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In most treatments Brownian motion is considered either in position or in velocity space. While
the description of Brownian motion as a Markov process via a master equation in phase space can,
in principle, deal with the full problem, assumptions are usually introduced which lead to the for-
mulation of the generalized Fokker-Planck equation. In the following we want to show how, in the
field-free one-dimensional case, the transport equation for a time-dependent conditional average of
an arbitrary physical quantity (depending on position and velocity coordinates) of a tagged particle
in phase space can be derived and solved successively if the time- and position-independent mo-
ments of the transition probability can be expanded in terms of a parameter 0 '. The transport
equation can then be transformed into a set of l linear partial differential equations, whose solutions
provide the lth approximation in the expansion parameter 0 ' to the full solution of the transport
equation. The system of linear partial differential equations is closed in the sense that the solution
of the lth partial differential equation is determined by the solutions of the l —1 partial differential
equations. It turns out that the l=O partial differential equation describes the macroscopic (non-
fluctuating) motion of the tagged particle. It is discussed in which sense a bivariate Gaussian distri-
bution describes the full Markov process and how the full phase-space treatment provides more in-

sight into Brownian motion. It is shown how the special cases described by the Langevin equation
and the Fokker-Planck equation are contained in the new method presented.

INTRODUCTION

Modern treatments' start from the X-particle Liouville
equation using projection operator techniques in order to
derive a generalized master equation for the time distribu-
tion function of a tagged particle. This generalized master
equation is a non-Markovian equation and all the prob-
lems are hidden in the memory kernel. Neglecting these
memory effects one can derive the Boltzmann equation,
which appears to be a Markovian master equation. In this
paper we are interested in the solution of the Markovian
master equation for the motion of a particle in one dimen-
sion leading to nonlinear transport laws, rather than tak-
ing into account the memory effects entering in the gen-
eralized master equation.

The random motion of a tagged particle in the presence
of a field of particles is commonly treated, e.g., either as
the continuous limit of a discrete step process on a suit-
able chosen lattice in position space or directly in velocity
space assuming uniformity in position space. A full
description of the Brownian motion as a Markov process
in phase space is given by a special case of the master
equation namely the linear Boltzmann equation. Since the
solution of this equation is not known for general interac-
tion potentials, one usually makes assumptions about the
moments of the transition probability, to obtain the linear
Fokker-Planck equation, where the fundamental solution
is well known.

The natural question to ask is how the process of trans-
port of, e.g., particles, momentum, energy, or the average
change of an arbitrary physical quantity can be described
starting from a phase-space description. The most general
method to address this problem is to calculate the tagged-

particle time-dependent phase-space distribution
h(X, V, t Xo, Vo) describing the probability to find the
tagged particle in the phase-space element around (X, V) at
time t, given it was at (Xo, Vo) at time t =0.

There are two approaches in use, which we will briefly
outline, following Chandrasekhar and Rice and Gray.
The first approach, the statistical equation of motion ap-
proach, starts by using the Langevin equation for calculat-
ing the time-dependent average velocity (in fact the first
and higher velocity moments). The change in the average
velocity is caused by the assumption of a velocity propor-
tional macroscopic friction force and a fluctuating force
of microscopic origin with special properties —see Uhlen-
beck and Ornstein. From the time-dependent average
velocity, obtained by solving the Langevin equation, the
time-dependent mean displacement and higher moments
of the displacement and correlations of these quantities
are calculated. Using the time-dependent first and second
moments of the velocity, the position variable, and the
cross correlation between those two, a bivariate Gaussian
distribution for h (X, V, r

~
Xo, Vo) is derived. In the second

approach, the distribution-function approach, one tries to
find a partial differential equation for the time-dependent
phase-space distribution function itself, which then has to
be solved subject to the initial and boundary conditions.

A convenient starting point for describing fluctuations
in a system is the Markov equation or the Chapman-
Kolmogorov master equation. For the terminology we
use, see Van Kampen. The master equation approach has
been used previously to derive the velocity-space and
phase-space Fokker-Planck equation ' and leads in vari-
ous contractions and under special assumptions to results
obtained from the Langevin equation.
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In this paper we start with the master equation in phase
space in its integral form using the special initial condi-
tion 5(X —Xp)5(V —Vp). We then formulate the master
equation in two equivalent forms, called forward and
backward master equations, and derive from these equa-
tions the two corresponding forward and backward
integro-differential equations. The central physical quan-
tity of these master equations is the transition probability
IVn( Vp~ V~). As in our previous treatment of the master
equation for a single variable —see Eder and Lackner-
we again assume the state space of the Markov process to
be unbounded, the collisional transitions to occur instan-
taneously (causing an impulsive change of the velocities of
the two collision partners) meaning that changes on the
microscopic scale can be separated from changes on the
macroscopic scale, and are independent of position and
time variables. It is assumed that the moments of the
transition probability exist and can be expanded in a prop-
erly chosen parameter.

While the forward master equation is suited for the cal-
culation of the time-dependent phase-space distribution
function (TDF), it is the backward master equation which
is especially useful for the calculation of time-dependent
conditional average values (Hanggi and Thomas ). We
develop a new method for calculating time-dependent con-
ditional average values as functions of both position and
velocity coordinates to arbitrary order in the expansion
parameter 0 ' by solving a corresponding set of first-
order linear partial differential equations. This becomes
feasible by noting that the backward form of the master
equation provides an integro-differential equation for the
time evolution of the conditional average of an arbitrary
function. While the general method described in our ear-
lier paper remains the same, there is a higher degree of
mathematical complexity involved in finding the solutions
of the set of linear partial differential equations, since we
are now dealing not only with time and velocity as vari-
ables but include also the position variable. For this
reason we restrict the present treatment to one dimension.
From the general approximation scheme one can deduce
under which approximations the time-dependent bivariate
Gaussian distribution function emerges and is now in the
position to assess the limitations of this approach quanti-
tatively.

