
PHYSICAL REVIEW A VOLUME 29, NUMBER 2 FEBRUARY 1984

Observation of period doubling and chaos in spin-wave instabilities in yttrium iron garnet
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Ferromagnetic resonance in a polished 0.047-cm-radius sphere of gallium-doped yttrium iron gar-
net is studied at 1.3 GHz in a magnetic field of 460 G. A second-order Suhl instability is observed,
owing to the nonlinear coupling of the precessing uniform magnetization with spin waves. This is
detected by the onset of auto-oscillations of the magnetization. One of these modes with frequency
=16 kHz corresponds so the lowest spherical dimensional resonance of a packet of spin waves of
small wave vector and long lifetime ( = 10 cycles). From real-time signals, spectral analysis, and re-
turn maps this mode is found to display chaotic dynamics as the driving rf field is increased:
thresholds for the onset of period-doubling bifurcations, chaos, and periodic windows. Some ob-
served return maps bear resemblance to the two-dimensional area-preserving quadratic map of
Henon. The system has several attractors and displays "solid-state turbulence, "analogous to that in
fluids.

I. INTRODUCTION

Earlier, Damon' and Wang and Bloembergen observed
that ferromagnetic resonance in some ferrites displays
premature saturation and low-field subsidiary resonance
when excited above a critical value of the rf driving field
H&. This was explained by Suhl, who developed a de-
tailed theory of nonlinear coupling between the uniform
precession mode of the magnetization vector and spin
waves. He showed that the uniform precession could ex-
cite spin waves, whose amplitude grows essentially ex-
ponentially at a critical value of Hj —this is the Suhl in-
stability. He writes ".. . this situation bears a certain
resemblance to the turbulent state in fluid dynamics. . . ."
This prescient comment was followed by the observation
of low-frequency (10 —10 Hz) noisy "auto-oscillations"
of the magnetization, believed to be due to excitation
of spin waves but not fully understood.

From the more recent perspective of nonlinear dynam-
ics, one is tempted to interpret these experimental results
as examples of chaotic dynamics. To this end we have ex-
perimentally reexamined the auto-oscillations in spheres
of gallium-doped yttrium iron garnet (Ga-YIG), keeping
in mind the routes to chaos observed in some other driven
nonlinear systems. ' Using the precessing magnetiza-
tion M(t) as the dynamical variable and the driving field
H~ as the control parameter, we observe real-time signals,
power spectra, and return maps of the system. We find
period-doubling bifurcations, onset of chaos, and periodic
windows. The system displays "solid-state turbulence. "
Qf interest is the fact that for some auto-oscillation
modes, the return map can be qualitatively understood
(but not necessarily uniquely) by a two-dimensional quad-
ratic map of the form given by Henon' for the nearly
conservative case; this is consistent with the observation
that this auto-oscillation mode has a long relaxation time.

II. EXPERIMENTAL ARRANGEMENT

Figure 1 shows the experimental arrangement used: A
Ga-YIELD sphere of radius R is wound with a pick-up coil

and a driving coil at right angles, providing a field H~ at
the sphere from an oscillator of frequency fc and variable
voltage V~. This assembly is mounted in a magnetic field

Hd, along a third, mutually perpendicular axis, which
provides the Zeeman field for ferromagnetic resonance,
observed from the voltage induced into the pick-up coil by
the sample magnetization M(t), precessing about Hd, . A
signal voltage V, is obtained from diode rectification of
the induced voltage. A low-frequency (100 Hz) modula-
tion field H (t), parallel to Hd„is used to sweep through
the resonance field to display the signal voltage V, as a
function of the field, i.e., ferromagnetic resonance absorp-
tion. To observe auto-oscillations of llew(t) we observe
V, (t) at some fixed value of Hd, with H (t) =0.

