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Given some functional F(T) of interest in a heat-transfer problem, with T the true temperature,
one often introduces a fictitious ‘““alias” temperature 6 and an associated functional F(T,6). A vari-
ational principle (VP) for F(T,0) provides estimates of F(T) and of T. Such VP’s have been derived
on the basis of different physical principles and by means of different mathematical procedures.
The unified formulation of the construction of VP’s, used previously to derive VP’s in a wide range
of problems, can also be used in the present context. One introduces one Lagrange multiplier—
which can be a constant, a function, an operator, etc.—for each of the constraints necessary to de-
fine 7. While a VP F,(T,,0) for a functional F(T,0), with T, a trial function, can provide a sys-
tematic method for an estimation T (T,?) of the temperature distribution 7'(T,#) at a point T at the
time ¢, it is only the estimate F,(T,,0) of F(T,0) which is stationary. The estimate T, is not sta-
tionary; it contains first-order errors. Our main interest is in the development of a VP for 7. Con-
sideration of F(T)=T—we are no longer concerned with alias temperatures—provides a VP for
T(7T,t) itself. T(T,t) can be defined as the solution of linear or nonlinear differential equations,
which can be homogeneous or inhomogeneous, and subject to a variety of boundary conditions. An
almost identical procedure will provide a VP for the solution of any other equalization process such
as the concentration I'(T,?) in a diffusion process. We also derive a VP for the temperature T'(r)
and density p(r), under specified quasiequilibrium conditions, of the coupled differential equations
which characterize some stars. In addition, we consider variational identities. [It has often been

FEBRUARY 1984

stated, incorrectly, that one cannot obtain a VP for T(T,?).]

I. INTRODUCTION

The variational principles (VP’s) for different function-
als of the temperature distribution 7(T,t) in heat-
conduction and -transfer problems, with T a point in space
and ¢ the time, include those of Rosen,! of Glansdorff and
Prigogine,>~* and of Biot.> Chapter 10 of the book by
Finlayson® contains an excellent review and a penetrating
analysis of these VP’s. There is also a VP due to
Chambers.” Variational principles are based on a variety
of physical principles and their derivations involve a
variety of mathematical approaches. Thus, the VP of
Rosen for irreversible processes is based on Onsager’s prin-
ciple® of the minimum rate of entropy production, with
the generalized currents varied and the generalized forces
held fixed. The VP of Glansdorff and Prigogine utilizes
the concept of the local potential, an extension of
Onsager’s approach, and is applicable to systems undergo-
ing reversible or irreversible processes.” Biot’s approach
represents an extension of the concept of generalized coor-
dinates and the corresponding Lagrangian equations of
motion of classical mechanics to thermodynamic prob-
lems. It must be emphasized that the above VP’s are not
VP’s for the functionals of physical interest. Rather, they
are VP’s for functionals which contain not only tempera-
tures T, which are trial functions for the true tempera-

29

ture, but an alias temperature 9; we will elaborate on this
point in Sec. II. Our first task will be to show that the
VP’s for the different functionals can be derived using the
“unified formulation of the construction of VP’s” ap-
proach of Gerjuoy, Rau, and Spruch,'®!! an approach
which has been shown to generate VP’s readily in a wide
range of fields. There have, of course, been many articles
by many authors discussing a uniform procedure for the
construction of VP’s, but that of Ref. 11 is probably the
most general, and it cites many of the other articles. We
present here only the barest outline of the essential idea.
In the present context of obtaining a variational principle
F,(T,) for a specified functional F(T) of the unknown
temperature distribution T'(T,¢), we begin with

F(T)=F(T,)+ 3 L :Bi(Ty), (1.1)

where T (T,t) is a (zeroth-order) trial estimate of T(T,z),
the B;(T)=0 represent the constraints which define
T(7,t), and the .; are Lagrange multipliers introduced
to account for the constraints. The constraints B;(7T)=0
include the differential equation satisfied by T(T,¢) and
can include the boundary conditions imposed on T(T,?).
The .£; can be constants, functions, operators, matrices,

etc.; the form of an .#; depends upon the form of the
constraint B; being satisfied and on the functional under
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consideration. The requirement that F,(T) represent a
VP imposes the condition

8F,=F,(T,,)—F(T)=0, (1.2)

to first order, since the definition of a VP is that first-
order errors vanish. Equation (1.2) provides the equations
which define the .#°;. These latter equations need not be
solved exactly, since a first-order error 8.7 ; in the trial es-
timate (.£;), of .£; leads to a second-order error in the
estimate F, of F. (One must be very careful in the discrete
case, since then the equations defining some of the .Z; are
of the form 4.%;=h;, with 4! singular; the difficulty
can be circumvented.'?) We note that in the general prob-
lem of constructing a VP, the defining equations can be
linear or nonlinear and homogeneous or inhomogeneous
differential equations, or integral equations, integro-
differential equations, or integro-difference equations.