I. MASTER EQUATIGN IN PHASE SPACE

Let us consider the motion of a labeled Brownian parti-
cle in phase space. Owing to collisions the velocity of this
particle will change instantaneously and stochastically.
We assume that this process can be described by a homo-
geneous Markov process, using a time- and space-
independent transition probability which leaves the posi-
tion of the colliding particles unaltered during collisions
and allows the particles to move according to free flight in
between collisions. Furthermore, we assume that succes-
sive binary collision events are statistically uncorrelated.

With these assumptions in mind we formulate now a
master equation for a one-dimensional motion in its for-
ward and backward form in phase space, first as an in-
tegral equation and then as an integro-differential equa-
tion. Let us introduce the following quantities:
h (X, V, t

~
Xp, Vp), which is the probability to find the par-

ticle at time t in a phase-space element around (X, V) when
at time t =0 it was at (Xp, Vp); h (X, V, t =0 ~~Xp, Vp)
=5( V —Vp )5(X —Xp), the initial condition;
8'n(Vp~V&), the time- and position-independent transi-
tion probability from Vp~V~ (the subscript II refers to
an explicit dependence on a given parameter Q—see Ap-
pendix 8); exp[ —Pn( Vp)t], the probability that in a time
interval (O, t) no transition takes place, where Pn( Vp) is de-
fined by Pn(Vp)= f IVn(Vp~V~)dV~, ' 5(X —Xp —Vpt),

the free-flight propagator for a particle starting from
(Xp, Vp) at time t =0.

In order to obtain an equation for the TDF
h(X, V, t ~Xp, Vp) in the form of a balanced equation,
we consider the following two possibilities for a change.
(1) Xo stochastic transitions in phase space take place. The
system is at time t =0 in the state (Xp, Vp) and has the
probability

exp[ —Pn( Vp)t]5( V —Vp)5(X —Xp —Vpt)

to evolve in time without stochastic transitions. (2) There
are transitions in phase space. As in our earlier paper we
note that for this process two physically equivalent
descriptions, which are called in agreement with the
Chapman-Kolmogorov terminology the forward and
backward form of the master equation, are possible.

(i) Forward master equation Up to t~ (. t the system evolves in phase space according to the probability

h (X~, V&, t ~ ~
Xp, Vp), changes its velocity from V, —+ V in the time interval (t &, t, +dt ~) according to the transition proba-

bility 8'n( V~ —+ V) (causing no change in the position coordinate during the collision), and has no stochastic transition in

the remaining time interval (t&, t)

f dt) f dX( f dV)hf(X), V„t( ~Xp, Vp)8'n(V)~V)exp[ Pn(V)(t t))]5(X——X) —V(t t(—)) . —(2a)
0

Since any process can be described by a sum of a subprocess and its complement, the TDF h (X, V, t
~
Xp Vp) is simply

given by the sum of Eqs. (1) and (2a), yielding

hf(X, V, t
~
Xp, Vp) =exp[ Pz( Vp)t]5( V —Vp—)5(X—Xp —Vpt)

+ f dt) f dX( f dV)hf(X), V), t)
~
Xp, Vp)Wn(V, ~V)

X exp[ P&( V)(t t, )]5(X——X, —V (t——t, ) ) . (2b)

(ii) Backward master equation. The succession of events for the backward master equation is obtained by interchang-

ing the two processes in Eq. (2a) which occur before and after the collision process described,
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dt's f dx~ f dv~exp[ P—n(vp)t~]5(x~ —Xp —Vpt&)Wn(VIV~)h~(X, V t —t, ~x&, v&) .

The TDF hq(x, V, t
~
Xp, Vp) is then the sum of Eqs. (I) and (3a)

hb(X, V, t
~
Xp, Vp) =exp[ P—n( Vp)t]5( V —Vo)5(X —Xo —Vot)

+ f dt~ f dx~ f dv~exp[ P—n(v p)t~]5(x~ —Xp —Vpt&)Wn(vp~v~)

Xhb(XV t ti ix—i, Vi) . (3b)

and

= —Pn(V)hf(X V t
~

Xp Vp)

+ f dv, Wn(v, —+V)hf(x, v„t Xo, vo) (4a)

ahb(X, V, t ~xp, Vp) Bhb(X, V, t ~xo, Vp)

ax,

Both equations can be transformed to the usual form of
integro-differential equations yielding, respectively,

ahf(X, V, t
~
X„Vo) ahf {X,V, t

~
X„Vp )

at
+' ax

II. METHOD OF SOLUTION FOR THE
TRANSPORT EQUATION

In this section we focus our attention to the solution of
the transport Eq. (7a) which is an integro-differential
equation for an arbitrary time-dependent conditional aver-

age X(xp, Vo, t)—:(f(X, V) ~xp, vp&g. Our aim will be a
separation of the conditional average X(xp, Vp, t) into a
deterministic, nonfluctuating part Xp and fluctuating parts

I = 1,2, . . . . %"hile the fluctuating parts satisfy
nonhomogeneous first-order linear partial differential
equations, the nonfluctuating part Xp is given by the solu-
tion of the following homogeneous first-order linear par-
tial differential equation

Pn(Vp)h—b(X, V, t ixo, Vo)

+ f dvi Wn(vo~vi)hb(X, V, t ~xo, Vi), (4b)

asap asap asap

8 Bx Bv

subject to the initial condition

(8a)

where both equations have to be solved subject to the ini-
tial condition

hf b(X, V, t =0 exp, Vp)=5(V —Vo)5(x —Xo) .