The Ga-YIG spheres were highly spherical (to within
b,R /R =6 X 10 ) and highly polished (to 0.15 pm).
Typical parameters used are radius R =-0.047 cm, satura-

H=Hd + H

Vpf

'ov'

FIG. 1. Experimental arrangemenet showing a Ga-YIG
sphere subjected to an rf field Hi at fo 1.3 CxHz and a dc field-—
Hd, -460 Oe. A pickup coil generates a signal V, proportional
to the time derivative of the transverse magnetization of the
sample.
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tion magnetization 4nM, =300 G fo = 1.3 gHz, Hd, =460
G, resonance linewidth =0.5 G. Use of Ga-YIG- with
lower saturation magnetization allowed the use of lower
resonance fields and frequencies than pure YIG.

All experiments reported here were done at room tem-
perature and with the perpendicular pumping configura-
tion (HIlHd, ) of Fig. l. Although preliminary parallel

pumping (HI~ ~Hd, ) was attempted, no chaotic dynamics
were observed, possibly because of insufficient pumping
power available.

III. REVIE~ OF SPIN-WAVE THEORY (REF. ~~)

For a set of spins SI on a lattice in an external magnetic
field Ho, an appropriate Hamiltonian is

A =yRQHO. SJ— @III'Q SJ SJ+I+~dd . (1)
Sa

The first term is the Zeeinan interaction (y is the
gyromagnetic ratio), the second is the Heisenberg ex-
change interaction (D is the exchange constant, a is the
lattice spacing), the last term is the dipole-dipole interac-
tion. The Zeeman interaction gives rise to a uniform pre-
ccssioII of thc saIIlplc IIiagnctlzatloII M about Ho Rt thc
Kittel frequency, ' which for a spherical sample is
coo = /HO. T1ic second term leads to spin waves of fre-
quency cok and wave vector k, described by the dispersion
relation"

2 2

3 +beak +&~sin 6k (2)

valid for a sphere, with spin waves propagating in a direc-
tion k at angle (9k to H; here mM ——y4mM, . For the values
uo ——8. 16& 10 sec ', m~ ——5.27& 10 sec ', y = 17.58
&10; a=5.4&10 Qecm used in our experiment, mk
is plotted in Fig. 2 for three angles: 9=0', (9=90', and
6=HO ——60.4', the value for which coo——mk at k =0; this is
the largest angle for which coo can equal cok. It is the non-
linear coupling between the uniform mode at mo and spin

I I I I I I I I I

waves at cok that gives rise to the instabilities of interest,
chieAy through the dipolar term.

Suhl, in ah elegant analysis of the nonlinear coupling,
found that an instability arises in first order [i.e., for
terms of the form (uniform ainplitude) && (spin-wave am-
plitude)], if coo ——2cok, I.e., one magnon of the uniform
mode creates two spin-wave magnons. This could occur
at saturation of the subsidiary resonance at H„,= —,'Ho,
requiring (mo/2)&(coo —co~/3). This condition is not
satisfied in our experiment, i.e., half-frequency magnons
lie outside the spin-wave manifold and cannot couple; this
can be seen from Fig. 2. A first-order instability can also
occur at saturation of the main resonance H„,=HO if
(A@M/3)&(coo/2); again this condition is not satisfied
under our experimental conditions.

We thus examine Suhl s second-order instability [i.e.,
(uniform amplitude) )& (spin-wave amplitude), the so-
called triple terms], leading to premature saturation of the
main resonance, and requiring 6)o =Q)k and Hres Ho ~

which can be achieved in our experiment, and is the only
instability we consider further.

Suhl found that the lowest-threshold value of HI occurs
for 8k =0; from Eq. (2) the corresponding k value is given
by

yDk I
——co~/3 . (3)

This means that as the uniforin mode resonance is saturat-
ed by increasing the H& field, the first instability to arise
will excite spin waves at ~I, ——coo and k=k& in Fig. 2.
These waves travel along Ho in the spherical sample. This
effect was observed by Damon' and by Bloembergen and
Wang as a weakening and broadening (premature satura-
tion) of the resonance line at a rather low value of HI.
Besides providing a quantitative explanation for the onset
of premature saturation, Suhl's theory also predicted the
detailed behavior of the spin system beyond threshold.

