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Effect of laser amplitude and phase Auctuations on optical bistability
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A generalized Fokker-Planck equation is derived for a system undergoing optical bistability when

the dominant source of fluctuations is due to fluctuations in the incident field rather than spontane-
ous emission. The Auctuations are treated as a time-dependent Gaussian process whose properties
are determined by the individual laser's characteristics. Both amplitude and phase Auctuations are
included on the incident laser field. The effect of fluctuations of the incident laser on optical bista-

bility are different for amplitude and phase Auctuations and are different for absorptive and disper-

sive optical bistability. The combination of incident laser phase fluctuations and dispersive optical
bistability leads to large amplitude fluctuations near the turning points of the optical bistability

curve and causes the system to make a transition from one branch of the optical bistability curve to
the other before reaching the mean-field turning points. We take the high-Q cavity limit of our gen-

eralized Fokker-Planck equation, solve the linearized equations, and provide criteria for the magni-

tude of Auctuations in optical bistability in terms of laser and cavity parameters. The magnitude of
incident laser Auctuations are typically orders of magnitude larger than fluctuations due to spon-

taneous emission and are therefore important for practical applications of optical bistability devices.

I. INTRODUCTION

The standard model' for optical bistability (OB) con-
sists of a system of X two-level systems in a cavity driven

by an external field of specified amplitude and phase. The
only source of fluctuations in the model is the spontane-
ous emission of the two-level systems in the cavity. The
dimensionless parameter that measures the ratio of spon-
taneous emission to mean-field terms is q (:~/n, ),
where n, is the saturation number of photons in the cavi-

ty, ~ ( =N/NT ), and NT is the laser inversion number of
two-level systems at threshold. Typical values of q for
present GB systems are usually less than 10 . In a recent
paper we showed that the driving laser frequency fluctua-
tions cause fluctuations in the phase of the field in the
cavity that are typically many orders of magnitude larger
than the fluctuations caused by spontaneous emission. In
the present paper, we show that the effect of driving laser
fluctuations on the amplitude of the cavity field are usual-

ly much more important than on the phase of the cavity
field because the cavity amplitude undergoes critical slow-
ing down and the amplitude fluctuations diverge as the
mean-field turning points of the OB curve are approached.
The fluctuations of the cavity field due to both amplitude
and phase fluctuations in the driving laser will cause the
system to make a transition from one branch of the OB
curve to the other branch before the mean-field turning
points are reached. Furthermore, even if the driving laser
has only phase fluctuations and if we consider dispersive
OB, then the effect of driving laser phase fluctuations is
very large on the cavity field amplitude fluctuations and
has only a small effect on the cavity field phase fluctua-
tions. We also include driving laser amplitude fluctua-
tions in this paper. The fluctuations of the field in the
cavity depend on the relative relaxation rates of amplitude

and phase fluctuations of the driving laser and the degree
of dispersion relative to absorption in the OB cavity.

In Ref. 3 we considered only the high-Q cavity limit but
in this paper we derive the master equation for the general
case which includes the region where neither the high-Q
or low-Q cavity limits are valid both for absorptive and

dispersive OB. The generalization is important because
the region in parameter space where neither the high- or
low-Q limit is valid is much larger than the region where
the limits are valid. In Ref. 3 we gave a heuristic deriva-
tion for the case of driving laser phase fluctuations in the
high-Q cavity absorptive OB limit. In the present paper
we give the essential steps in the derivation of the master
equation for QB with driving laser fluctuations for the
general case using an approach due to Stratonovich. In
Sec. II we present the Hamiltonian for X two-level sys-

tems in a cavity. Then we add the external driving laser
field by means of a unitary transformation which is valid
for the case where both the amplitude and phase of the
driving laser field are time dependent. We next obtain the
Liouville equation for the density matrix in the presence
of radiation and matter reservoirs and obtain the
Maxwell-Bloch equations by means of the self-consistent-

field approximation. We make the time dependence of the
driving laser field a Gaussian stochastic process in Sec. III
and specify the conditions on the stochastic time depen-
dence in order that the Stratonovich" derivation of the
generalized Fokker-Planck equation is valid. The resul-
tant Fokker-Planck equation has a nonlinear, nondiagonal
diffusion tensor whose magnitude depends on the relative
amount of dispersive and absorptive OB. In Sec. IV we
consider the high-Q cavity limit with both driving laser
amplitude and phase fluctuations and for arbitrary disper-
sion. We solve the linearized equations for both phase and
amplitude fluctuations for the cavity field and for arbi-

trary dispersion. In Sec. V we discuss extensions of the re-
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suits of this paper which are possible using the same or
similar techniques to those developed in this paper.