Xp(xp, Vp, t =0)=f(Xo, Vp)

We will show below that in the limit

(8b)

Note that Eq. (4a) represents the usual form of the linear
Boltzmann equation which is not suited for calculating
time-dependent conditional averages directly, whereas the
backward form [Eq. (4b)] can be used to find an integro-
differential equation for the conditional average of a
time-dependent physical quantity, since the variables
(X, V) enter through the distribution function
h(X, V, t ~xp, Vp) only. This was first pointed out by
Hanggi and Thomas. %'ith the definition

(f (X, V)
~
Xo, Vo & g =X(xo Vp t)

x, ~h» ~t »o ~o dxd

we find from Eq. (4b)

BX(xo, Vo, t) BX(xo,Vo, t)

at ' ax,
= —Pn(Vo)X(Xo Vo t)

+ f d Vi Wn ( Vp ~Vi )X(xp, Vi, t),

(f (X V)
~

Xp Vp & =[Xo(Xp Vp t)]
and, e.g. ,

&f'(X, V) ~X., V, &, —&f(X, V) iX„V,&', =0,

(8c)

which is characteristic for a deterministic nonfluctuating
motion of a particle.

Let us first assume that the transition probability
Wn(vp —+V~) can be written in a series of the form (see
Van Kampen ' )

oo 1Wn(vo~v))=F(Q) g k Wk[vo, Q(v( —Vo)]
k=o &

(»)

and define the jump moments of the transition probability

by

II '=mg/(mg+mg)~0

the motion of the heavy particle A is completely deter-
mined by Eq. (8a) and the contributions of the fluctuating
parts become negligible. Since the general solution of the
homogeneous first-order linear partial differential equa-
tion (8a) is simply given by a functional F[xp(xp Vp t)]
we obtain in the limit Q ~0

which has to be solved subject to the initial condition

x(x„v„ t =0)=f(x„v,) . (7b)

In the next sections the transport equations (7a) and (7b)
will be our starting point.

K„(Vo ) = f Wn ( Vp ~Vi )( Vi —Vo )"dVi

F(n) " ~., k(vo)
IIn IIk+1

where

(9b)
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a„k(Vp)= f IVk(vp, Y)Y"dY', (10a) Equations (16a) and (16b) have to be solved subject to the
following initial conditions:

(10b)

If we exPand X(XQ, Vo, t) in a Taylor series around Vp

(Vi —Vo)" a"X(XO Vo t)
X(xp, Vl, t) =

n! av,"

we obtain by inserting Eq. (11) into Eq. (7a)

ax(x„v„t) ax(x„v„t)
at

-'
ax,

K (Vo) 8 X(Xp Vp t)
(12)

n! 8VO

Xo(xo uo r——0)=f(xo uo)

Xl(xp Up r=0)=0 for I ) 1

(17a)

(17b)

Since the functions Hl(xp, up, r) contain derivatives of
Xk(xp Up 7) with k (I only, the system of the Eqs. (16a)
and (16b) can be solved in a successive way, meaning that
higher approximations do not alter lower ones.

Equations (16a) and (16b) can be solved either using the
standard method of characteristics or, more simply, with
the aid of a theorem, formulated in Appendix A. In our
specia1 case this theorem states that the solutions of the
system of ordinary differential equations

In order to separate Eq. (12) into a deterministic part and
a fluctuating one, we introduce a new time and space scale
using the 0 dependence of the jump moments [see Eq.
(9b)]

dX dv=u, =a, Q(v),
di- ' d7-

with the initial conditions

(18a)

F(Q) F(Q, )
Xp =Xp, Vp =Up, (13a) x(r=0)=xp, u(r=0)=up, (18b)

X(XO~ Vo, t) =X(xp up r),
X(Xp Vp 1 =0) =f(Xp Up)

(13b)

(13c)

With this transformation we find the following by insert-
ing Eqs. (13) and (9b) into Eq. (12) and dropping the tilde:

BX BX BX—Up —al Q(up) =0
87 BXp Bvp

(19a)

satisfy the corresponding set of linear first-order partial
differential equations

~X(xp, UQ &) BX(xp Up 7 )—Up
BXp

Bv Bv BU
Uo —ai Q(up) =0

BV BXp C)vp
(19b)

oo oo 1

n =]. k=0

an k(uo) ~ X(xo Uo &)

n! Bvp

where now the dependence of x and U on the initial condi-
tions xp and vp is considered. Thus with the aid of Eqs.
(19a) and (19b) the general solutions of Eqs. (16a) and

(16b) subject to the initial conditions [Eqs. (17a) and (17b)]
are given by

Next we expand the conditional average X(xp, up, r) in

powers of I/O
Xp(xp, up, r) =f(x,u), (20)

00

X(xoiuo~&) = g lXl(xo~uo~&)
i=p &

(15)

BXt(xp, up, r) BXl(xp, vp, r)—Up
BXp

and find after an index transformation by comparing
equal powers in 1/0 for 1 =0
BXO(xp, up, r ) BXO(xp, up, t')—Up