Some but not all of the VP’s to be considered can be
easily derived if one utilizes the variational principle for
the real inner product

E—(X,f) >

where the function f is known and where the unknown
function X is defined by

Kx=f,

(1.3a)

(1.3b)

where K is a known symmetric operator. A stationary ex-
pression M, =M, (X,) for the functional M =M(X) is
given by!3

Mv(Xtr):(Xtr,KXtr)-‘Z(Xtr,f) > (1.4)

with X, an estimate of the unknown X. Writing
X, =X+6X, one readily finds that

M,(X,)=M(X)+(8X, K 8X) . (1.5)

Equation (1.5) shows that, first, M, differs from M by a
second-order error and is therefore indeed a VP, and
second, if K is non-negative (nonpositive), that M, is not
simply a VP but is a variational upper (lower) bound on
M. If we use the VP of Eq. (1.4) to derive some of the
F,’s and the uniform approach to derive the other F,’s,
and if we wish to assert that all the F,’s are derivable by a
uniform approach, it will be necessary to derive M, by
that uniform approach. (It may at the same time be in-
structive.) We start with

MU(‘Ytr)E _(Xtrrf)*'(Ltr’ KXtr_f) > (16)

where the first term is simply a zeroth-order estimate of
M and where the term in L, is introduced to account, to
the relevant accuracy, for the only constraint, namely, Eq.
(1.3b). Since M is a number, M, must be a number, and
the Lagrange multiplier must be a function. Following
the notation of Ref. 11, it is therefore denoted by L, and
its estimate by L. (. is the generic form for a Lagrange
multiplier.) If M, is indeed to be a VP for M we must
have

M, =—(f,6X)+(8L, KX—f)+(L, K8X)=0,

second-order terms having been neglected. The term in
8L vanishes by Eq. (1.3b), and using the symmetry of K
we have

(KL —f, 6X)=0,
or, since 86X is arbitrary,
KL=f.

It follows that L =X, and therefore that one can choose
L, =X,. The insertion of this last relation into Eq. (1.6)
gives the desired result, Eq. (1.4).

Given a variational estimate F,(T.), one can introduce
variational parameters in T(T,¢) and determine these pa-
rameters by demanding that 8F,=0. Thus, in the course
of obtaining an estimate F, of F, one obtains an estimate
of T(7,t). Experience has shown that this estimate can
furnish a reasonably accurate estimate of T(T,z). It
should be clear, however, that whereas the estimate of F is
stationary, the estimate of T in general is not. [Consider,
for example, the very well-known Rayleigh-Ritz VP for
the energy. The estimate

Eu =(¢th¢tr) s

with H the Hamiltonian and 1, a normalized trial wave
function, is stationary, that is, E,—E is of the order of
some weighted average of (81)2, but ¥y, itself is not sta-
tionary.] If one is interested in an estimate of T, a far
more powerful result is obtained if one constructs a varia-
tional estimate T, (T,t) for T(7,t) itself. We will do so in
Sec. III. The approach is the same as that for the con-
struction of any other VP.

We will also comment briefly on the construction of
“variational identities,”!* expressions of the form

F,=F+AF,

in which the term AF, which contains errors of second or-
der and higher, is given explicitly if formally. Variational
identities are particularly useful in the development of
variational bounds, which provide not only a VP but a
knowledge of the sign of the error. A variational bound
on T(T,t) has been developed,'’ but will not concern us in
the present paper.
It will be convenient to introduce the notation

Q(X)=0(T,1) .

The differential equation for the heat-conduction problem
is then

V-{k[%, T(X)]VT(X)}+B[%, T(X)]

- =y 0T(X)

C[X, T(X)] Y =0,
where C is the heat capacity per unit volume, k is the
thermal conductivity, and 3 is the heat generation per unit
volume per unit time. We assume throughout that C and
k are known real positive functions and that 3 is a known
real function. [We have allowed C, k, and B to depend
upon t through their dependence upon T(7,¢), and expli-
citly; physically, it is the former dependence which is of
interest.] We also use the notation

(1.7)
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dX=drdt ,
=8(F—T1")8(¢—1') .

Having allowed k, C, and B to depend not only on X but
on T, the heat equation is nonlinear in 7, we sometimes
limit ourselves to the linear case, for which k, C, and B de-
pend upon X but not on 7(X). The most general boun-
dary condition to be satisfied by T(X) will be a boundary
condition of the third kind imposed on the surface S sur-
rounding the volume ¥V of interest,

aT(x)

k[X, TX)]—F—+h[X, T(X)]T(X)=p[X, T(X)]

(1.8)

on S, for ¢t >0, where d/dn is the outward normal deriva-
tive at the surface S, & is the known heat-transfer coeffi-
cient, and p is a known function. Special cases of this
boundary condition are, on S, for ¢ >0,

h[X, TX]T(X)=p[X, T(X)], (1.9
a boundary condition of the first kind, and
k%, TR0] a;x) =p[%, T(X)], (1.10)

a boundary condition of the second kind. We will also
impose an initial condition

T(1,0)=T;, (1), (1.11)

with T;,(T) a specified function.

We turn now to a consideration of a number of the
functionals F(7) for which VP’s have been obtained for
the associated F(7,6). For the most part we will not be
concerned with the physical significance of F(T), nor
with the physical principles nor mathematical techniques
which were used to obtain F,(T.,0); our primary concern
will be with the systematic derivation of the F,’s.

II. VARIATIONAL PRINCIPLES
FOR SOME FUNCTIONALS
OF THE TEMPERATURE

A. The functionals of Glansdorff and Prigogine

The objective should be to obtain a VP for some arbi-
trarily chosen functional F (7). In fact, much of the work
in heat-transfer problems has proceeded somewhat dif-
ferently. One obtains a VP not for F(T) itself but for a
related functional F(T,0). The interesting technique of
Glansdorff and Prigogine of introducing an alias tempera-
ture 0, and a functional F(T,0) related to F(T), can sim-
plify the analysis, but it must be made clear that one then
obtains a VP not for F(T) itself but for F(T,0). The pro-
cedure is no more complicated computationally than the
usual procedure for the development of a VP, but it does
require a somewhat more elaborate notation. (The nota-
tion is largely ours, rather than theirs.) Given

T=T(X), k=k(X,T), C=C(X,T),
they make the replacements
O 39 ko k*=k*(X,0), C—>C*=C*(%,0),

?r ot
where 0=0(X); where T appears explicitly in F (rather
than as an argument of, say, k and C) it is not replaced.
We denote by F(T,0) the functional obtained by making
the above replacements in F(T). They then obtain a VP
F(T.6) for F(T,0). In obtaining the variation
8F,(T,0) of F,(T,.,0) caused by a variation 8T of T, they
keep 00/0t, k*, and C* fixed. At that stage they make
the further replacements

30/3t—3T,. /dt, k*—>k,=k(X,T,),
C*>Cp=C(%,T,) .