add a commutator that gives rise to the correct n and a*
terms. The Liouville equation for N two-level systems in-
teracting with radiation in a cavity is

II. HAMILTONIAN
AND SELF-CONSISTENT-FIELD APPROXIMATION BI'"~

Bt
+i R '[F~,H] =0 . (2.6)

The Hamiltonian for 1V two-level systems interacting
with radiation in a cavity is In the presence of the matter reservoir Az and the field

reservoir AF we have
H =H +HF+H;„, ,

N

H~ = i %cog g s~ =—i fKog S )

cx= 1

HF:~ca a

(2.1)

(2.2a)

(2.2b)

a

at
+i' [F~)H] =AqF~+AFF~ . (2.7)

When we transform Eq. (2.6) with the unitary transforma-
tion D (a) the Hamiltonian H becomes

H;„„:A(pP—+a+p*P a ), (2.2c) H =Ho+A, H, Ho=irtQ(A A + —,S) (2.8)

D(a) =exp(aa —a*a)

=exp( ——,
'

~

a
~

)exp(aa ")exp( —a*a )

we obtain

(2.4)

A =D '(a)aD(a)+D '(a)aD(a)+D '(a)aD(a)

=D '(a)aD(a) —a[a,A]=D '(a)aD(a)+a(t) .

(2.5)

Consequently, the net effect of adding a time-dependent
external field a(t) to the X two-level systems interacting
with radiation in a cavity is to replace a by A in the Ham-
iltonian H and add the term a(t) to the time derivative of
A. In the Liouville equation (as we show below) we can

+ +i k. X
where P =g e — 0 and the commutation rela-
tions for the collective operators are [P+,P ]=S and
[S,P +]=+2P+.—The —commutation relations for the in-
dividual two-level systems are s =[o+,o ] and
[o,o+]+——1 and operators of different two-level sys-
tems commute with each other. The frequencies are co&

the two-level frequency difference, co, the cavity frequen-
cy, and hp= e p'(2~hco, /V)'~ where e is the unit vector
in the direction of the cavity field, g—:(+

~

er
~

—) is the
transition dipole moment between the states of the two-
level atom, and V is the volume of the cavity. For a more
complete discussion of the Hamiltonian see Ref. 5. We
can add an external field o, to a by means of the unitary
transformation D (a),

D '(a)aD(a)=a +a=—A,
with D ( )a= exp(aa —a*a) . (2.3)

Since D(a) commutes with matter operators the net effect
of D(a) is to replace a by A in the Hamiltonian Eqs.
(2.2b) and (2.2c) as was first pointed out in Ref. 6. In this

paper we want to consider the case where the amplitude
and phase of o. depend on time, in particular the case
where a(t) is stochastic. Equation (2.3) is valid when a is
a function of time; however, when we consider operators
such as a and 3 we have extra terms due to the time
dependence of a(t) in the unitary transformation D[a(t)].
After a straightforward calculation using the commuta-
tion relations [a,a "]= 1 and the identity

bH=A5FA A+ —,'iri~4S+iA(pP~A+p~PA ) . (2.9

where

ApF~ =~[(A a),F~(A——a') ]+H. c. , (2.11)

where H.c. is the Hermitian conjugate. The last term in
Eq. (2.10), which vanishes if a is time independent, yields
the a as required by Eq. (2.5). The radiation reservoir
acts only on the cavity field operators a =A —a and
a =A —a*. The unitary transformation has no effect on
A~. The definition of W is [,AH].