87" BXp

BXQ(xp, Up, r)—ai p(Up) =0 (16a)
Bvp

and for I ) 1

Xl(Xp, up, 'r) = Hl(X(1 —$),V( rS) S )dS
p

(21)

where x, u are the solutions of Eqs. (18a) and (18b).
Equations (18a) and (18b), which are called the macro-

scopic equations, determine via Eqs. (20) and (15) the non-

fluctuating part of a conditional average X(xp vp 7), since
in the limit Q~ oo one obtains

(f (x,u) ixo, up), —(f(x,u) exp, up), =0 . (22)

The functions Xl(xp, up, r) with I) 1, however, describe the

fluctuations around the deterministic motion of the parti-

cle up to arbitrary order in the expansion parameter 0
Combining Eqs. (18a) and (18b) and Eqs. (19a) and (19b)
we obtain the following relations:

with

Hl (xp, up, r)

s=2 k=1

aks —k(UO) 8 XI+1—s(xpiup~r)

k! k (16c)

BXl (Xp, Up, r )
a],Q(uo) =Hl(xtQyuoyr ) (16b)

avo
dx dx U —vo

1
dxo duQ af Q(UQ)

du- du al, o(u )
=0,

dxp dup a, Q(up)

which we need in the following sections.

(23a)

(23b)
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III. CiENERAL STRUCTURE OF +I

Equation (21) is still quite formidable to use and we for-
tunately find that it can be simphfied considerably. To
show this we first consider the case for 1 = 1 and note that Xp(xp, up, r)=f(x, u) . (25)

where we have shown in the preceding section that
Xp(xp vp, r) dePends on r through x and v only

BX0(xo,vp, r)
H j(xo&uo&r)=a»(up)

duo

a2p(up) 8 Xp(xp, uo, r)
2 BUO

Next we calculate the first and second derivative of
Xo(xo&uo, r) with respect to vp, using Eqs. (23a) and (23b),

(24)

BXp(xp, Up, 1 )

BVO

8 Xo(xp, vp, 'T)

BUO
2

&3 f(x, u)

Bx

af(x, v-} (v —vo} af(x, U) al, o(v)

az ai 0(uo)
+

av- ai 0(uo)
'

r 2
vo &3 f(x,v) ajo(v)

aj,o(vo } Bv ai, o(vo)
+ 2'

8 f(x,u) aj,o(v) v —vo
+2

axav- aj, o(uo } aj,o(uo)

(26a)

af(x, u) [aj,o(v) —aj,o(vo}]—(v —vo)aj, o(vo} Bf(x,v) ai, o(v}
+ ' ' ', ' + ', ' [aj,o(v}—aj,o(vo}] .

Bx a', 0(vo) BU aj, o(vo)
(26b)

Inserting Eqs. (26a) and (26b) into Eq. (24) we see that
H j(xo,uo, r) depends on r through x, u only and we write

Hi(X0&V 0&1)=H j[X&Up&U] (27)

using square brackets if Hi (or any other function) is ex-
pressed by the independent variables x, uo, u instead of
xp vp 1 . Since Eqs. (23a) and (23b) are an autonomous
system we can make use of the property described in Ap-
Pendix A [Eq. (A14)]: Setting xo ——x(1 —$), uo ——u(r —$),
and r=s in Eq. (27), we get immediately

derive in the next section a rather simple expression for
the expansion of an arbitrary conditional average up to or-
der n —'.

It is worthwhile to note that in principle no problems
occur when extending the one-dimensional Brownian
motion to three diinensions. While Eqs. (18)—(21) are
simply replaced by their three-dimensional versions, the
calculation of the jump moments becomes much more in-
volved. This was the reason for restricting ourselves in
the present paper to the one-dimensional case.

H i (x ( 1 s), U (r s—),s )=H j [x (r ),—v (1 s), U ( 't )]-
and, furthermore,

'r

Xi(xp, U0, 1 ) = H j (x(1 s),u(r —s),$ }—ds
'r= f Hj[x(r), jT(r s),u( )]rds—.

Substituting on the rhs of Eq. (29)

(28)

(29)

IV. EXPLICIT EXPRESSION FOR Pi

In the preceding section we separated an arbitrary con-
ditional average {f(xU) ~xo Up}, into its deterministic
part Xp and the fluctuating parts Xj(l ) 1), yielding

{f (x,v)
j xp, uo )g =X(xo Uo, T)

y =u(1.—s), (30a)
oo l

jXj(xp&up&1 ) .
Q

(33)

dv
dy = — ds = —aj p(y)ds,

d1
(30b)

and inserting u(0)=up we arrive at the following simple
expression for X j

..

To lowest order in Q ' the fluctuations in the system are
described by Xj(xp, up, r}, which we now want to calculate
explicitly. Using Eqs. (24), (26a) and (26b), and Eq. (32)
we obtain

Hi[x,y, U]
Xi(xp, vp&r)=Xi[x, U0, U]= dy

"0 aj p(y)
(31)

2 2 —— 2
ax, scaj 3 f (X&V) av, scaj &3 f (X&V )

j 0

Hj[x&y&U]
Xj(xo&uo&r)=XI[X&vo&v]= „dya j,o(y)

(32)

which we wanted to prove. With the aid of Eq. (32) we

We have shown that both H~ and 7& depend on v. through
x and u only. The proof for l & 1 is simply given by in-
duction keeping in mind that according to Eq. (16c) Hj
depends on the derivatives of Xo, . . . , p~ j[ only and not
on XI. One finally arrives at the expression

B~f(x,u) @ Bf(X,U)

Bf(x,v)+
Bu

(34)

where x,v are the solutions of the macroscopic equation
and the other quantities are defined as follows:



