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Detrapping stochastic particle instability for electron motion
in combined longitudinal wiggler and radiation wave fields
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The relativistic motion of an electron is calculated in the combined fields of the longitudinal mag-
netic wiggler field [Bo+B sin(koz)]e, and constant-amplitude, circularly polarized primary and
secondary electromagnetic waves propagating in the z direction. It is shown that the presence of the
secondary electromagnetic wave can detrap electrons near the separatrix of the primary wave or
near the bottom of the primary-wave potential well. The results obtained are also applicable to the
electron cyclotron maser (gyrotron) in the limit B =0 and kp =0.

I. INTRODUCTION

Stochastic instabilities can develop in systems where the
particle motion is described by certain classes of nonlinear
oscillator equations of motion. Analytic and numerical
techniques have been developed that describe essential
features of stochastic instabilities' that occur under
many different physical circumstances. Particularly
noteworthy is the development of secular variations of the
particle action or energy for classes of particles which in
the absence of the appropriate perturbation force undergo
nonlinear periodic motion. This nonlinear periodic
motion can be greatly modified by the stochastic instabili-

ty and develop chaotic features.
In this paper, we consider the possible development of

stochastic instability in circumstances relevant to sus-
tained free-electron-laser (FEL) radiation generation in a
longitudinal magnetic wiggler configuration. ' In particu-
lar, we consider a tenuous relativistic electron beam with
negligibly small equilibrium self-fields propagating in the
z direction through a steady, radiation field with two
monochromatic wave components. The detrapping of
electrons from the primary-wave potential well, due to
stochastic instability, is investigated. To briefly summa-
rize, the relativistic electrons travel along the z direction
in the combined fields of a longitudinal magnetic
wiggler' [Eq. (5)], a constant-amplitude primary trans-
verse electromagnetic wave (5E,co, k) propagating in the z
direction [Eqs. (1) and (2)], as well as a secondary (parasi-
tic) transverse electromagnetic wave (5Ei,cot, ki) propaga-
ting in the z direction [Eqs. (3) and (4)]. The dynamical
equation of motion for an electron in the above field con-
figuration reduces to the driven pendulum equation (23).
By analogy with the stochastic instability previously stud-
ied for a free-electron laser with helical transverse wiggler
field, we make use of the techniques developed by
Zaslavskii and Filonenko to determine the region where
the electrons are detrapped from the primary-wave poten-
tial well.

In Secs. II and III, the dynamical equation of motion is
obtained for an electron in the electromagnetic field con-
figuration described by Eqs. (1)—(5). In Sec. IV, the con-
ditions are derived for electron detrapping near the separa-

trix of the primary wave and near the bottom of the
primary-wave potential well. The results obtained in Sec.
IV are also applicable to the electron cyclotron maser
(gyrotron). Finally, in Sec. V, the results are summarized.

II. ELECTROMAGNETIC FIELD
CONFKyURATION AND BASIC

ASSUMPTIONS

In the present analysis we examine the relativistic
motion of an electron in the combined fields of a longitu-
dinal wiggler magnetic field, a primary circularly polar-
ized transverse electromagnetic wave propagating in the z
direction, and a secondary circularly polarized transverse
electromagnetic wave with frequency and wave number
close to that of the primary wave. The electron beam den-
sity is assumed to be sufficiently low that equilibrium
self-fields are negligibly small, and all spatial variations of
field quantities are taken to be in the z direction. In addi-
tion, a laser oscillator configuration is assumed in which
the steady-state amplitudes of the primary wave (5E) and
secondary wave (5Ei) have negligibly small spatial varia-
tion. The electromagnetic field of the primary wave is
given by

5E(x, t) = —5E[sin(kz cot) e„+c—os(kz cot) e ], —

and the electromagnetic field of the secondary wave is
given by

5E, ( x, t) = 5E, [sin(k, z co i—t) e„+cos(k iz toit) e—~ ], —
(3)

5Bi(x, t)= ck)5E)
[cos(k i z co i t)e„—

CO)

—sin(k iz —toit) e„] .

ck6E
5B(x, t) = [cos(kz cot) e„—sin(—kz cot) e~ ], —
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The longitudinal magnetic field is assumed to be of the
forin'P

B ( x ) =[Bo+B~sin(k pz) ]e, ,

where A,p 2n——/ko. =const is the wiggler wavelength, and
B~=const is the wiggler amplitude. Equation (5) is a
valid approximation near the axis of the multiple-mirror
configuration for electrons with sufficiently small orbital
radius r that

kyar

« 1. In what follows, it is also assumed
that the relative ordering of field amplitudes is given by

I
Bo

I
&

I

B
I » I

5E
I

& 15Ei
I

.

