
PHYSICAL REVIEW A VOLUME 29, NUMBER 2 FEBRUARY 1984

Scaling of the shear viscosity of the system polystyrene-cyclohexane
in the critical region
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The shear viscosity of the system polystyrene-cyclohexane was measured along the isochores near
the critical concentration. The value of the critical exponent for the shear viscosity
($„=0.029+0.003) is obtained by analyzing the results from the viewpoint of multiplicative renor-
malization of transport coefficients. In addition, it is shown that the shear viscosity satisfies
scaling-law relations and the pseudospinodal generalization previously established for Auids and

binary mixtures.

I. INTRODUCTION

In recent years the shear viscosity near the critical point
has attracted an increasing amount of attention. ' A num-
ber of studies have been conducted on fluids, binary mix-
tures, and three component systems, with the well-
established universality and scaling-law relations. Fur-
ther extension of these concepts to a polymer solution in
the critical region has been done only in the preliminary
forms.

In polymer solutions, the constituents are extremely dif-
ferent in size and in structure. Furthermore, a large devi-
ation from simple scaling has been observed in
coexistence-curve measurements at high molecular weight
and the temperature range of simple scaling may depend
on molecular weight. For these reasons, polymer solu-
tions are relevant systems for a test of universality and
scaling-law relations.

In this paper, the binary mixture polystyrene-
cyclohexane over a wide range of the temperature-
concentration diagram in the critical region was investi-
gated by using a viscometric method. This system has
been studied thoroughly by coexistence-curve measure-
ment and light scattering measurement, ' which enabled
us to test universality and scaling-law relations using
viscosity data. Experiments were made with a carefully
fractionated polymer sample to minimize the effect of the
molecular-weight distribution.
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avoid moisture in the air.
Since the coexistence curve and the pseudospinodal

curve for the present system were determined several years
ago, we tried to test the purity of our sample by deter-
mining the coexistence curve. The results are shown in
Fig. 1. The critical point (T, =21.039'C, P, =0.0825) was
established by phase-equilibrium measurements and the
diameter, which is slightly away from the critical point

II. EXPERIMENTAL

Polystyrene (Pressure Chemical Company, Pittsburgh,
PA) characterized by M~ = 11X 10 and M„/M„& 1.06,
where M and M„are the weight and number average
molecular weight, respectively, was fractionated into five
fractions by the fractional solution technique. In the
present study we used one of the fractions characterized
by M„=11&10 and M„/M„&1.02. Reagent-grade cy-
clohexane was purified by passing it through a 1 m
column of silica gel and was fractionally distilled over
metal sodium in an atmosphere of dry nitrogen just before
use. Preparation of the solution was performed in a dry
box under dry nitrogen. We paid particular attention to
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FIG. 1. Coexistence curve and pseudospinodal curve for the

system polystyrene-cyclohexane. The solid and the dashed

curves represent the coexistence curve with P=0.34 and the

pseudospinodal curve with P"=0.38, respectively (after Ref. 9).
Open circles represent the phase-separation temperatures for
nine samples with different concentrations compiled in Table I.
The straight lines of numbers 1—9 represent the paths of viscosi-

ty measurement along with the isochores. The curved lines with

figures represent the isorange lines of correlation length.
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Sample
PS—C,H„ &p (c)'

20.77o
20.988
21.035
21 04o
21.035
21.025
21.00'
21.91'
20.823

(0.029,)

0.029'
0.0293
0.029'
0 029o
0.029'
0.0294
0.0293

(0.029')

5.78
11.05
38.45
40.83
55.44
68.03
77.32
90.04

151.56

1 0.0405
2 0.0593
3 0.0741

0.0827
5 0.0899
6 0.0959
7 0.1000
8 0.1143
9 0.1271

'Taken from the experimental data of Kojima et al. (Ref. 9).
temperature, respectively.

0.033' (Refs. 14, 15, and 17)

T~ and T,„are the phase-separation temperature and pseudospinodal

TABLE I. Characteristic of the sample and values of the Vogel parameter and P„. (PS is polystyrene. )

g;q =2 exp[8/(T —C)]
T~ ('c) 103 8 C

1030 48.2
840 87.4
431 162.1

460 160.3
394 175.5
368 182.5
353 187.2
369 190.3
289 209.5

( T, =21.330'C, P, =0.0825) reported by Kuwahara
et a/. ' It is noted that the critical concentrations in two
laboratories are the same, though the slight difference be-
tween the critical temperatures will be attributed to dif-
ferent amounts of impurities in the samples studied by
each laboratory. Therefore, we used the data of
Kuwahara et al. in the data analysis of the viscosity tak-
ing into account the slight difference of the critical tem-
peratvres.