O'j. lO J. EDER AND THOMAS LACKNER 29

u a2 li(y)(V —y)
O'x, seal =

ai, o(3')

a2, 0(3 )
au, seal =al, o(u )

v 3 d3' ai, o(3')

.—a2,0(y)
41 „„——al 0(u)

'
(u —y)dy,' ai, o(y)

dy, '
(u —y)

a2i, o(3')

a2, o(vo)+; I [ai,o(v) —ai, o(y)]
2ai, o(y)

—(v —y)a'i, o(y) I

(35a)

(35c)

(35d)

tion cr„sc,~ is shown in the following:

d 0'y scil 2—a'1 0(V )(Tu seal a2, 0(u ) With O„seal(0) =0,

ax,seal, dax, seal

dT
al, o( v )

d
=2au, seal

2

with cr „,1(T=O)=0,
dT v=0

(37a)

=0 . (37b)

ai, o(u)~ l, xu =av, seal With 4 I,xu(T=O)=0 ~

(38a)

(iii) The coupling term between velocity and position
coordinate is displayed in the following:

�

a 1, 1(3 )a 1,0(v )
dy a i,o(3')

ai, o(v)a2, 0(y)
+ '

2

' [a'1,0(v ) —a'l, o(y)]
2ai, o(y)

Note that the quantities defined in Eqs. (35a)—(35e) de-

pend on Uo and U only and not on x. It is interesting to
ask which differential equations are satisfied by the quan-
tities entering Eq. (34).

d~x, seal

7
(38b)

(iv) The deviation from the macroscopic equations up to
order Q ', described by @l„and 4~ „, respectively, is
shown in the following:

There exists an interesting interrelation between the
mean-square deviation of the position and the coupling
term

(i) Macroscopic equations (deterministic path) for velo-

city and position coordinate of the tagged particle are as
foHows:

dU =a, o(v-) with u(T=O)=u, ,
d'7

d4) „
al, o( V )C l, u 2 a i,p( V )a vl+scaa 1, 1(V )

with e, „(T=O)=O,

=4, , with 41 „(T=o)=0.

(39a)

(39b)

dx =u with x(T=O)=xo .

(ii) Mean-Square deViatiOn fOr VelOCity Ov „al and POSi-

(36b) Using Eqs. (33), (34), and (20) we can calculate the fluc-

tuations of an arbitrary conditional average

(f(x,u)g(x, u)
~
xp, vo) up to order 0 ', yielding

(f(x,u)g(x, u) ixo, uo), —(f(x,u) ixo, uo), (g(x, u) ixo, uo),

1 Bf Bg Bf Bg Bf Bg Bf Bg +0 1

Q

(40)

(x
~
xoup )~=x +—@1„+O

1
(41a)

Equation (40) shows most clearly that the function

&1[x,up, u ] [see Eq. (34)] describes both the fluctuations of
the system and the deviation from the deterministic path

[see Eqs. (36a) and (36b)] up to order 0 ', since one has

the following relations:

lxovo) —&x ~xouo) = O„„,i+02

Q

( V
I Xoup )s'= ~ au, seal+ O2

Q

(xv
~
xouo) —(x

~
xpuo) (U

~
xovo)

(41c)

(41d)

1 1
(u

~
xoup), =v+ —@1„+O

Q
(41b)

1=—41„„+0 2
. (41e)

1

Q
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Next we consider the short- and long-time behavior of the
scaled variance o.„„,l and 0.„„,~, respectively, and of the
coupling term 4i „„, since they determine the bivariate
Gaussian distribution in the linear noise approximation
(see Sec. V). Using Eqs. (37a) and (37b) and Eq. (38b), we
obtain for the short-time behavior

a.',...i= —,
'
a2, o(Uo)~+ «r'»

o, „,i——azp(up}r+O(v ),
4i „,———,a2 0(up)r +O(~ ) .

(42a)

(42b)

(42c)

((hx) ),={(x—xo) ~xpup}
2

U S S +

+—4&, „J U(s)ds +02 1

0 0

The short-time behavior of the scaled variance o„„,i must
not be confused with the short-time behavior of the
mean-square displacement ((&) ), of a Brownian parti-
cle, which is given by

(0) UT ~77

2[a'i, o(o}]'
(46c)

Combining Eq. (43a) and Eq. (46a) we obtain the well-
known long-time behavior of the mean-square displace-
ment of a Brownian particle.

(ii) UT ——0. In this limit the jump moments are given

by the simple expression [see Eq. (B10}]

a, o(Uo) =(—2) &a
~

Uo
I
uo . (47a)

%hile in this case the solution of the macroscopic equa-
tion remains stable, its decay is slow, which is a sort of
critical slowing down. The macroscopic equation can now
be solved explicitly, yielding

Up

1 +21iii
~ Up ~

v

which is identical to the result by Miller and Stein.
For the long-time behavior of the scaled variances

a„„,& and o„„,i, respectively, and of the coupling term

and has the short-time behavior up to order 0

{M },=Ups +O(r ) . (43b)

hm o„„,i= 2 1n(1+2ng
~

Uo
~
r),

2ng

2lID 1[7v,scaI

(48a)

(48b)

In order to evaluate the long-time behavior of the quanti-
ties given in Eqs. (35a)—(35c) we have to consider the
Taylor expansion of the jump moments. According to Eq.
(B8) two completely different Taylor expansions are possi-
ble depending on whether the temperature (or UT ) of the

heat bath has a finite positive value (UT & 0) or is identical

to zero (UT ——0).
(i) UT &0. The Taylor expansion for the jump mo-

ments yields

4n&UT
ai, o(Uo) = — ~ Uo

Up1+6
8

(44a)