Before the electrons enter the interaction region, the initial
conditions are taken to be the following: axial momentum

p p transverse momentum j7J p and energy

Ep=rpmc =(c p,p+c pip+m c )
2 2 2 2 2 2 4 1/2

where

ro=(1 —uio/c —u.p/c )
2 2 2 2 2 —1

It is necessary for the electrons to enter the interaction re-
gion with an initial transverse momentum, since it is this
excess transverse momentum that serves to drive the free-
electron laser instability for the longitudinal wiggler con-
figuration in Eq. (5).'

III. EQUATIONS OF MOTION

In this section the relativistic Lorentz force equation for
an electron moving in the electromagnetic field configura-
tion given by Eqs. (1)—(5) is used to determine the coupled
equations of motion for the electron energy and the slowly
varying phase of the ponderomotive bunching force. The
components of the relativistic Lorentz force equation are
given by

~Ex Uy kv, k1U= —e [Bo+B„sin(kpz)]+e 5E 1 — sin(kz cot)+e 5—Ei 1 — sin(kiz co,t),—
dt c N F01

dPy eUx
[Bp+B~sin(kpz)]+e 5E 1—

dt c
k1U

cos(kz cot)+e 5Ei —1— cos(kiz coit), —

dpz

dt

kvx kvy k1vx k1Uy
5E sin(kz —cot)+ 5E cos(kz cot)+— 5Ei sin(kiz cuit)+ — 5Ei cos(kiz —toit)

CO CO 6)1 601

dE =e[u 5E»n(kz —~t)+ v„5Ecos(kz —cot)+u„5Ei sin(kiz orbit)+v„5E—i cos(kiz toit)], — (10)

where

E=rmc =mc (1—v i /c —u, /c 2)

is the electron energy.
To express the equations of motion in a useful form, we define p+ ——p„+ip~ and combine Eqs. (7) and (8) to give

d
dt jp+exp[ —io(t)]I =ie5E 1— expI i [kz co—t+cr(t)—]J+ie5Ei 1—k1vx

exp I i [kjz —toit +cr(t)] J, —

t
a(t) =f dt [eBp +eB~sin(kpz) ]c/E .

Assuming that

Ipip I
» e5E dt(1 ku, /co)ex—pI i [kz cot+o(—t)]—I+ e5Ei f dt(1 —kiv, /tpi)exp( i [kiz toit+—o(—t)]J

(12)

it is straightforward to show that the approximate solution to Eq. (11) is

P+ =PipexP[ig+io(t)], (13)

where P is the initial (t =0) phase of the transverse momentum. From Eq. (13), it follows that the magnitude of the
transverse momentuin remains approximately constant, although the individual x and y components of the momentum
can be strongly modulated by the factor exp[io(t)], thereby resulting in the generation of high-frequency radiation.

In order to further simplify Eq. (13), we define
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t
cob e——Bplmc and g= f dtly .

Moreover, in the wiggler contribution to the expression for o(t), we approximate U, =v, p and y=yp. This gives

e8
cr(t) =cob/+ [1 c—os(kpz)] .

p pkpc

Rewriting Eqs. (9) and (10) in terms of p+ and p+ ——p„—ip~ gives

(14)

(15)

dPz

dt
le

2m/
k . k , k)

5Ep+ —exp[ i —(kz cot)—] 5Ep+——exp[i(kz cot)]—+ 5E~ p+ exp[ i (k,z—co~t)—]
CO C9 CO]

k)
5Ep—+ exp[i (k,z —a))t)]

N]
(16)

and

dE I'e

dt 2my
[5Ep'+ exp[ i (kz—cot)] —5Ep—+ exp[i (kz cot)—]+5E~p+ exp[ i (k ~z c—o~t)]—
—5E, p+exp[i(k, z —co,t)]I . (17)

Substituting Eq. (15) into Eq. (13), expanding the ex-
ponential factors in a series of ordinary Bessel functions
J~(x), and substituting the resulting expression into Eqs.
(16) and (17) give (for harmonic component I)

dPz

dt
epzp e8~J
m yp ckppzp

k k)
5E sing+5E—~ sing&

CO N&

dE
dt

epgp eB
J-r

mro «ouzo
(5E sinP+5E~smg~) . (19)

In Eqs. (18) and (19) we have approximated y=yp on the
right-hand side and retained only those terms with the
slowly varying phases (1It, g&) of the ponderomotive bunch-
ing force. The phases (g, g&) are defined by (I =0, 1,2, . . .)

g =kz cot+cob/+—1kpz +p+ Im/2+eB~ lckpp. ,p,

(20)

sion occurring at the 1th harmonic of the wiggler magnetic
field wave number kp.

