the lack of manifest symmetry led us
to the erroneous statement that the symmetry was broken
by the approximation procedure. This is apparently not
the case.

We now specialize to the case of pure Coulomb interac-
tion

The effective charge g is given by

2 3
ZA KA ZA 7lA

2
K ZAnA

(68)

We note that 5n =0 when Z1n1+ Z2n 2 ——0. In the
charge-neutral case (Zini+Z2n2 ——0), this reduces to the
well-known condition'

I
Zi

I

=
I
Zz I.

2

SX'„'=P ', gk q'
k k2

q q p

4 kq ~q

q

K
1+ ',

a
P

P

(62a)

VI. PAIR-CORRELATION FUNCTIONS

(gAB+ g ) (69)

The pair-correlation functions follow from the relation-

ship

with

a =a /q= 2 2

q

q

a
P

P

and from the FDT (50a). To lowest order one finds

@'k'+p~2
I I 0 -„Ig'-'= p-

k

2 2 2
K =K1+K2 ~

ic~ ——4me nzpZ&,2 — 2 2

e =1+a
q q

The q summation can easily be done:

(63)
12

g-= p—
I& -„I I

= I+pni 4'-„'+p&24'-„'+ p'& i &2
I If -„I I

.

(70)

k.~q cK~A~
i

k'
q q P

1 1

(2n. )' ~

dpp
1

1+y 1+x +y —2pxy

k=ynP-, p=k —q, x=—

where y is the nominal coupling parameter

(64)

We note that for nonfactorizable interaction (I lg -„I l&0),
g'-' or g- are not necessarily governed by the behavior of

P- or g . In particular g can exhibit attractive features
k k

even for repulsive interaction. The details of this unusual
behavior are discussed elsewhere. '

The next-order term in the pair-correlation functions
can be calculated from 57. The general expression, how-

ever, is too cumbersome to be displayed here. We will,
nevertheless, consider, the Coulomb case in detail.

Using now, in addition to (69) and (50), (66) and (58),
one finds

and

K7-
4m.n

AB 8 2 CA 2 DB
nAnB 5g- =y Kcg-KDg P-,

k 4 k k k

or, more explicitly, including the lowest-order term,

(71)
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4
2

g —PZ, +y, —, 1+n' ~4
k 1

z,1—
k

k

(72)

The replacement affects the interaction between particles,
but has no bearing on the external potential, that is, on its
relationship between the external density perturbation
which remains

12g- = PZ—izz
k

k

2 2
n K1K2

+g
Pl 1712

P"=P n

Similarly,

2
Z2 ~2

1+ 1 —
2

1+ 1 —
Zk Ct

K1

k o-
k

z,
I
+ I

z,

I
Z2 I

(
I

z z
I

)1/2

2 p
k

2

k

(73)

In a binary system where both Z1 ~ 0 and Z2 & 0, there is
a qualitative difference between the behavior of the two

correlation functions 5g" and 5g . If, for instance,

&g- and 5g-„develop a nonmonotonic11 12

behavior, while 5g-„stays monotone.

For a charge-neutral system (Zini+Zqn2 ——0), a con-
venient form of (72) is

yA PC~

e= I.—c~o (75)

the expression for X can be written down immediately as

If this distinction is not made, one is led to the generaliza-
tion of the early version of the mean-field theory, due to
Hubbard, ' the inadequacy of which is well known. '

The calculation of the response function now can proceed
along two possible avenues. One can consider either the
external field P or the total field P as the perturbation.
While earlier works' followed exclusively the first ap-
proach, the second is considerably more transparent and
natural, and will be adopted here. The simple observation
which immediately provides the calculational prescription
for the response function follows from the comparison of
the mean-field equation with P as a perturbation and the
Vlasov equation with P as a perturbation. In the former
situation the residual co interaction not included in P"
plays the same role in coupling the different species to
each other as the bare interaction P in the latter situa-
tion. Thus, by defining a pseudodielectric matrix e

The charge-neutral expression (73) is equivalent to a form
derived earlier from the second BGY equation by Yatom
and Shima. " The general expression (72), valid also for
binary systems, is, however, reported here for the first
time.

or, more explicitly,

1

I Ie( k, co)
I I

X"(k, co) =— Xi( k, co)[1—co-X2(k,co)],

X' (k, co) = X&(k,cu)X2(k, co)co-,

(77)

VII. MEAN-FIELD THEORIES

+8 PB+ AB
k k k

(74)

For strong coupling various nonperturbative approxi-
mation methods have been developed for the ocp. '
Prominent among these approaches are the mean-field
theories whose principle thesis is that a static effective po-
tential replacing the bare Coulomb potential in the re-
ponse function can provide an adequate approximate
description for the system. The question of generalization
of the mean-field approximations for multispecies sys-
tems, of the correct incorporation of the effective poten-
tial in the partial response functions, and, finally, the
question whether a particular approximation scheme
preserves the required 7 =X symmetry of the response
functions, are not trivial and are the subjects of the
present section.