The procedure will become clear in the course of our
analysis of the particular functional chosen by them. An
example is worked out in some detail in the Appendix. A
VP derived by holding certain quantities constant during
an initial step in the calculation has been referred to%¢ as
a “restrictive VP.”

For our first example of a rederivation of a VP we as-
sume that there are no heat sources, that is, that S=0.
Equation (1.7) then becomes

oT
C 3 =0,
where k=k(%X,T) and C=C(X,T). We further assume
that the normal component of the heat flux vanishes on
the surface S. By Fourier’s law, the latter condition is

dT(X)
on

V[kVT(X)]— 2.1)

J(X)=—k(X,T) =0 on S,

or, simply,
07(X)/9n=0.

The functional of interest is chosen to be

(2.2)

F=1 [ T 18R ax=4 [ reSlax,
23)
where
fax= f0'°dt [, a7; 2.4)

to is some fixed time and V is the spatial volume of in-
tegration. Before proceeding further, it will be useful to
consider two consequences of restricting ourselves to trial
functions T'(X) which satisfy the boundary condition im-
posed upon T(X), that is, of demanding that

oT . (X)
_ = 2.5
an (2.5)
It follows, first, that
RTE) _, (2.6)

on
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and, second, that
[ Tt (B)V[k*(%,0)V T (1A%
= [ TV [k*(X,0)V T (X)]dX ,

that is, that V-k*V is a symmetric operator; in the physi-
cal problem, we have k=k(X,T) rather than
k*=k*(%,0), but it is the latter which is relevant in the
following analysis of the functional now under considera-
tion.

Now, in fact, Glansdorff and Prigogine do not seek a
VP for F(T) defined by Eq. (2.3), subject to Egs. (2.1) and
(2.2). Rather, they seek a VP for

F(T,0)=+ [ T(R)C*X,0) ae(x) d% @.7)
subject to

V[k*VT]—C* ?39 -0 (2.8)
and Eq. (2.2). Our rederivation will be based on Egs. (1.3)

and (1.4); to derive our VP we need merely make the ap-
propriate identifications. We have

K=—V-(k*V).
With the further identifications
XX)=T(X), or X=T
and
£(,0)=—C*(%,0)2 ) orf=—c*%"ti

we see that F(T,0) can be identified with {—M, where M is
defined by Eqs. (1.3) and (1.7), or rather by Egs. (1.3) and
(2.8), with the understanding that Eq. (2.2) is to be arbi-
trarily imposed. Using Eq. (1.4), the VP

F(T,0)= [ | —3Tu(X)V [k*(X,0)VT(3)]
TR0 (x,0 8% 143
ot
J
F(Ttn thr X)C*( ae(x}d +2 an-(X)

— V- [k*(X,0)VT,(%)]+C*(%,0)

follows immediately. An equivalent VP is obtained on in-
tegration by parts with respect to the spatial coordinates
of the first term on the right-hand side. We thereby ob-
tain

F(Ty,0)= [ | $k*X,O[ VT ()]

+C*(X,0)T(X) dx . (2.9)

6(X)
ot
This is the VP given by Glansdorff and Prigogine.

It has been shown® that if T\, is chosen to be a linear
function of the variational parameters then the method of
Glansdorff and Prigogine just described is equivalent to
the Galerkin method. A Glansdorff-Prigogine VP is also
given® for the same functional, that defined by Eq. (2.7),
for the case for which, as above, B=0, but for which the
boundary condition is more general. Consider, for exam-
ple,

Kz TLX Lz, DT(R)=0, onS. (210
We introduce the associated equation
k*%ﬂz*ﬂx):o, ons. 2.11)
n

Rather than seeking a VP for F(T) defined by Eq. (2.3)
with T defined by Egs. (2.1) and (2.10), we seek a VP for
F(T,0) defined by Eq. (2.7) with T defined by Egs. (2.8)
and (2.11).

With the boundary condition given by Eq. (2.11) rather
than by Eq. (2.2), the operator V-(k*V) is no longer a
symmetric operator, and we can no longer easily connect
the equations defining F with the equations in Sec. I de-
fining M. To obtain a VP for F(T,0) for the present case,
we will apply the very much more general uniform con-
struction approach. We start with

0(X) |,
31 dX . (2.12)

There is only one restriction on T (accounted for by the term with L,,), for we restrict ourselves to trial functions which
satisfy the boundary condition imposed on T(X), that is, we demand that, on S,

oT,,
k*—5 L h*T, =0.
an
It follows that
k* a;sT +h*8T=0.