In order to obtain a solution to Eqs. (19) and (22), we
differentiate Eq. (22) with respect to time t and substitute
Eqs. (18) and (19) into the resulting expression. In nor-
malized variables, this yields the equation of motion

dH
+sing= —5~sin[k, (g —V r+a&)],P (23)

where r =cot, 5& =co ~/co, Vz =b co&/k ~ co, and

epzp6E e8
, 2J-r

c m gp ckopzo

)& [(k +lkp)v p+co p
—c k (k +Ikp)/co]

ep J p5E] eB~
2 2 2 —rc m yp ckopzo

(k)+lkp)
(k+lkp) 2

(k ~ + lkp )(co —co, p)

(k+Ikp)

e8~ le+k«ouzo

e8

ckopzo

(21)

&([(ki+lkp)vsp+coep cki(ki+ Ikp)—/coi]

k $
—= (k $ + lkp)/(k +lkp )

e8 l~+~+
2ckpp, o

1 7

k(
Ecole =(coi —co,p) —(ki+Ikp)(~ —co,p)/(k +lkp) .

(24)

dg COb=(k+1k, )U, —~+
di y

(k+Ikp)p, /m+cob

y

(22)

Equations (19) and (22) give the desired dynamical equa-
tions of motion for the electron energy E and the phase f
of the primary-wave bunching force with radiation emis-

Here co,p=eBplmcy p is the relativistic cyclotron frequen-
cy in the average solenoidal magnetic field Bo. Differen-
tiating Eq. (20) with respect to time t gives

Equation (23) is of the form of a driven pendulum equa-
tion which, in the absence of the secondary wave (5~ ——0),
is a conservative equation. In the presence of the secon-
dary wave (5~&0), the right-hand side of Eq. (23), when
averaged over the lowest-order motion, can lead to secular
changes in the electron energy and result in stochastic
electron motion and a concomitant detrapping of electrons
from the primary-wave ponderomotive potential well.

Finally, we reiterate that several approximations have
been made in deriving Eq. (23). First, Eq. (12) must be
satisfied. Taking U, =u, p, making use of Eq. (15), and re-
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taining only the slowly varying phases (g, i}'ji), Eq. (12) can
be expressed as

~ = —,(1+Ho) . (32)

The solution to Eq. (31) can be expressed in terms of the
elliptic integrals, F(g,a) and E(g,a), where

Ipio i
)) e5E 1—

co ckpp p dg/dt

k i v, p eB~ sin/i
+e 5E~ 1 — J

cubi

ekop, p d i/dt

dn'
F(g, a. ) =

P (1—tr sin g')'
f1

E(g,x) = f dg'(1 —~ sin g')'~

(33)

(34)

(25)

Also, in retaining only the axial component of the mag-
netic field in Eq. (5), it has been assumed that the influ-
ence of the lowest-order radial magnetic field'

In the present analysis, Eq. (31) is solved assuming
trapped electron orbits with K & 1. Introducing the coor-
dinate g defined by

~ sing =sin
2

(35)

B„=—,B~kpp cos(kpz) (26)
Eq. (31) can be expressed as

on the electron motion and the ponderomotive bunching
phases (g, gi) is negligibly small. It can be shown that the
effects of B„on g and fi are negligibly small provided

2

dn = 2. 2=(1—~ sin g),d7. (36)

k 5io
ko4o/o 2ko Pzo

Bio

koUzo/o 2ko Pzo

2 Jn
2 eB

ckoPz 0
X

n =— (n +orb /ko4o3 o)

eB~
Jn

OO ckopzo

„(n +cob/kpv, pyp)

(27)

which has the solution (neglecting initial conditions)

F(g,~)=r . (37)

d =2Kcn7 (38)

Here g =sin '[( I /a )sin(P/2) ], and F( g,v) is the elliptic
integral of the first kind defined in Eq. (33). Several prop-
erties of the trapped electron motion can be determined
directly from Eqs. (31), (35), and (37). For example, it is
readily shown that the normalized velocity is given by

In Eqs. (27) and (28), it is assumed that system parameters
are well removed from beam-cyclotron resonance so that
the denominators do not vanish (i.e., cob/yp& —nkpv, p).