Because of the finite linewidth of the uniform mode,
one may expect that this instability will excite spin waves
with a spread b,cok and hk of frequency and wave vector,
which can be described as a spin-wave packet traveling
with group velocity us

——dcokldk. This can be calculated
from Eq. (2), which, with cok =coo for the instability of in-
terest here, results in

us
——( ,

'
yDco, )'~

I [—2+ —', p——psin 8+(p sin 8+4)'~ ]

&((P sin 8+4) j
I~

IO

I I I I I I 'II I I

0.4 0.8 1.2 1.6
k (10 crn )

2.0

where p:—coM/coo ——0.64 for our experiment. This expres-
sion gives the group velocity as a function of 8 along the
line cok =coo, the Kittel frequency, in the dispersion dia-
gram of Fig. 2. For 8=0,

us 2(yDcoM/3)'~ at k =k——I,
with the value us

——2.6X10 cm/sec for our experiment.
For 8~ 0, but still small,

FIG. 2. Plot of spin-wave frequency ~q vs wave vector k
from Eq. (2), for experimental parameters used for Ga-YIG
sphere. First instability occurs for spin waves traveling along
the magnetic field (8=0) with wave vector k =k &, for which the
spin-wave frequency becomes equal to the Kittel frequency Qpp.

us ——[(—,
' —sin8)(2yDcoM )]'~ (6)

showing that Ug decreases with increasing 8, and Ug~0 as
g~g k ~0 jn Fig

The simplest example of a spin-wave packet is one corn-
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posed of a pair of spin waves rok+ hcok and rok —4k, both
excited by the uniform mode with b.cok lcok « l.

Wang et al. suggested that standing-wave modes of
this packet could be set up in a ferrite sample, in their
case, a disc. For an isotropic sphere of radius R the nor-
mal electromagnetic modes are known to be given by
spherical Bessel functions. Thomas and Komoriya as-
sumed the spins are pinned at the spherical surface, so
that the lowest normal mode will be the first zero of these
functions n. =R.b,ko, yielding a mode frequency

cog =kkp Ug = rrUg /R

More generally, the spherical mode frequencies will be
given by the zeros of the spherical Bessel functions of
order zero, one, two, etc., given by R hko
=3.141,4.493,5.763,6.987,8.182, . . . .'

These standing spin-wave packet oscillations would be
manifest experimentally as a time modulation at co& of the
magnetization, i.e., the detection of a modulation frequen-
cy ~~ in the signal voltage V„Fig. 1, since any oscilla-
tions of the spin waves will be coupled back into the uni-
form mode. This, in fact, is the explanation of the auto-
oscillations of Wang et al. and Thomas and Komoriya.

We conclude, then, that the excitation of the standing
mode at co& is a spontaneous excitation of the nonlinear
spin system, driven by the ferromagnetic resonance at a
much higher frequency coo. We experimentally find that
this excitation displays chaotic dynamics. In this sense
the spin system is analogous to, say, the excitation of con-
vective loop frequencies in a fluid driven by a temperature
gradient in Benard-Rayleigh convection. '

IV. SIMPLE REVIE& GF CHAOTIC DYNAMICS

Although the nonlinear dynamics theory of Suhl, and of
Gottlieb and Suhl' for the parallel pumping case, do give
detailed prediction of the spin-system behavior, more re-
cently theories have appeared, e.g., Nakamura et al. ' and
Ohta and Nakamura, that, view the dynamics as being
controlled by a strange attractor in phase space, and the
onset of instabilities as an example of a universal route to
chaos. We take this viewpoint and examine the data in a
manner to test these ideas, which we now review.