4ng UT
3

2, 0( Up
~77

2

1+0 —,
UT

(44b)

Equation (44a) implies that the solution of the macroscop-
ic equat1on ls stable and has the llmitlng pr'operty

lim U(r)=0.
7~ oo

(45)

(()) UZ M7T
llm 0~ sgg] ~ p 7

[ ',o(0)] 4 (46a)

For the long-time behavior of the quantities defined in
Eqs. (35a)—(35c) we obtain

V. THE BIVARIATE GAUSSIAN DISTRIBUTION
FUNCTION

In the preceding sections we calculated the functions Xp
and Xl explicitly. It showed that Xp describes the deter-
ministic path, whereas Xi determines the fluctuations
around the macroscopic motion up to order 0 '. %hen
going beyond the first order in the 0 expansion the calcu-
lations remain straightforward, although they are rather
long and tedious. For this reason we restrict ourselves to
the explicit expressions gp and 7&, respectively, and show
in this section, how one can arrive at a bivariate Gaussian
distribution function, neglecting certain terms in the gen-
eral expression for gi (I ) 1).

Let us first introduce the following differential opera-
tor:

a' a.', -i[&»] a'
D(a, b) = +

Bx 2 3

+&i „„[a,b]
8

BX BU
(49)

lirn 41~„——0.
'T~ oo

Equations (48a)—(48c) indicate that the energy of the Ray-
leigh piston tends to zero with increasing time, and the
mean-square displacement grows logarithmically. This re-
sult, which is in contradiction to the well-known Einstein
formula, is an immediate consequence of the nonlinearity
of the first and higher jump moments.

az, o(0)
llrn 0 I) Sgg]

2ai 0(0)
(46b) VA'th the aid of this differential operator D we rewrite the

expressions for gp and gi, respectively [see Eqs. (20) and
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(34)],

Xo[x vo u]=f(x u),

X)[X,up, v]=D(vo u)f(x v)+O(f( ))

(Soa)

(50b)

been yet calculated in Eq. (23b) and can be cast into a
more convenient form using the partial derivatives of Eqs.
(35a)—(35c) with respect to up. With the aid of Eq. (49)

we finally obtain

where the symbol O(f' ') stands for all terms containing
derivatives of f (x,v ) with respect to x and u up to order l
only.

Next we will prove by induction that the general struc-
ture of Xk[x,vo, u] is given by

d f(x,u) 2&),o vo BD(a,b)

du() a2 ()(u() ) (}a

+O{f(1))

a =uo, b =u

(54)

Xk[x,vp, u]=, [D"(a,b)f(x, u)], „b „+O(f'-" ") .

(51)

Assuming that Eq. (51) is valid, we obtain using Eq. (16c)
and Eq. (32)

If we now insert Eq. (54) into Eq. (53) we can simplify Eq.
(52), yielding

Xk+1[x,vp, u] = — dy D (y, b)
1 k BD(y b)

vo ag

v ~2,p(y) d Xk[x,vo, v]
Xk+1[x,u(), v] = dy

~0 2(21 o y uo=&

Xf(x,u)+O( f'"+") . (SSa)

Keeping in mind that according to Eqs. (49) and (35a) and
(35c),

+g (f(2k+1)) (52)
D(a,a)=0, (55b)

With the aid of Eq. (51) we get for the second derivative
of Xk with respect to up

d Xk[xt~vot~v] 1 k d f(x,u)D (a,b) 2'
dUO k - dUO a =uo, b =u

we obtain

Xk+1[x,uo,u]=, [D"+'(a, b)f(x, u)],

+g(f (2k+1)
) (56)

+g (f(2k + 1)) (53)

The derivatives of D (up, u ) and of the terms indicated in

Eq. (51) by the symbol O(f' ") yield contributions
which are collected in Eq. (53) by the symbol 0 (f ' "+").
The second derivative of f(x,u) with respect to up has

I

which proves Eq. (51).
If we now "neglect" in Eq. (51) all terms indicated by

the symbol O(f' " ") we obtain, in connection with Eq.
(15) for the expansion of an arbitrary conditional average
X in powers of 1 jn, the following "approximation" for-
mula:

X(xp vp r) = (f(x u)
~
xp up )

0 2 01 Ox, seal a 0 u, seal=f' "+~ k! 2'n -2+ 2'n
k=1 Bx

8 1 xv (} (}2

+ (57)

Equation (57) can be obtained in an alternative way, using in Eq. (6) a bivariate Gaussian distribution function

h (x,u, r
~
x(),vp) =h (x —x, u —u )

with

(58a)

G 1 (Gx 2Hxu+Fu )—
2m (FG H) ' —2(FG H)— (58b)

In order to see this we expand in Eq. (6) f(x, u) in a Taylor series around x, u

k

(f(x,v) ~xo, up), =f(x,v)+ g f dx f duh (x x, u —v) (x —x)—+(u u) f(x—,u) .a a

ax aU
(59)

The integration can be performed using the following relations for the moments of a bivariate Gaussian distribution
function:

f dx f du(ax+bu) "+'h (x,v)=0, (60a)

f dx f du(ax +bu) "h (x,u) = —a + b+Hab—



BRO%'NIAN MOTION IN PHASE SPACE

where a, b are arbitrary constants. With the aid of Eqs. (60a) and (60b) we finally get instead of Eq. (59)