IV. STOCHASTIC INSTABILITY

where cnr=(1 —sn r)', and snr=sing—= (I/a)sin(1(t/2)
is the inverse function to the elliptic integral

F(sin '[~ 'sin(g/2)], ~) .

For subsequent analysis of the stochastic instability, it is
useful to express properties of the trapped electron motion
in terms of action-angle variables (I,8). Defining, in the
usual manner,

d 1 dP
d7 2 dT

5isin[ki(g —V r+ai)] .
d7. P

In this section we determine the region of stochastic in-
stability for Eq. (23) in the limit 5i «1. Multiplying Eq.
(23) by df/dr gives

r

dHo —cosg
d~

I =I(Hp) =

8(Q,I)= S(Q,I),a
=ar

S(f,I)= ' f " de,

we find

(39)

In lowest order (5i =0), Eq. (29) gives the conserved ener- I (H p ) =—[E(~/2, v) —(1 v)F(vr/2, a )], — (40)

10 =—0 2

Equation (30)

1 dg
4 d~

r

where

2

—cosg =const .

can also be expressed as
2

=K —sin
2

(30)

(31)

where v =(1/2)(1+Hp), and F(g,a) and E(g,z) are de-
fined in Eqs. (33) and (34). The unperturbed equation of
motion (23) (for 5i ——0) can be expressed in the new vari-
ables (I,O) as

dI de
d7 d7 Q

where co is defined in Eq. (24), and the frequency co@(I) is
determined from piT(I)/iv =BHp(I)/dI i.e.,
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(42)
2E(n./2, Ic)

Near the bottom of the potential well, Hp~ —1, ~ ~0,
F(m/2, a.)~zr/2, and therefore coz(I)~co, as expected
from Eq. (23) with 5i ——0. On the other hand, near the top
of the potential well, Ho~+1, ic ~l, E(zr/2, v)~oo,
and coz (I)~0.

For future reference, the normalized velocity can be ex-
pressed as

oo a n —1/2
=2tccnr= 8 Q, cos[(2n —1)coTt] .

1+a 2n —I

dHp ~ dHp

d1 dHp d1 coy. d7

where coT =cor(I), and

(46)

5isin[k i(11—V~r+ai)] .

(23) in an iterative sense. For consideration of the sto-
chastic instability that develops near the separatrix, it is
particularly convenient to examine the motion in action-
angle variables. Correct to order 5&, we find

F=—,
' ln(32/EH ),

F'=rc/2,

coz -neo[in(32/bH)]

a =exp( m'coz'/co)

(45)

for small b,H « 1.
In what follows, the leading-order correction to the

electron motion is retained on the right-hand side of Eq.
l

The quantity a in Eq. (43) is defined by

a =exp( m.E'/E)—,

F'=F(m. /2, (1—v )'~ ), F=F(zr/2, v) .

Near the top of the potential well, where Hp~ 1, the elec-
tron motion becomes stochastic in the presence of the per-
turbation 5i. Defining Ho 1 b,H,——where —b,H «1 near
the separatrix, we find Ic ~1, coz-(I) +0, and—

Equation (46) then becomes

dI co df= —5, sin[k, (11—V~r+ai)] .
ST d7

(48)

It is well known that near the separatrix Eq. (48) can lead
to a stochastic instability that is manifest by a secular
change in the action I and a systematic departure of the
electron from the potential well. Near the separatrix with
Ho~1, it follows from Eqs. (30) and (43) that the electron
is moving with approximately constant normalized veloci-
ty dg/dr=2 for a short time of order z=co '. More-
over, this feature of the electron motion recurs with fre-
quency coz (I) &&co, and can lead to a significant change in
the action I in Eq. (48).

We now examine the implications of Eq. (48) near the
separatrix keeping in mind that the sine term in large
parentheses on the right-hand side of Eq. (48) generally
represents a high-frequency modulation. Making use of
the lowest-order expression for the normalized velocity
dgldr, it follows that

dI oo g n —1/2 COT 7

1+&2n —1
= —45i g sin k, g+k, a, +(2n —1) k, V r

A COy 7
+sin k, lt+kiai —(2n —1)— —ki V~r

Near the separatrix, the first sine term in large
parentheses on the right-hand side of Eq. (49) acts as a
nearly constant driving term for some high harmonic
number s » 1 satisfying the resonance condition

5, =coz.(I, ) —coz(I, +i)