It is know that even complex systems, if sufficiently
dissipative, can sometimes be modeled by simple low-
order finite-difference equations. Consider a nonlinear
periodic system with dynamical variable x, being driven
by a control parameter A, for which x„+i is some function
E(x„,x„i, . . . ,3), where the iterates x„,x„+,, are values
at successive times separated by the period of the system.
For the simplest case the return map function I' is one di-
mensional and quadratic:

2
+ 1 1 Axpg

the logistic map. As A is increased, there is a threshold
value 2=0.75, for which x„+1becomes unstable and
takes two alternating values; then four for larger 3, etc.
The system displays a cascade of period-doubling pitch-
fork bifurcations to an accumulation point
= 1.4010. . . where the period becomes infinite: this is the

FIG. 3. Ferromagnetic resonance line shapes at fo = $.3 QHz
for a Ga-YIG sphere at increased values of driving field H~. {a)
H~ ——1 (relative units); (b) H~ ——30; (c) Hl -=31, showing onset of
auto-oscillations; (d) H& -35, fully developed oscillations.

transition to aperiodic or chaotic behavior. For A ~A',
aperiodic bands merge and there exist narrow periodic
windows in a specific order and pattern. This model is
quantified by the bifurcation convergence rate 5 and
pitchfork scaling parameter cx computed by Feigenbaum.
Many other routes to chaos are possible, including inter-
mittency and quasiperiodicity.

Equation (8) is valid for systems with very large dissipa-
tion; it can be generalized into the two-dimensional Henon
map which allows fo1 Rd)usted dissipation through a pa-
rameter 8,

For B=O, Eq. (9) reduces to the logistic map, while for
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! 8!=1 the mapping becomes area preserving, corre-
sponding to a physical system which is conservative.

V. RESULTS AND INTERPRETATION

Figure 3 shows a series of ferromagnetic resonance line
shapes in a Ga- YIG sphere of radius R =0.047 cm for in-
creasing values of the driving field H, : Fig. 3(a), H, =1
(relative units), low-power unsaturated resonance; Fig.
3{b), Hi -30, showing broadening and premature satura-
tion; Fig. 3(c), Hi-31, at onset of instability and noisy
oscillations; Fig. 3(d), Hi -35, more fully developed oscil-
lations. To obtain a real-time signal of the oscillations,
Hd, and fo are held at their center values, while the
modulation field is set to zero, and V, (t) is photographed

with a single trace sweep, Fig. 4. The amplitude and sta-
bility depend on the sample crystal axes orientation, which
was then chosen to optimize the oscillations.

These auto-oscillations had a well defined Hi for their
onset. Figure 4(a) shows the oscillations observed at the
lowest value of Hi, they have a frequency of f&1=250
kHz. As H& was increased, these diminished in ampli-
tude; other auto-oscillations as in Fig. 4(b) at the low fre-
quency f~2-16 kHz were observed at higher Hi [cf. Fig.
3(d)]. We interpret fq 1 and f„2as follows. In Sec. III we
showed that the only instability possible for the parame-
ters of our experiment is the second-order premature
saturation of the main resonance. In fact, we do not ob-
serve any subsidiary resonance or instability at half field,
H, =Ho/2. Thus, we expect the lowest threshold to
occur for Hk =0 at ki, Fig. 2, corresponding to the group
velocity of Eq. (5). The lowest-frequency (zero-order)
standing-wave packet mode will be given by Eq. (7), which

)!j:''.:::,'.:':::.i('. ::...:.", '
'."..:;,:.':..:,:.",. ', '. .,:'.-':::,

"'.".':.':,
,
:::'"".'.:'::,'.",="",:. . ,'::.N::::::::::::'-;::::?:'=::::.::::.g

?

'i

c

(?;,":::.::::::::::gl::::::.::::... ",',,",1'

): '-" '' :::.)

?

FICs. 4. Real-time signals, V, (t) vs t, for auto-oscillations: (a)
at the H~ value as in Fig. 3(c), auto-oscillation frequency
f&1=250 kHz; (b) at higher H„auto-oscillation frequency
f&2=16 kHz; (c) at higher Hj, bifurcation to fz /2; 2(d) bifurca-
tion to F 2j4.

FIG. 5
(a) chaos
furcation
from Fig.

?