For the purpose of the discussion of the response func-
tions, we can now assume that a recipe for the determina-
tion of a static effective potential has been found such
that

with

I le I

=1—~"Xi—~"»+XiX2I I~
I I

The external response function is then given by

X=yoe-'q,
where

'=@=l —gX oe (80)

e =I —(1(+~)XO,

with the aid of which g is expressed as

X=Xoe

(81)

On the other hand, adopting the picture where the exter-
nal potential P is regarded as the primary perturbation,
one can determine X directly b observing that in this case
the total effective potential g- +co"- couples the different

k k

species and thus introducing a second pseudodielectric
matrix e:



G. KALMAN AND K. I. GOLDEN

Explicitly this becomes

X "(k,co) =

X' (k,co)=

- Xi( k, ei )[1—(P'-„'+e~'-„')X2( k, ~ )],

——Xi(k, co)X2(k, ~)(g'-„+ei'-„) .

The equivalence of (82) and (79) follows immediately from
the matrix relationship

(1—A) '[I—8(l —A) '] '=(I.—A —8)
A =~co 0,

2

g
Ac y k.~qABgABc,

q

To lowest order S is decomposable as
P

+ABC ~gB~ge +~gB BC+~BC CA

p q

(90)

the equivalent of Eq. (55) written in structure function
language

~D BD CD
+nanBne~Dg~ g gq

(91)

Equation (83) is the relationship that has been given in
earlier works. ' It should be noted that in spite of the

somewhat deceptive structure of (83), e(k, co) is not the

dielectric matrix of the system. It is e(k, co) as given by
(80). Nevertheless, the dispersion relation is correctly pro-
vided by

(Ac P y k. +~S(gBD+ SD) ADyDc
k k2 q q B q p k

(92)

The validity of (91) for arbitrary coupling is the basic as-
sumption of the approximation. Substituting (91) into
(90) one finds

(85)

yAB y (gAB+ ~ABy (86)

Comparing this with (59) in the static limit one can con-
clude that to lowest order ~" has to satisfy

In order to establish a consistency condition for the
mean-field theory, we expand (76) in y and calculate the
first-order term. Since co is at least of order y, one finds

Combining (92) with (54) and then comparing the result-
ing relationship with (82) and (74), we can conclude that

co-„=—2+k qP (5 +n~g )gp=k —q . (93)

The small-y expansion of (93) can now again be compared
with (87). The expansion yields

AB 1 ~ rAE BE BA
n~co = gk qy rl g, p=k —q .

k2 q q p
q

.~ iAE BE BA~k qip g g, p=k —q,k k2 q q p'
q

(94)

The simplest mean-field theory of Singwi, Tosi, Land, and
Sjolander (STLS), when transcribed into multispecies
language, ' yields an effective potential determined by

co- =—g k q g" g", p = k —q .

Expanded to first order and combined with the FDT, (88)
becomes

~ iAB BAngco~ = g k' q'p~ 7J~, p = k —qk2 q p'

There is an obvious discrepancy between (89) and (87),
manifested by the absence of the i) term in (89). This is

q
not surprising. The defect of the STLS approximation in
failing to reproduce the lowest-order perturbational
correction in the ocp is well known. Qn the other hand,
the STLS approximation is entirely satisfactory as far as
the required symmetry of co" is concerned. Equation (88)
provides a manifestly symmetric ~

The other known mean-field approximation scheme,
which in the ocp case is known to be free of the above-
mentioned difficulty, is attributed to Ichimaru and Tot-
suji (IT). It is based on a cluster decomposition of the
three-body correlation function in a manner which is ex-
act in the small-y limit. In order to find the multicom-
ponent generalization of the IT expression we start with

that is, it is in complete agreement with (87). This feature
is again expected on the basis of the similar ocp behavior.

In contrast, however, to the STLS approximation, the
structure of the co- in the IT approximation, Eq. (93),

k

does not exhibit a manifest AB symmetry. To first order,
of course, since u- agrees with the exact expression, the

k

symmetry, nevertheless, emerges. As a quick calculation
can show, however, this lucky state of affairs does not
continue beyond the first order. Even in the second-order
term the symmetry is explicitly broken. We must, there-
fore, conclude that in the rnulticomponent case the IT
scheme is not acceptable.

VIII. CGNCLUSIGNS

We have demonstrated that a compact and transparent
way of handling the rather unwieldy-looking partial
response functions exists. The central idea in this formal-

isrn is the introduction of the partial density response

functions responding to the total field, and of the dielec-

tric matrix in species space. For a general interspecies in-

teraction p (r) the determinant
~

~1( ~ ~
plays an important

role. Simple known r'esults are recovered only when

~ ( 1(
~ ~

=0. We have displayed a relationship expressing the
correlational part of the linear density response function
in terms of the quadratic density response function. This
is a. generalization of the corresponding ocp relationship.
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Using this formalism we have been able to calculate with

ease the first order 0(y) correlational correction to the

static partial density response function. From this the

O(y ) corrections to the pair-correlation functions gii,
giz, and gzz followed both for charge-neutralized
(electron-ion) and binary-ion-mixture plasmas. The latter

displays a somewhat unexpected structure. Finally, we

have analyzed the structure of the partial response func-

tions in the mean-field-theory approximation in strongly

coupled plasmas. We have found that the required sym-

metry of the response function is not automatically

guaranteed, and could, indeed be violated.
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