Setting 2 8F, =0 gives

Jorxictz,0 292 4%

(2.13)

(2.14)

— [ L)V [k*(X,6)V8T(X)]dX =0 .
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Integrating the second term twice by parts with respect to space gives

a""‘) V-[k*(%,0)VL]

[8T(x) |C*(%,0 =

di— [
This equation is satisfied by the choice
L=T; (2.15)

the volume integral then vanishes by Eq. (2.8), while the
surface term vanishes on first using Eq. (2.14) and then
using (2.11). Equation (2.15) strongly suggests the choice
L, =T, in Eq. (2.12). Using

—fTt,(i’)V~[k‘(i,6)VTtr(i)]di

( )

=— [ T (Dk*X, 9) ————dSdt

+fk*(¥,9)[VTtr(i)]2di
and Eq. (2.13), we obtain
F(Te,0)= [ |Tk*E,0[VT(XP

90(X)

T .(X)C*(X
+ T (X)C*(X,0) a1

dx

+1 [ E, O[T (XS dt . (2.16)
F,(T,,0) is the local potential of Glansdorff and Prigo-
gine, which is glven by Eq. (10.45) of Finlayson,® except
that our expression does not contain a T since we have
assumed that the external temperature T is zero.

(One can easily show® that

AF(T,0)=F,(T,,6)—F(T,0)
=+ [ K*x,0[V8T(X)Pd%
+5 [1*X,0[8T(X)]’dS dt >0 .

It follows that F,(T,,0) is not simply a variational princi-
ple for but a variational upper bound on F(T,8). Thisis a
formal result, since 6 is defined only after one has intro-
duced a T,,. We will not examine its consequences, for
our real interest lies not in the development of variational
bounds (nor even of VP’s) on F(T,60), but rather of VP’s

]

2
oT,(X)

oT, 15
ot !

at

,0

F, =—+ [cx,0

+5 [ Lo(®)
Setting 8F, =0 gives

which is satisfied by

C*(%,0)

oT(X) 98T (X)
ot ot

L(X)k*(X,0)

—V-[k*(X,0)0VO(R)]+C*(

dt++ [L(X)C*(%,0)

aL(x)

aag:i’) k*(,0)8T(X) |dS dt=0

T
on T, to be developed in Sec. III—if T, is a VP for T, a

VP for any functional F(T) is immediately given by
F,(T)=F(T,)—and of variational bounds'’ on T.)

In the Appendix we will apply the Glansdorff-Prigogine
VP to a nonlinear (time-independent) heat-conduction
problem, whose solution is known exactly, in order to
bring out the salient points of their technique. The same
problem will be solved by the VP for T itself, developed in
Sec. III, and comparisons between the results of the two
methods will be made in order to get some feeling for the
sizes of the errors, and, more significantly, for the relative
sizes of the errors.

Rosen’s VP,!

F,(T,,0)
= [ [+ EOVT(DT

+C*(X,0)T(X) (2.17)

ae(tx) dar,

is the same as the Glansdorff-Prigogine VP, with the
boundary condition 37(X)/3n =0 on S, except that the in-
tegration is over space only. If heat sources B are present
the above VP’s can be modified easily.

B. Chambers’s VP

Chambers’ derives a VP for the functional

aT(x)

(2.18)

i fe,

T(X) satisfies boundary conditions of the second kind. In
the derivation 8T /¢ is varied and T is kept fixed,

T=0,

(2.19)

as opposed to the Glansdorff-Prlgogme approach where
dT/dt is kept fixed and T is varied;* the integration is over
space only, and heat sources 8 are included. By our gen-
eral method we write

AT (%
i,e)—%—ﬁ*(i,e) v . (2.20)
aar 9T(X) 420, 2.21)
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oT
=2—-——".
L ot

(2.22)

Replacing L, by 20T,./9t in Eq. (2.20) and integrating — f [3T(X)/3t]V - [k*(%,0)V 6( X)]dT by parts, one obtains the

VP given by Chambers,

2
oT, e o)
AT, (%) %
— [ e 3,0 20%) g
ot on

[F,(dT,./0t,0) is a variational upper bound on F(37/9t,0)
since’

2
dr>0.

oT
AF | ==.0
a

. A8T(X)
= f%C (%X,0) ot

(2.24)

As for the variational bound given below Eq. (2.16), we
will not consider the precise meaning of this result.]

It is interesting to observe that if the VP is given but
the corresponding functional is not, as is often the case in
the literature, the functional can always be found by con-
verting the VP into a sum of constraint terms plus an ex-
tra term. The extra term is the functional. It is clear that
the different VP’s discussed in this section are just varia-
tions on the same theme. According to Finlayson,® “com-
putations based on the principles of Rosen, Glansdorff
and Prigogine, or Biot are equivalent to those based on
Galerkin’s method.” (One could also add Chambers’s VP
to the list.)

III. A VARIATIONAL PRINCIPLE
FOR THE TEMPERATURE ITSELF

A. The linear case

We will first assume that k, C, 3, h, and p are indepen-
dent of T. In Sec. I we wrote the heat equation in one of
its more common forms. In order to facilitate some par-
tial integrations, here it will be convenient to introduce

ME)=C~UR), o(X)=BF)C ). (3.1)

The heat-conduction equation of Eq. (1.7) is then given
by the linear inhomogeneous form

B(X) =AMV [K(Z)VT(R)]+0(X)— af’;(f) —0, (2
while the boundary condition, Eq. (1.8), becomes
k(%) ag;i) FR(R)T(X)=p(X), on S, fort>0. (3.3)
We still have the initial condition

T(F,0)= Tin() . (3.4)

T(X) is uniquely defined by Eqs. (3.2)—(3.4). One can
proceed more generally, but we will assume that T, (X) is

+[k*(X,0)V60(%)]-V

= 0T (X)

T (X)
* —>
o1 dr

at

B

(2.23)

chosen to satisfy the boundary condition, Eq. (3.3), and
the initial condition, Eq. (3.4). It follows that

38T (x)
on

8T(1,0)=0,

k(X) +h(X)8T(X)=0,0n S, fort>0, (3.5)