. Real-time signals, V, (t) vs
following Fig. 4(d); (b) perio
to period 6; (d) period 4,
4(d).

t, for various values of Hl ..
d-3 auto-oscillations; (c) bi-
but with different pattern
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~ I

FPD%'.. - % - ~

FIG. 6. (a) V, (t) vs (t) for a relaxation oscillation; (b) power
spectra for a period-5 auto-oscillation, showing subharmonic
components f/5, 2f /5, . . . , f,6f /5, . . .; (c) power spectra for a
noisy three-band attractor.

for radius R =0.047 cm yields a frequency

f~ ——co~/2m =(yDro~/3)' /R (10)

approximately equal to 275 kHz. This value corresponds
favorably with the observed fzt ——250 kHz. Additional
experiments with a Ga-YIG sphere of radius R =0.036
cm showed the scaling f„t 1/0R. Experiments with a
pure YIG sphere, R =0.033, and 4m.M, =1750 g showed
weak auto-oscillations at 900 kHz, to be compared to 920
kHz predicted from Eq. (10). We conclude that this
auto-oscillation is the standing-wave mode suggested by
Wang et al. and by Thomas and Komoriya at 0=0'.
The low-frequency oscillations at F2 cannot be due to a
higher-order mode at 8=0, and we ascribe them to the
zero-order mode of Eq. (7) but with a small value of us at
some angle 8 such that

FIG. 7. Phase portraits, V, vs V„for (a) period-3 auto-
oscillations, cf. Fig. 5(b); (b) chaos, cf. Fig. 5(a).

k —+0, Fig. 2. We conclude that the strong auto-
oscillations at f&2 are due to the lowest-order spherical
Bessel function mode of a packet of spin waves of wave
vector k =0.

In further experiments we measured the lifetime of
these oscillations at f„2by pulsing off the H, field, find-
ing an exponential decay with lifetime =10 cycles. This
indicates that this mode is only weakly coupled to other

I.O

f&2 ro~/2n =us(8 )/2R——.

The observed value fzq ——16 kHz requires us=1. 5&&10
cm/sec, which can be obtained from Eq. (4) for
8=8"=60', i.e., close to the value 8c——60.4' at which

I.O

FIG. 8. Return map constructed from the chaotic state of
Fig. 5(a). Here ~=0.2T.
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FIG. 9. Return map observed for period-1 auto-oscillations in

a Ga-YIG sphere; (a) and (b) are for slightly different values of
H).

FIG. 11. Return map observed for period-3 auto-oscillations;

(a) onset of period-3 oscillations; (b) clear period 3; (c) bifurca-
tion to period 6 at higher value of H &.

FIG. 10. Return map observed for period-2 auto-oscillations
in Ga-YIG sphere: (a) onset of period-2 bifurcation; (b) period
2.

modes and to the lattice phonons. Summarizing, the spin
system when strongly pumped at the main resonance at
1.3 6Hz spontaneously excites a packet of spin waves
(@=0) which have a dimensional resonance at the rela-
tively low frequency fq2=16 kHz. These oscillations
were found to show chaotic dynamics.

This is shown most simply by a sequence of f&2 oscilla-
tion signals V, (t) ~M(t), obtained at increased H~ values
These first appear in Fig. 4(b) as a sine wave at f&2 16——
kHz. There is a higher threshold at which the signal bi-
furcates to period 2, Fig. 4(c); then to period 4, Fig. 4(d).
Further increase of 0

&
leads to onset of a "noisy" aperiod-

ic signal we call chaos, Fig. 5(a), although we have not
proved experimentally that it is deterministic. However,
there is no reason why random (e.g. , thermal) noise should
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x )I
(n+I)

FIG. 12. Return map, x„+&vs x„,computed from Eq. (9)
for 8=-1: (.) 2=0.9'5, -".=y.=O'. 4; (b) 3=0.95, -.=y.
=0.3; cf. data, Fig. 9.