=coki Vz/2s =2coz(I, )/coki Vz

2scoz(I, )lco=ki Vz,

or equivalently,

(SO) 2cor(I, )(k +lko)
(52)

(co i
—co,o)(k + lko) —(co —co,o)(k i + lko)

CO k)Vp
coz (I,)=

( co i —co o )(k +1k0 ) —( co —co 0 )(k i + lk 0 )
(51)

2s (k +lko)

Here, I, is the action corresponding to the resonance con-
dition for harmonic number s. From Eq. (51), it follows
that the separation between the adjacent resonances s and
5+1 1s

On the other hand, for a small change in the action LU„
the characteristic frequency width of the sth resonance
can be expressed as

dcoz (I, )
hcor(I, ) =

dIs

where hcoT(I, ) «coz.(I,) has been assumed. The condi-
tion for the appearance of stochastic instability is
b,coT(I, ) »5„or
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dcoz (I, ) 2coT(I, )
dd, ))

s

Solving Eq. (54) for dd, then gives
(53)

To determine the size of M„we express

coT(I, )+AcoT(I, ) and integrate Eq. (49) over a time inter-

val of duration a=co in the vicinity of the sth resonance
defined in Eq. (51). In an order-of-magnitude sense, this

gives
1

as —1/2 dcoT(I )

)+a2s —1

4g &s —1/2/( 1+&2s —1}

k, V,
(55)

where Eq. (50) has been used to eliminate s. Substituting
Eq. (55) into Eq. (53) then gives the condition for stochas-
tic instability to occur,

dcoT(Is )

dI,

gs —1/2 coT(I }

1+a"-'
(k + lk p ) cor(I, )

(co1—cosp)(k+lkp) —(co cosp)(k1+lkp) Q l V
(56)

The various factors in Eq. (56) are now estimated near the
separatrix where Hp~l and coT(I, ) &&co. From Eqs. (45)
and (51) it follows that

51 ~ exp(@co/coT —1rk1 Vz/2)
k V1 p32%. 1+exp( rck1 V~ —)

(60)

7Ta' exp ——k1 V (57)

Expressed in terms of the energy bandwidth AH = 1 Hp, —
the condition in Eq. (60} for stochastic instability becomes

Also, from Eq. (45), in[32/(1 —Hp)] =rico/coT gives
51 exp[ —1rk1 Vz /2]

k1 Vp ~~ma .
1+exp[ —m.k1 V~ ]

(61)

dHp/dI co dcoT(I)

1 —H, co2r(I) dI

Using the fact that c)Hp/c)I =co& (I)/co yields

dcoz (I)
exp[1rco/coT(I)] .

Substituting Eqs. (57) and (59) into Eq. (56) then gives

(59)

Because 51 «1, it follows from Eq. (61) that the detrap-

ping of the electrons will be most pronounced when

k1 V~ =1, or from Eq. (51) when

(co1 —co, 11)(k + lk11 ) —(co —co, p)(k1+ lkp )

(k + lkp)

Making use of the expression for co given in Eq. (24), the
condition in Eq. (62) can be expressed as

e&Eundo

2 2~-I
c I gp ckoPgp

(co, —co, p)(k + lkp) —(co —co,p)(k)+ lkp)
[(k +lkp)U 11+co p

—c k(k+lkp)/co] k+lkp

=(co1—co, p) —(co —co, p)k1/k . (64)

For the case co»~k1c, co ~~kc, and k1/k =1 (gyrotron),
the condition given in Eq. (64) becomes

' 1/2
85EPgpQ)~p

QP= (65)
c Nl 'I/'p

~Q)1 —QP .

Equation (65) indicates that if the difference in frequency
between the primary and secondary waves in a gyrotron is
close to the electron bounce frequency co in the primary

In the limit of zero wiggler magnetic field with B~ =0,
kp ——0, and l =0, the above analysis holds for the electron
cyclotron maser interaction. The parameter regime for
detrapping of the electrons for the cyclotron maser is then
given by [Eq. (63)]

85EP j p

, , (kv.p+~.p
—c'k2/~)

c

(

wave, then the electrons will detrap from the primary-
wave potential well, leading to a decrease in output power
at the primary-wave frequency.

Finally, we examine the condition for stochastic insta-
bility for an electron deeply trapped in the primary-wave
potential well, i.e., Hp~ —I and ~ ~~1. For this case,
the quantities given in Eqs. (42) and (44) become

I'=m/2+m. z /8,
E'=ln(4/sc),

coz (I)=co(1—1c /4),
a=1c /16.