(3.6)

and that Eq. (3.2) is the only constraint to be accounted
for by the introduction of a Lagrange multiplier. The
development of a VP for the function T(X) will be some-
what more difficult than the development of a VP for the
functionals considered previously, all of which were sim-
ply numbers. Our starting point in the development of a
VP for T(X) is

T,(X)=Tu(X)

+ [T AT (ME DT RE )T T3]
+o(R)— -2 T3 |d%
a " ’

(3.7)

where

[taz= [ ar far,

with ¢ +0 indicating that the upper limit ¢ is to be ap-
proached from above. The Lagrange multiplier, which is
to account for the constraint imposed by Eq. (3.2), is in
this case a function of two sets of variables, X and X', and
in line with the notation of Ref. 11 is therefore denoted by
A, and its trial estimate by A,. As always, we demand
that the first-order variation, here of T,, vanish. This
gives

ST+ [T AR [MRIT R NT -

X8T(X')dX'=0. (3.8)
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We wish to rewrite this in a form which contains only
8T (X')—there is to be no §T(X)—and 8T(X ') is to appear
in surface and volume integrals as a factor, not differen-
tiated with respect to space or time. To do so, we begin
by writing
8T(X)= [ 8T (X )8(X —X)dX
+
= [T 8T(xN8(X—X")d%’ (3.9

Further, we integrate by parts with respect to time to give

')V'-[k(x")?”&r(iﬁ]di
+
= [ 81(x")
t+
'fo

AR
0
dr' [ ds'ST(x

In arriving at Eq. (3.11), we used Eq. (3.5) to replace a
term containing a derivative of 87 by a term containing
8T. We now insert Egs. (3.99—(3.11) in Eq. (3.8) and
equate to zero the coefficients of 8T(X’) in integrals of
the form

We thereby obtain

V' (k(R)V AR, IME )] + 9’“;%
=—8F—%"), (.12
KR )07 +h(3") [[AG,XIAR]=0, (3.13)
and
A(X,X)=0, t'>t (3.14)

T(X)=Tu(X)+ [ AZX")

Equation (3.15) is an identity, valid for any T,. If, in par-
ticular, we choose T, to be T},m, the solution of the
homogeneous heat-conduction equation,

0T om(X)
-0,

subject to the boundary conditions satisfied by 7'(X), Eq.
(3.15) reduces to an integral equation of standard form!'’

T(X)=Thom(F)+ [ AKX No(X)dX’

MRV [,V Thom (% (3.16)
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" {k(i(")V TAX,X')

) [MX AKX

M—x"ﬁ'-[k(z'ﬁ'k?)?

29
[ AGEY 88T(x BTE) -
=— [, A 8T(X NdT" |§*°
+ [ Torxn 2RI, (3.10)

The term which is to be evaluated at ¢'=0 vanishes by Eq.
(3.6). Finally, we integrate by parts twice with respect to
space to give

AR X ")

AR, X IMX )]
on’

(3.11)

XDh(X")+k(X)

—

respectively. The insertion into Eq. (3.7) of an approxima-
tion A, to A, the Green’s function defined by Egs.
(3.12)—(3.14), gives the sought-after VP for T(X). (A,
might, for example, be the known Green’s function for
some simpler, roughly similar problem. We often write G
for A and Gy, for A.;.)

At least in principle, one can iterate and obtain an im-
proved estimate of T(X). (A brief dlscussion of this
“super VP” approach has been presented.') Thus, having
obtained T,(T,.), one could use this estimate of T as a
new trial function,

Tyiow=T,(Ty)

to obtain an improved estimate

Tvv ETu(T'trtr) ’
with an error which is of order
(T —T,)*.

It is interesting to observe that a variational identity for
T(X) follows readily from Eq. (3.8). Thus, writing
8T =T, —T, and using Eq. (3.2) to eliminate T'(x’) under
the integral, we find

O 7 (%) +o(X") |d%" . (3.15)

B. The nonlinear case

We now allow A, k, o, h, and p to depend upon T as
well as upon X. T in Ak, ... will not be held fixed dur-
ing the variations to be considered. The heat-conduction
equation then has the (nonlinear) form
T(X)+0*(X)=0

B3)= [T 012

(3.17)



29 VARIATIONAL PRINCIPLES FOR FUNCTIONALS OF THE . .. 839

where for an arbitrary function Q, we use
o*(X)=0[X, T(X)]. (3.18)

[The notation here differs slightly from that of Sec. II,
where k* represented k*(x,0).] Not having specified the
precise T dependence of Ak, ..., our derivation of a VP
for T will necessarily involve some formal operations.
Our starting point is now

+
T,(X)=Tu(X)+ [ ALZXIBLE X', (3.19)
where, replacing T by T, in Eq. (3.17),
BL(X)=B[X, Tu(X)] . (3.20)

(The T dependence of A, and of the A to appear shortly,
will not be indicated explicitly.) Ignoring terms of second
order and higher in T —T,, we have, expanding about
B*(X)=0,

B4(X)=B*(X)[T(X)—T(X)], (3.21)

where
B*'(X)=8B*(X)/8T

is the Fréchet functional derivative.!® [If B*(X) is linear
in T as it was in Sec. IIT A, but which we do not assume to
be the case here, B*'(X) is independent of T and the
analysis simplifies considerably.] The requirement that
the first-order variation 87, vanish gives

ST(X)+ [ 7 AX,X"B*(XBT(X)dX'=0. (3.22)