abruptly increase between Fig. 4(d) and Fig. 5(a). We also
observed a periodic state of period 3, Fig. 5(b), which bi-
furcates to period 6, Fig. 5(c), and then becomes chaotic.
Other periodic states observed are period 5 and period 4,
Fig. 5(c), with a visitation pattern different from that of
Fig. 4(d). Although the overall behavior seems roughly
similar to that observed in p-n junctions and in other non-
linear systems, the spin system is much less stable and the
behavior less reproducible than in p-n junctions. There
are more parameters: Ho, fo, H &, crystal orientation, and
temperature. Fluctuations in these (none are highly stabi-
lized) give drifts and even jumps from one dynamical state
to another. This gives the appearance of intermittency,
however, probably not that of Manneville and Pomeau.
We also observe a strong hysteresis, i.e., a dependence of
the chaotic dynamics on the direction in which Ho and fo

are set to resonance, and also on whether H
&

is increased
or decreased toward a threshold value. The system seems
to have several atiractors with quite different behavior.
That described above is probably the most characteristic
and reproducible. Another, quite different signal shape is
shown in Fig. 6(a), reminiscent of relaxation oscillations in

general; in fact, Hartwick et al. in their discovery of
auto-oscillations described them as relaxation oscillations.
%'e believe that these are distinct phenomena but have not
investigated their possibly chaotic dynamics.

Power spectra were measured by a frequency-scanning
spectrum analyzer. The results confirm the signal periods
measured above from real-time analysis. Figure 6(b) is the
spectrum for a period-5 oscillation, showing spectral corn-
ponents at f/5, 2f/5. . .f,6f/5, 7f/5, . . . and very small
peaks at f/10, . . . . Figure 6(c) is the spectrum for a
noisy three-band attractor near the period-3 window. The
chaotic state, Fig. 5(a), showed a wide-band spectrum with

a broad peak at fzq. By plotting V, (t) vs V, (t) on an os-
cilloscope, real-time phase portraits were obtained: Fig.

FIG. 13. Return map computed from Eq. (9) for 8=—1: (a)
A =3.02, xp=yp=0. 3325' (b) 3 =3.1, xp=yp ——0.33; cf. data,
Fig. 10.

7(a), period-3 window, Fig. 7(b), chaos.
More detailed information about the system can be ob-

tained from a return map: a plot of V, (t+r) vs V, (&),

when r is some fixed time. This can then be compared to
a theoretical model, e.g., the logistic map, Eq. (8), for
which x„+~vs x„is a parabola. The return map con-
structed from Fig. 5(a) is shown in Fig. 8; it is, very crude-

ly, a single-humped curve with a quadratic maximum.
However, other data yielded the rather different return

)& (o)
Xn+i

Xn

FIG. 14. Return map computed from Eq. (9) for B= —1: (a)
A =1 0385 xo=yo=0 5 (b) & =1.058 &p=yp=0. 5; cf. data,
Fig. 11.
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maps of Figs. 9—11. These were obtained by using a zero
crossing detector to give a pulse train of approximately
period T; this strobed a sample-and-hold circuit which
then plotted V, (t +T) vs V, (t) directly on an oscilloscope.
It was not known if the system dynamics, and the attrac-
tor, is the same for Fig. 8 and for Figs. 9—11, which do
not appear to be modeled by the logistic map. In fact,
these return maps appear to be similar to those computed
from the Henon map, Eq. (9), for 8= —1 (i.e., for a near-
ly conservative system) shown in Figs. 12—14, for the
values A =0.95, 3.02, and 1.04, corresponding to periods
1, 2, and 3, respectively. We have no more detailed exper-
imental reasons, nor any theoretical reasons, for believing
that the spin-system dynamics is modeled by the Henon
map, but merely note this similarity.

To summarize, a reexamination of the Suhl spin-wave
instabilities in a Ga-YIG sphere has shown that there ex-
ists a very low-frequency auto-oscillation, not previously

reported, corresponding to the lowest spherical dimension-
al resonance of a packet of spin waves of small wave num-
ber. This displays period doubling, chaos, and periodic
windows, as well as hysteresis, relaxationlike oscillations,
and probably several different attractors. Some of the
behavior is characterized by a single-humped return map.
Other behavior yields maps qualitatively like the Henon
quadratic map for the nearly conservative case, consistent
with the observed long lifetime of this dimensional mode.
These results show that the auto-oscillations of spin waves
have many similarities to instabilities found in fluid
dynamics and other nonlinear systems.
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