The kinetic viscosity g/p (p, density) was measured
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with a modified Ubbelohde viscometer. The viscometer
was calibrated by comparing P.ow times of isobutyl al-
cohol. It was found that the kinetic-energy correction was
also needed. Samples were prepared from the stock solu-
tion by adding appropriate amounts of cyclohexane by
weight in the dry box. The samples were quickly prepared
by filtering the solution into the vj.scometer, freezing, and
subsequently sealing the viscometer with a torch under
vacuum. The sealed viscometer was mounted on a rotary
board and placed in a water bath along with a thermostat
which provided constant temperature within 0.005 C. A
detailed description of the experimental procedures has
been reported elsewhere. ' "

For the purpose of comparison with the theory, the
measured kinetic viscosity has been multiplied by the den-
sity. The values of the density were calculated from the
density of cyclohexane and of polystyrene' and compared
with the existing data. ' Viscosity measurements were
carried out over the temperature range of T~ (phase-
separation temperature) -65'C along the isochores for
nine samples with different concentrations as shown in
Fig. 1 and Table I. The viscosity data as a function of
temperature are shown in Fig. 2.
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III. DATA ANALYSIS

The very complicated problem of the critical behavior
of transport coefficients has been widely studied. The re-
cent refinement of mode-mode coopling theory' ' and
the success of renormalization-group theory' ' have en-
abled the critical exponent zz (i.e., P„) for the shear viscos-
ity to be examined more rigorously. The theories predict
that the shear viscosity along with the critical isochore
may be written as

'q=q(qDg) "=q(q~go) "t

FIG. 2. Shear viscosity as a function of temperature at nine
different concentrations are shown by numbers ' —9 in Table I.
Simple power law of correlation length and osmotic compressi-
bility is realized in the temperature range lower than the broken
lines.

with P&
——+z&v, where qD is a microscopic cutoff wave

number, /=got ' is the correlation length, and t is given
by (T/T, —1). g is the critical amplitude for the diverg-
ing shear viscosity near critical point, which can be identi-
fied as the bare (background) viscosity q;~, where the
correction to g of order t has been omitted.
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ln t(D,)t) ture. Equation (2) has been successfully applied to
represent the behavior of the viscosity of the polymer
solution in which large systematic deviations from the
simple Arrhenius equation were observed.

As an alternative method we can use the equation ex-
panded as a series of increasing powers of t,

(3)

O. i

I

-6
ln t(0)

FIG. 3. Plot of lnq/g;d vs lnt for the system polystyrene-

cyclohexane (P2 ——0.0827). 6, our original data; 0, our data

corrected for a lowering of the critical temperature; k, , our data

corrected for nonlinear effect after Gxtoby; , our data corrected

for nonlinear effect taking into account T,(D,gf).

since the aIDpliiude q is expected to be an analytical func-
tion of t. Although Eq. (3) with four parameters is
equivalent to the Vogel equation, we did not adopt Eq. (3)
in the present analysis.

A.s it is known that physical quantities such as correla-
tion length and osmotic isothermal compressibility in this
system ' diverge in a simple power law in the tempera-
ture region lower than the broken lines in Fig. 2, we took
into account this point in the evaluation of g;z. Fittings
to the Vogel equation and Eq. (3) have been done by using
the program system, "Statistical Analysis by Least
Squares"2 (sAI.S). The Vogel parameters obtained were
also compiled in. Table I.

From mode-mode coupling theory the critical exponent

Pv is found to be 0.033~ using the self-consistent approxi-
mation'"' and 0.043 with vertex correction, ' while the
renormalization-group theory predicts P„ to be 0.033~ in
an e expansion to first order' and 0.040 in an e expansion
to second order for the dimensionality d =3.' A com-
mon feature of all these theories is that the shear viscosity
shows a weak anomaly in the critical region and that the
renormalization of its anomalous part is of a multiplica-
tive rather than of an additive type.

On the experimental side, Eq. (1) has been confirmed by
a critical reexamination of the existing viscosity data '

and a shear viscosity measurement in a large temperature
range. However, it is important to note that Eq. (1) is

only the first approximation and, in general, the existence
of the correction term is predicted theoretically, though
fortunately it has not been needed to account for the
behavior of the shear viscosity in many binary critical
mixtures. '

In interpreting viscosity data, much of the ambiguity is

due to different methods of subtracting g;d. It is natural

that a systematic procedure should be developed for the
evaluation of g;d. To gain some insight into the problem
we used two different equations to represent g;d.

It is known that the temperature dependence of the
viscosity of nearly all pure and multicomponent liquids
can be adequately represented by the Arrhenius equation.
However, for the present system this equation does not
hold except for a very narrow range of temperatures. Us-

ing this equation, we obtained a significant critical region
which was not consistent with the results obtained by oth-
er independent experiments. ' ' Therefore we used the
Vogel equation '

g;d =A exp[A/(T —C)],
where A, 8, and C are constants independent of tempera-

In order to test the power-law relation of Eq. (1), the
plot of lnrl(D, fr)/q;~ vs lnt(0) for sample 4 (P2 ——0.0827)
is shown in Fig. 3. Figure 3 shows that lng/g;d at first
increases linearly and then starts to level off as one ap-
proaches the critical point, while Eq. (1) suggests a
straight line of slope —

Pv in the same plot along with the
critical isochore. Such a leveling off of shear viscosity has
been mainly attributed to the nonlinear effect in the mea-
surement of the capillary method. ' Depending on the
type of viscometer used and on the correlation length of
the system, the effect can become very important, espe-
cially in the present polymer solution.