(f(x,u) ~xo, vo), =f(x,v)+ g, — +— +H f(x,u),1 F 8 6 8 8 8
2 aX' 2 aV-' ar av-

(6 la)

where the functions F,G,H are determined by a compar-
ison of Eqs. (57) and (61a), respectively, yielding

x, seal
G

v, seal H l,xv0 0
(61b)

Q ' Q ' Q

x, seal

0
I

[2yr —3+4 exp( —yr ) —exp( —2yr )],
2y 0

(65a)

It is easy to prove that

F&0, G&0, H&0,
and

(62a)

2

G = ' = [1—exp( —2yr)],~v, seal

Q 2yQ
(65b)

FG —H &0, (62b) H = =
p [1—e"P(0 (65c)

where the latter relation can be immediately derived using
the Cauchy-Schwarz inequality. So we have shown that
the assumptions of a bivariate Gaussian distribution func-
tion [see Eqs. (58a) and (58b)] with time-dependent mean
x, u and variance F,G,H [see Eqs. (35a)—(35c) and Eq.
(61b)] suffices to obtain Eq. (57). This approximation is
usually called the linear-noise approximation. ' From a
mathematical point of view there is, of course, no reason
for neglecting the second term on the rhs of Eq. (51), since
in general it is of the same order as the first term.

We will see in the next section that only rather unrealis-
tic assumptions concerning the jump moments imply that
the second term in the rhs of Eq. (51) vanishes, and there-
fore lead to a Gaussian distribution function. We will

show in a future paper that a correction to the bivariate
Gaussian distribution function can be obtained, taking
into account the second term in the rhs of Eq. (51). It will
turn out that our Q expansion provides a systematic
method for expanding the distribution function in Her-
mite functions.

aio(uo) =
, yvo-

a2, 0(vo)

(63a)

(63b)

a«(uo ) =0 otherwise . (63c)

These assumptions are identical to those which are usually
made in deriving the Langevin or Fokker-Planck equa-
tion. Owing to the simple structure of the jump moments,
we obtain for the solution of the macroscopic equation
[see Eqs. (18a) and (18b)]

Vp
v =voexp( yr), x =xo+ —[1—exp( —yr)], (64)

y
and for the quantities defined in Eqs. (35a)—(35e),

Examples

To illustrate the power of our 0 expansion, two exam-
ples are given. In our first example, which we call the
Langevin approach, we assume that all jump moments ex-
cept the first and second ones vanish,

Nl „——41„——0.
In order to get the correct equilibrium values, the constant
I and the damping constant y must be related by the
fluctuation-dissipation theorem. Using Eqs. (41d) and
(65) we obtain

lim (v'~ uo), =
2yQ

2
VT

2
(66)

a„k(u) =a„(u)5k o,

a„(v)= ( —2)"n~
i

u
i

u" .

(67a)

(67b)

The macroscopic equation can be solved explicitly, yield-
ing

Up Up
v=,x =xo+ ln(1+2n~

~
vo

I
&) .

1+2nz
~

vo lr 2n~
~

uo
~

(68)

For the quantities defined in Eqs. (35a) and (35e), we ob-
tain after some straightforward integrations

Since Eqs. (65d) and (63c) hold and since all derivatives of
F,G,H with respect to vp are identical to zero, it is easy to
show that the second term in the rhs of Eq. (56) vanishes.
Therefore, we conclude that the Langevin approach is
completely determined by the bivariate Gaussian distribu-
tion function [Eqs. (58a) and (58b)] and the time-
dependent variances F,G,H [see Eqs. (65a)—(65c)]. This
bivariate Gaussian distribution function has been derived
previously by Chandrasekhar using both the Langevin
equation and the Fokker-Planck equation.

In our first example —the Langevin approach —wd hoc
assumptions for the jump moments are made, which are
unphysical in the sense that no realistic interaction poten-
tial would produce these moments. We choose in our
second example a special limiting case for a hard-core in-
teraction potential. We assume that the temperature of
the heat bath (uT 2kT lmz——) tends to zero.

With the aid of Appendix 8 and the special choice of
the parameter 0 [see Eq. (82)], the jump moments assume
the simple form



808 OTTO J. EDER AND THOMAS LACKNER

Z, SC81

0

1,ZU

Q 2ngA

1 Uo

4ng fup/

02 —2
U, seal U

Q Q

Uo

up

—4
Up

2

Up

2

Up

2

—4
Uo

+ 3+2ln

(69b)

(69c)

where the functions 41 „,41 „,and F,G,H are determined
by Eqs. (35a)—(35e) and Eq. (6lb), respectively. Now the
mean position or the mean velocity of a particle, calculat-
ed with the aid of the Gaussian distribution function [see
Eq. (72)] is identical with Eqs. (41a) and (41b) up to order
Q '. However, especially for mass ratios m~/m~ =1, the
terms indicated in the rhs of Eqs. (41a)—(41e) by the sym-
bol O(Q ), should not be disregarded since, in general,
they are comparable with the first two terms.