It is now assumed that there exists an adjoint operator
(B*')' such that

[T aBvsTaz = [T sT(B*)AdR" . (3.23)
In a concrete case, with the T dependence of A, k, etc.
specified, one will be able to determine whether or not the
adjoint of B*' exists. In general, one would expect it to
exist. In other words, we assume (and expect) it to be pos-
sible to impose boundary conditions on A such that all
surface terms vanish. (For example, assume that in B*,
we have 0=0, A=A, and k =k, + kT, where A, ky, and
k, are constants, that T and T, satisfy boundary condi-
tions of the first kind, and that A satisfies the correspond-
ing homogeneous boundary condition on S. We then have

B*’:AOkﬁZJrkokl[z(VT)-V’Jr(6’2T>+TVZ]—§;

and we find that

(B =holko + Ky DIV 4= ,
so that (B*")" does indeed exist in this case.) Equations
(3.22) and (3.23) give

[B*(X)]'AF,X)=—8—%") . (3.24)
With A, an approximation to A, uniquely defined by Eq.
(3.24) and the boundary conditions, we can then use our
VP for T'(X), Eq. (3.19).

A variational identity for the nonlinear case is obtained

in a fashion analogous to that used for the linear case.
Setting 87 =T, — T in Eq. (3.22), we find

T(R)=TuX)+ [ AXTIB(X")

X[T(X')—T(X")]dX'. (3.25)
That this is indeed a variational identity is easily seen.
One need merely bring B*' to the left of A, as (B*'), and
use Eq. (3.24). Note, however,that as opposed to the vari-
ational identity for the linear case, the variational identity
given by Eq. (3.26) contains T under the integral sign.

IV. A VARIATIONAL PRINCIPLE
FOR THE TEMPERATURE AND DENSITY
DISTRIBUTIONS IN A STAR

As our final example involving heat flow, we obtain a
VP for the temperature and density distributions, T'(r)
and p(r), in a spherically symmetric star of radius R under
quasiequilibrium conditions, where r is the distance from
the origin. This problem is, of course, not only extremely
important but very complicated, involving nonlinear cou-
pled differential equations. We let P(r) be the pressure,
M, the mass within a sphere of radius r, L, the energy
flux through the surface of radius r, e(r) the energy
release per unit mass per unit time from nuclear processes,
and «(r) the opacity. We also use G for the gravitational
constant, ¢ for the speed of light, and a for the Stefan-
Boltzmann constant. We follow Schwarzschild" in out-
lining the problem. (L, is a standard notation for energy
flux and should not be confused with the Lagrangians.)
Hydrostatic equilibrium, the relationship between mass
and density, energy conservation, and radiative equilibri-
um are described by the differential equations

GpM,
%z_ pz =~ 4.1)
r
M, )
—Er—=41rr P > (42)
dL, )
72477"‘ PE » (43)
and
dar 3 kp Ly
= s 4.4
dr dac T3 47r? “4)

respectively. [Limiting our discussion to a bare outline of
the problem, we ignore the many modifications of the
above equations which may be required; if, for example,
there is no radiative equilibrium, an equation for convec-
tive energy equilibrium replaces Eq. (4.4), and Eq. (4.7b)
below must be replaced.] In addition, we need some expli-
cit relations to characterize the interior of the star. We
will not give the relations explicitly—our approach is
therefore necessarily a formal one—but it is to be under-
stood that the explicit forms are known. These relations
include the equation of state,

P=P(p,T), (4.5a)

the form of the opacity
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k=k(p,T), (4.5b)
and the equation for energy generation,
e=elp,T) . (4.5¢)

Equations (4.5) also depend upon the abundances of hy-
drogen, helium, and the heavy elements; for simplicity, we
assume these abundances to be constant for the time inter-
val under consideration.

Four coupled first-order differential equations require
four boundary conditions. Two are at the origin. These
are clearly

M,=0 and L,=0, r=0.

Since p(r), k(r), and e(r) are finite at r=0, these are
equivalent, by Eqgs. (4.1) through (4.4), to

dP/dr =0 and dT/dr=0, r=0.

Since we prefer to work with T'(r) and p(r), we rewrite the
boundary condition in still a different equivalent form,

dT /dr =0 and dp/dr =0, r=0. (4.6a)

Since p and T at r =R, the surface of the star, are many
orders of magnitude smaller than characteristic values of
p and T in the interior of the star, the two boundary con-
ditions at the surface can be taken to be

T(R)=0, p(R)=0.

We now replace our four first-order differential equa-
tions by two second-order differential equations. Elim-
inating M, from Egs. (4.1) and (4.2) gives

d

Bl(r)E;

(4.6b)

r% dP*(r)

o dr (4.7a)

+417Gr2p=0 s

while eliminating L (7) between Eqgs. (4.3) and (4.4) gives

+pert=0. (4.7b)

In Eq. (4.7a),

P*(r)=P[r,T(r),p(r)], (4.8a)

and, more generally, for an arbitrary function Q, we let
Q*(nN=Q[r,T(r),p(r)]. (4.8b)

Equations (4.7) represent coupled differential equations
for T(r) and p(r). We now set X,(r)=T(r) and
X,(r)=p(r), and introduce the column vector X (r) with
elements X,(r) and X,(r). Further, we introduce the
column vector B*(r) with elements BY(r) and B3 (r). At
this stage, our objective is to determine a VP for X (r), de-
fined by the differential equation B*(r)=0 and by the
boundary conditions

d—X=0 at r =0, X(R)=0.

dr
We assume that the boundary conditions at =0 and at
r =R are satisfied by X, (r). We then start with

X,(N=X.(N+ [ Aulr,r)Bh(r")dr' , 4.9)

where O <r, r' <R, where
Bi(r)=B[r,Ty(r),pu(r],

and where A, is a two-by-two matrix whose elements are
functions of r and r’ and which satisfies the boundary
conditions