Because a ~~1, the equation for the unperturbed normal-
ized velocity [Eq. (43)] becomes (n = l,cor-co ),

dP—=2' cos(coTr/co ) .
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Equation (67) gives for P
/=2K sin(cor7. /co ) . (68)

I

Substituting Eq. (68) into Eq. (49), and expanding in a
series of ordinary Bessel functions J~(x) yields

dI co co g n —1/2
= —451 g g, Jq(2Kk1) sin

&+&'"
gNT NT

+(2n —1) —k1 V» r+f, a1

+ sin
gNT NT—(2n —1) —k1 V» r+ k1a1

N N
(69)

Near the bottom of the well, both sine terms in large
square brackets in Eq. (69) can act as nearly constant driv-
ing terms for some harmonic numbers n =s and q =r
satisfying the resonance conditions

cor(I, , ) =co k1V»/(r+2s —1), (70)

I

Solving for M„, then results in

g s —1/2

(M„,) = 45)a)J, (2k1K)
1+a

coz. /co k1 V»

dcoT/dI„,

(74)

coz(I„,)=&k1V»/(r —2s+1) .
Here, I„is the action corresponding to the resonance con-
dition for harmonic numbers (r,s) From. Eq. (70), it fol-
lows thai the separation between adjacent resonances s and
s+1, and r and r +1 is

3N k~ V& 3NT

(r+2s —1)(r+2s+2) 3~ +~k, V

where use has been made of Eq. (70). Substituting Eq.
(74) into Eq. (72) we find that the condition for stochastic
instability to occur near the bottom of the potential well is
given by

72k) V
~
5,J,(2k, K)(K/4)~"-»

~

»—
(3+k1V» }

ol

or

—co k1 V»

(r —2s)(r —2s + 1)

2
NT

NT —Nkj Vp

(71) 8k1 V»
i 51J„(2k,K)(K/4)'

(1—ki V»)

where use has been made of a —K2/16 and

For a small change in the action lU„, the characteristic
frequency width of the (r,s) resonance can be expressed as

r

hoor(I„, )= dcoT(I„, )
P, S

/', S

where again bcgT(I, , ) «coT(I„,) has been assumed. The
condition for the appearance of stochastic instability is
Amor(I„, ) »5„„orequivalently

T N d~ N dHO NT

dI 8 dI 8 8

Because 51« 1, K «1, and
~
J„~ &1, the inequality in

Eq. (75), subject to the constraint given in Eq. (70), can
only be satisfied for k1 V» «1, or equivalently,

(co1—co,o)(k + lko) —(co —co,o)(k1+ 1ko)

(k+lko) «co, (76}

deer(I, , )

I ~rs
3NT

2

3NT+N ki V&

which follows from Eq. (24).
In the limit where 8 =0, k0=0, and 1=0, together

with co»&k~c, co&&kc, and k1/k =1 (gyrotron), Eq. (76)
gives

(72) Ni —N Q(N . (77)

2
NT

NT —N kI V&

The size of M„, is estimated in the same manner as for
the case near the separatrix. Integrating Eq. (69) in the vi-
cinity of the (r,s) resonance gives

Equation (77) indicates that if the frequency difference be-
tween the primary and secondary waves in a gyrotron is
much less than the bounce frequency of an electron at the
bottom of the potential well, then the deeply trapped elec-
trons can be detrapped by a low-amplitude secondary
wave.

1/(r +2s —1)b,o)r,
451o1J (2k 1K)

1
X ''

1/(

(73)

V. CONCLUSIONS

To summarize, we have investigated the motion of an
electron in the combined fields of a longitudinal magnetic
wiggler, and constant-amplitude, circularly polarized pri-
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mary electromagnetic wave (5E,co, k). It has been shown
that the presence of a secondary moderate-amplitude
transverse electromagnetic wave (5E&,co&,k~) can lead to a
stochastic particle instability in which electrons trapped
near the separatrix of the primary wave or near the bot-
tom of the primary-wave potential well can undergo a sys-
tematic departure from the potential well. This "detrap-
ping" can result in a significant reduction in power output
at the primary-wave frequency. The conditions for onset
of stochastic instability have been calculated near the
separatrix [Eq. (61)], and near the bottom of the potential

well [Eq. (75)]. Equations (61) and (75) are also valid in
the limit 8 =0 and ko ——0, and give the condition for on-
set of the stochastic instability for the electron cyclotron
maser (gyrotron).
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