In order to show the error, which results from neglect-
ing the terms of order Q in Eqs. (41a)—(41e), we calcu-
late the mean velocity of a particle up to order 0 . Us-
ing the special jump moments [see Eqs. (67a) and (67b)]
we obtain with the aid of Eq. (32) and Eq. (16c)

T

+ 3+2ln
Uo

(69d)
~u

~

up~ =u+ @&, + @q,, +O1 1 1

0 ' Q3

where 4~ „ is given in Eq. (69e) and

(73a)

41„———U 1—
Uo

(69e)

The Gaussian approximation, which is completely deter-
mined by the quantities F,G,H, yields in the limit UT ~0
a rough approximation for conditional averages only,
since the functions @& „and 4& „respectively, do not
vanish. One might hope to resolve this problem by replac-
ing in the Gaussian distribution function [see Eq. (58a)]
the terms x —x and U —U by

1 1x —x ——41 and U —U ——41,Z Q
(70)

respectively Indee. d, such a shift in the mean values is
suggested by looking at the characteristic function instead
of the distribution function itself (see Kubo et al. '

),
which proves useful only in the 1imit of large Q.

Since our Q expansion provides a method for expanding
conditional averages in powers of Q ' it can, of course, be
used for calculating the characteristic function

Q(g, ri, t)= I dx f dy exp[i(gx+&u)]h(x u t ~xp, up) .

Assuming that the characteristic function has the form

Q(k 9 t)=exp[q(k 9 t)] (71b)

we can expand the exponent q(g, ri, t) or equiva—lently
lnQ —in a power series of Q

00

q(g, q, t)= g, q, (g, ri, t) .
p Q

The functions qt(g, g, t) can be uniquely determined ex-
pressing Eq. (14) by inX instead of X, and again compar-
ing equal powers in Q '. Neglecting in Eq. (71c) all
terms higher than order Q ', we arrive with the aid of
Eq. (71b) at the characteristic function of the bivariate
Gaussian distribution function [see Eq. (58b)]

C2p= —v 1—
Up

3 t'

U—+3——
Up

(73b)

In the limit ~—+ oo one has

lim (u
~
up), =u 1 ——— +0 3

. (73c)
1 1 1

'P~ 00 3n' n'
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APPENDIX A

For completeness we briefly sketch a theorem, which is
essential in the theory of first-order partial differential
equations. "' Let p(t, r, a) denote the solution of the sys-
tern of n ordinary first-order differential equations

dx =x =f(x, t)
dt

(Al)

subject to the initial condition

y(r, r, a ) =a . (A2)

Then p(t, r, a) is a solution of the partial differential equa-
tion

This shows most clearly that, in general, the Gaussian dis-
tribution function yields only a rough approximation for
conditional averages, since, e.g., it reproduces the first two
terms of the rhs of Eqs. (73a) and (73c) only [for Q
the contribution of the term 1/3Q in Eq. (73c) is about
16%]. Our approximation scheme, however, provides a
systematic method for calculating conditional averages up
to arbitrary order in the expansion parameter Q

6 1
~Z (72) Bp(t, v.,a ) " By(t, r, a )+ f, (a, r) — =0 . (A3)
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For proving this we note that according to Eq. (Al) the
solution y satisfies

p(t, a) =y(t', p(t —t', a ))

which has been used in deriving Eq. (28).

(A14)

j(t,r,a)=f[p(t, r, a), t] . (A4)

Thus, if qr and f are sufficiently differentiable (see Ref.
12) we obtain, taking the derivative of Eq. (A4) with
respect to r and a„respectively, the following linear dif-
ferential equations:

APPENDIX B

The transition probability for a one-dimensional hard-
sphere gas is given by

y, =By, with s=1, . . . , n

(A5)

(A6)

Wn(vp~vi ) =&is
m~ +m&

2m'
Ui —Up

where B denotes a matrix with the elements
mg +my

Xfs U]—
2m' 2m'

vp, (81)

p,(t =r, r,a) = —f(a, r), (Aj)

Equations (A5) and (A6) have to be solved subject to the
initial conditions 1

2

fs(v) = exp~ 7TUy Uy

2
UTB

2kT
mg

where mz is the mass of the tagged particle (Rayleigh pis-
ton), ms is the mass of the bath particles, n~ is the num-
ber density, and

~, (t =r, r,a)=e, for s =1, . . . , n~ s
(A8) For convenience we choose as our expansion parameter

where e is a vector with all components zero except the
sth which is 1. Since both Eqs. (A5) and (A6) are linear
differential equations with the same matrix B but dif-
ferent initial conditions, we can construct the solution y,
of Eq. (A5) as a linear combination of the solutions of Eq.
(A3), yielding

mg

0 mq+m~

Comparing Eqs. (81) and (9a) we obtain
r

ng 3'
~p(vp y) =

1 y l fa +"p with y =&(vl vp)
2

q,= —g f, (a,r)q, ,
s=1

which is just Eq. (A3).
For an autonomous system

(A9)

8'q(vp, y)=0 for k &1

F(Q)=Q .

(83)

(84)

(85)

x =f(x) (A10) The jump moments [see Eq. (9b)] now assume the simple
orm

the solution has the general form

x(t) =p(t —r, a) (Al 1)
a„p(vp)

E„(vp)= Q"
(86)

and because of By/Br= By/Bt one ha—s instead of Eq.
(A3) (for r=0)

with

Bqr(t, a ) " By(t, a )

BP i Ba
(A12)

~., k(vp) =~.,p(vp)4, p (87)

Another useful property can be derived from the fol-
lowing identity:

g(t, r, a ) =p(t, r', y(r', r, a ) ) (A13)

which holds, since by definition y is a solution of Eq. (Al)
and both sides are identical for t =r'. For an autonomous
system we obtain in particular using Eq. (Al 1)

~.p(vp)= f ~p(vpyb "4 (88)

&~,p(vp) =(—2)""a
l

vp
l

vo" (89)

In the limit vT ~0 one can replace in Eq. (83) the

Maxwell-Boltzmann distribution function by a 6 function,
yielding for a„,p
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