OA(r,r')
—" __0 atr=0, A(R,)=0. (4.10)
ar
Setting 6X, =0 gives
8X(r)+ [ Ar,r)8B*(r')dr'=0.. .11
We now write
8X(r= [ 8(r —r"8X(r")dr’
and
8B (r')
B™(r')= |sps(r')
dB%(r') dBT(r')
8X1 aX2 SXI(T")
T | 3B(r") 3BA(r') | [8X,(r')
ax, axX,
=B*(r"8X(r'), @.12)

where the derivatives are Fréchet functional derivatives.
Equation (4.11) therefore becomes

[ [8(r —r) 14+ Alr,r) B*'(r)]8X (')dr' =0, (4.13)

where 1 is the two-by-two unit matrix. Though 8X (#') is
arbitrary, we cannot equate the term in square brackets to
zero. Rather, we must assume that the imposition of
boundary conditions on A identical in form to those im-
posed above on A, enables us to rewrite Eq. (4.13) as

[ 8x(r[8(r —r)1+2* (") A(r,r)]dr' =0 .

A is then a Green’s function, defined by boundary condi-
tions and by

BT AP )= —8(r —r')1 .

(4.14)

(4.15)

We are now in a position to determine an approximation
Ay(r,r') to A(r,r’) and then to use Eq. (4.9) as our VP.

We close with the observation that it has often been
stated, incorrectly, that one cannot obtain a VP for a
characteristic, such as T(T,t), of a system which is not
time reversible.2
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APPENDIX: A CONCRETE EXAMPLE

We remarked in the Introduction that whereas the esti-
mate F,(T,,0) of F(T,0) obtained by the Glansdorff-
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Prigogine procedure is stationary, the estimate of 7" ob-
tained in the course of the analysis in general is not sta-
tionary. We emphasize again that F,(T,0) is a variation-
al principle for F(T,6) but not for the functional F(T) of
the actual problem. It has already been stated by Finlay-
son and Scrivens (Ref. 4, p. 293) and by Finlayson® that
the fact that 8F, vanishes and that AF is non-negative
does not imply that F, is a minimum principle when 6 is
kept fixed during the variation; more precisely, F,(T,0)
is not a minimum principle for the functional F(T) of the
actual problem. The Glansdorff-Prigogine principle will
be illustrated with a concrete example.® Consider one-
dimensional steady-state conduction across a slab of width
d. For later convenience we denote the coordinates and
temperatures by x’ and T'(x’). The endpoints x’'=0 and
x'=d have the temperatures

T'(0)=T,y, T'(d)=T] . (A1)
The heat-conduction equation is
d ar’
T')— |=0, A2)
dx'’ k(1) dx’' (
where we assume that
k(T")=ko+k(T'—=Tg), (A3)

with ko and k,; constants. The equations are made dimen-
sionless by choosing

T(x)=[T"(x")—Tol/NT7—Ty)
and
x=x'/d .
For simplicity, we make the particular choice
(ki /ko)(T7—Ty)=1.
We then have
k(T /ko=1+(k/k)[T"(x")=Tp]=14+T(x),
and the problem reduces to the solution of
(A4)

[1+T(x)] =0, T(0)=0, T(1)=1.

dT (x)
dx

d
dx

841

The exact solution of Eq. (A4),

T(x)=—14+(1+43x)2, (A5)

will serve as a basis of comparison for any estimate of
T(x). We will now obtain an estimate of T'(x) in the
course of developing a VP, namely, F,(T,,0) for the
F(T,0) associated with

2
1! dT(X)
F(N)=7 [ k()| == | dx, (A6)
where
k(D) =k(T") /kg=1+T(x) .
The associated F(T,0) is
2
i 4ar
F(T,0)=1 f0(1+9) o |9 (A7)

and the VP for F(T,0), which follows from Eq. (2.9), is
2

dx ,

tr

dx

1
Fy(Ty,0)=7% [ (1+6) (A8)

where we demand that 7.(0)=0 and T, (1)=1. We re-
strict the trial function T (x) to be a simple quadratic
form in x. We then have

Tu(x)=x +a(x>—x), (A9)

where a is a variational parameter. Equating dF,/da to
zero and then setting =T, =x +a(x*—x), we obtain
a?—15a —5=0, which allows a = —0.326 or 15.326. The
value a=15.326 is not an acceptable physical solution
since the direction of the heat flow, and therefore the sign
of dT /dx must be the same at x=0 and 1. The estimate
of T is thus

To=1.326x —0.326x2 . (A10)

The same result was obtained by Finlayson using the
Galerkin method.® The results are given in Table I. The
estimate of T is quite good. It differs from the exact T by

TABLE 1. Exact T vs T, obtained from F, of Glansdorff and Prigogine, and vs T,. p. represents the percentage error in T,
namely, 100(T. — T)/T, while p, represents the percentage error in T,, namely, 100(T, — T) /T, for various values of the parameter

€.