According to Oxtoby, the nonlinear effect b, (A, ) is ex-
pressed as a function of A, (=rig D/kjaT, where D is the
magnitude of the shear gradient),

A(A, ) = [g(0)—g(A, )]/q(0),
which should be a universal function of A, , independent of
qD. On the other hand, Onuki et al. have found a
lowering of the critical temperature T, (D) in the presence
of shear flow, which has been observed on the experiments
for the critical mixtures aniline-cyclohexane and
polydimethylsiloxane-diethyl carbonate. For the present
system hT =T, (D,rr) T, (0), in which D,—rr is the effec-
tive average value in terms of the experimentally known

D,„, is estimated as —0.010 K in an e expansion to the
second order. In Fig. 3 the closed triangles represent the
points after the correction of the nonlinear shear-gradient
effect, while the closed circles represent the corresponding
points after the correction of the nonlinear shear-gradient
effect taking into account T, (D,rr). It is noted that data
points after the correction of this effect are in reasonable
agreement with the prediction of Eq. (1). The critical ex-

ponent corrected for 6(A,,rr) and T, (D,rr) is represented by
$„=0.029+0.003 and is in good agreement with

$„=0.033, in the first order, but is in disagreement with
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FIG. 4. Plot of lng/g;d vs lnt, „ for the system polystyrene-

cyclohexane. Pz is the volume fraction of polystyrene.

Plot of ln)/);q vs P2 for the system polystyrene-
cyclohexane: T —T,~,„=0.02' ('p), 0.05' (O), p. lp' (Q), p.2p
(), 0.5O (~), 1.M. (0), '2.M (8).

$„=0.040 in the second order.
Since g/ri;d and gt along the noncritical isochore would

diverge on the spi nodal curve introduced by Benedek,
the following extension of Eq. (1) has been proposed

rl=8(eDk ) "=8(eDko) "&,p
"

where t,p
=T/&, r

—1. Straight lines of slope —p„are ob-
t«ned in plots of in'/g;d vs int, as shown in Fig. 4. All

the exponent values obtained are listed in Table I. These
exponents are also consistent with the $„=0.0335 in the
first order. Such a result agrees well with the hypothesis
of universality, irrespective of the particular system under
examination.

It is worthwhile to attempt a more general test of the
homogeneity and scaling laws with the viscosity data. Ac-
cording to the initial approach of Green and co-
workers, ' ' the scaling relation of Eq. (1) takes a form '

Q l5

-Q.5—

]o2$
2

O 405
5.93
7.41I 827

X 899
+ 959

10.00
11.43
12.71
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G. 6. Scaling plots of the shear viscosity as a function of X for the system polystyrene-cyclohexane. The solid line corresponds
t» =r/1~4'2

I

" th«ash«»n«o X.,=r»/
~
~((;

~

",and the absolute values of X to the negative values of ~.
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( 4'2/4'2, )

where 6/2 ——(pz —p2)/2/2 and pz is the volume fraction

at the critical concentration. tI)z and Pz represent the di-
lute and the concentrated volume fractions on the coex-
istence curve, respectively. I3 is the critical exponent of
the coexistence curve APz ——8 ( t)~— .A factor—P /2v
($2/$2 ) " has been introduced in Eq. (4) in order to
accoull't fol a SInall asyII1IIletly ill lnll/'g;d, whlcll InaIII-

fests itself in a shift of the peaks in Fig. 5. In regard to
this point, it is noted that the factor was omitted in the
earlier data analysis for binary critical mixtures because
of the symmetry in the plot of inrilqtd vs x2 (mole frac-
tion), though the factor was contained to generally hold in
the scaling equation. Therefore, the earlier analysis was

equivalent to the data analysis without correction terms

by Calmetts. ' Such an asymmetric feature has also been
observed in other independent measurements for polymer
solutions near the critica1 point. '

The function g (X) has a universal asymptotic behavior,
a.e.,

in the range of —1/8' ~(X& ao. The subscripts + and
—are referred to as T& T, and T&T, respectively. The
results applied to the present system are shown in Fig. 6.
It should be noted that the analysis presented here is ap-
plicable to all temperatures above and below the critical
temperature, even polymer solutions. Figure 6 demon-
strates that the reduced shear viscosity data can be
represented by a single-valued function g (X) of the scaling
parameter X.

Finally, it is remarkable that a simple scaling plot can
]/pfbe obtained when t,„/

~

5/2(sp)*
~

Ir~ is used instead
of t/

~
bp2 ' ~ as X, as shown by the broken line in Fig.

6, where

~A(sP)* =(42' —6').„..d.I/202 '"(sP)

and I3 is the critical exponent of the pseudospinodal curve

A(t (2sp)'=8 ( —t,„) . The plot may be considered as a
natural result from the proposed pseudospinodal generali-
zation previously established. ' In fact, Fig. 4 suggests
that such a scaled plot will be obtained already by chang-
ing only the shift factors on the horizontal axis which re-

flect on (qDgp) " in Eq. (1).

lim g(X)=X

lim g(X)=1,
X—+0+
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