€=0.01 €=0.05 €=0.2 €=0.4

x T y Dest T, Dy T, Dv T, Dy T, Dy
0 0 0 0 0 0 0 0 0 0 0 0
<«<1 ~1.50x ~1.33x 11.1 T,~[1.5—(e/8)+0(e)]x
0.05 0.07238 0.0655 9.5 0.07233 0.069 0.07218 0.276 0.07164 1.02 0.07105 1.84
0.10 0.1402 0.129 7.9 0.1401 0.071 0.1398 0.285 0.1389 0.93 0.1378 1.71
0.20 0.2649 0.252 49 0.2647 0.076 0.2644 0.189 0.2629 0.76 0.2612 1.4
0.30 0.3784 0.368 2.6 0.3783 0.026 0.3778 0.159 0.3760 0.63 0.3740 1.2
0.40 0.4832 0.478 1.0 0.4831 0.021 0.4826 0.124 0.4807 0.52 0.4787 0.93
0.50 0.5811 0.582 0.17 0.5810 0.017 0.5805 0.103 0.5787 0.41 0.5767 0.76
0.60 0.6733 0.678 0.74 0.6732 0.015 0.6727 0.089 0.6712 0.31 0.6694 0.58
0.70 0.7607 0.768 0.92 0.7606 0.013 0.7602 0.066 0.7589- 0.24 0.7574 0.43
0.80 0.8439 0.852 0.95 0.8438 0.012 0.8436 0.036 0.8426 0.15- 0.8416 0.27
0.90 0.9235 0.929 0.54 0.9235 0.00 0.9234 0.011 0.9228 0.076 0.9223 0.13
1.00 1 1 0 1 0 1 0 1 0 1 0




842 KALMAN KALIKSTEIN AND LARRY SPRUCH 29

about 10% near x=0 and by less than 1% for x=0.4—1.
From Eq. (A5) it follows that

2
Fn=1 [ a+n |9 | ax
is given by
F(T)=1% foldT=%T|(‘,=%. (A11)
For trial functions of the form
Te=x +af(x), f(0)=f(1)=0,
Eq. (A8) gives
FT0)=1 [, (1+0)1+42af, +a¥fDdx , (A12)

where f, =df /dx. We then have
8F,= [ (1+0)fx+afDdx =0.

The use of this last relationship in Eq. (A12) gives
Fy(Ty,0)=14 fol (1+6)(1+afy)dx .

Now replacing 6 by Ty, and noting that 1+ af,
=d (14T )/dx, we obtain, without ever having specified
f(x) other than its endpoint values,

F(Ty)=5(Tu+1?|o=7% . (A13)

It is interesting to observe that F,(T) has exactly the
same numerical value as F(T); on the other hand, the
forms in Eqgs. (All) and (A13), namely 37/4 and
(T +1)%/4, are different. Of course, it will not always be
the case that F,(T,,) is equal to F(T). For the trial func-
tion Ty=x2+a(x*—x), F, differs markedly from F.
Also, for the linear problem (k=1), for which T =x, the
choice T, =sin(mx /2)+a(x?—x) gives an F,(T;) which
differs from F(T). Finally, we have

1 ! 2
F(T,To)=+ fo (141.326—0.326x2)
2
X g;(—l+\/1+3x) dx =0.748 ,

which differs from F, by 0.27%. Note that (F,—F)/F is
of the order of some weighted average of [(Te —T)/T]?
and is positive, where F here is F(T,T ).

By comparing it with the exact solution, Thomaes (Ref.
4, p. 305) showed that the solution obtained by means of
F, for a specific steady-state problem, with k an exponen-
tial function of the temperature, converges. Glansdorff
and Prigogine obtained a general proof of convergence.?!

The nonlinear problem, Eq. (A4), will now be solved us-
ing the variational expression for T itself, Eq. (3.19);

d
dx’

1
T,(x)=Tyx)+ [ Gulx,x")

X T (x")dx’

n1-4_
[1+Tu(xD]— =

=T (x)+1(x) . (A14)

The requirement that 8T, (x)=0 leads, in a fashion similar

to that used in Sec. III, to the requirement that
d2
dxll
note that the operator on the left is the adjoint (with x re-
placed by x’) of the Frechét functional derivative of the
left-hand side of Eq. (A4). (We have not indicated the

dependence of G and G, on 7.) We must also impose
boundary conditions

[1+T(x")] G(x,x')=—8(x —x') ;

G(0,x")=0, G(1,x')=0. (A15)
G is given by
G(x,x")=x _(1—x )14+ T(x)]"!
=x (1—x3)/(1+3x)1/2, (A16)

We do not, of course, want to use the exact G since the ex-
act G will not normally be known. Introducing a parame-
ter €, we choose

Gyu(x,x")=Dx ' e(1—x1t¢), (A17)

where D is a variational parameter and, as before, we
choose

Ty=x +a(x*—x).

Equating 37, /3D to zero is equivalent to the requirement
that I=0, so our variational approach in the present case
is the analog of that used by Hulthén.?> We find

13
2+€ 3+€

I=(1+¢€)x—1) |a® (x +1)

2

2
4+e(x +x+4+1)

+

3
3+€

1
+— =

( 1
x +1) Tte

|

When € is set equal to zero, T, reduces to 7. This is to be
expected since the choice e=0 leads to

G,=D(1+3x)%G . (A18)

The x’-independent factor D(1 + 3x)!/? plays the role of a
multiplicative factor in the evaluation of I; since I van-
ishes for the correct Green’s function, it therefore also
vanishes for G,, given by Eq. (A18). The results for T,
for different choices of € are presented in Table I. One
notes from the results in Table I that the values of T, for
all values of x and € considered, are not only very close to
but below T. We have developed'® quite general upper
and lower variational bounds on T, but the generality was
obtained at a cost, the variational bounds being rather
cumbersome. We suspect, but have not shown, that there
are many particular cases for which an upper or lower
variational bound on T is obtainable in a simpler form.
For the present problem, an expansion of F, through
terms of order €* shows that T, provides a lower (upper)
variational bound if € is positive (negative), but we caution
the reader that for the problem at hand Gy, reduces to G
for e=0.
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