%"e obtain the equations of motion for 3, 3 ~, P—+, and S
in the self-consistent-field approximation by multiplying
Eq. (2.10) by each operator in turn, tracing over the
matter and field variables, and neglecting radiation-matter
correlations. The resultant equations are

(A)+(~+mF)(,A) =~a ip*(,P)+a, —

(P )+(y ++ )(P ) =ip(A)(s),
(2.12a)

(2.12b)

(S)+)'„((S)+X)=2 (p*(A ') (P- ) p(A ) (P+ ) ),
(2.12c)

where (( . . ) ) =Tr[( . )F~]. The equation for (A )
is the complex conjugate of Eq. (2.12a) and the equation

~ +
for (P ) is the complex conjugate of Eq. (2.12b). yi (y~~)
is the inverse polarization (population) relaxation time.
On the right-hand side of Eqs. (2.12) we have neglected
the radiation-matter correlations and consequently for
ci. =O we have the Maxwell-Bloch equations. The neglect
of radiation-matter correlations causes incoherent spon-
taneous emission to be absent from Eqs. (2.12). The
steady-state solutions of Eqs. (2.12) are

The frequencies are 0 the frequency of the incident laser,
5q

—=co~ —0 the atomic detuning, and 6F =—m, —0, the
cavity detuning. Next we transform Eq. (2.7) to the in-
teraction representation using Ho and obtain

BI'~
~ f ~

Bt
i WFv —+Aq F~ +AFF~ + [aA aA, F—~],

(2.10)



CHARLES R. WILLIS 29

(P ) = i—N(x )(y~~/yi)'~ 2 '(1 —i5~ )

x(1+5,'+ l(x) I') ',

1+5~+
I
(x) I'

~6q—E , —&F1+5„+
I
(x)

I

(2.13a)

(2.13b)

(2.13c)
and (3.4)

where 8'—:e", ill(t)=I „' (8'/8')—:I „' u, and ili(t)
=I ~ 0. The constants I „and I ~ are defined below

—I/2 '

and are introduced in Eq. (3.3) to make the coefficient of
5(t) in Eq. (3.5) dimensionless. For Eq .(3.1) to be a
Langevin equation we need two sets of conditions on the
time dependence of 0 and (8'/8'). First, the correlation
times

where 5a =(5&/yi), 5F= (5F/—~) ~—= (
I V I

'N/yi~»

The steady-state solutions Eqs. (2.13) are the standard'
solutions for OB in the absence of fluctuations. In Sec.
III we treat Eqs. (2.12) as Langevin equations with a as a
rapidly varying stochastic driving term.

III. MASTER EQUATION

k=fi(k)+ggt n (t»
m

(3.1)

We obtain the generalized Fokker-Planck equation for
our model of OB with a stochastic driving laser by first
obtaining a Langevin description. We now reinterpret
Eqs. (2.12) by dropping the average values and we take the
variables x, x*, P—,and S as classical stochastic variables
whose statistical properties are determined by the statisti-
cal properties of a(t). In this paper we are considering the
cases where the fluctuations due to incoherent spontane-
ous emission are small compared to fluctuations on the
driving laser. The stochastic properties of a(t) may be
due to phase fluctuations, amplitude fluctuations, or both.
In any case we find an amplitude phase variable descrip-
tion of a is the most convenient so we introduce ampli-
tude and phase variables for both matter and radiation.
When we substitute the definitions of the amplitude and
phase variables,

=+ice' '&, -x= re '~-, y=8'e— —

into Eqs. (2.12) we obtain

(rtir) (t)) =5( 5(t) . (3.5)

We can now obtain the generalized Fokker-Planck equa-
tion for the probability distribution p(r, g, &,Q,S,t) be-
cause Eqs. (3.1) and (3.5) are the Langevin equations for
which the Stratonovich derivation applies. Since the
physical noise source is external to the system and is not
strictly white noise, the Stratonovich prescription is the
correct limit. In actual situations, frequently some of the
conditions on te and t„will not be satisfied (in particular
5ete &~1 may be violated) and a Markovian description
with a Fokker-Planck equation will not be possible. In
this paper we consider only the cases where all the condi-
tions are satisfied and we have then

t„—:(u') ' f (u(r)u)dr=ted

must be sh«« than the times K ',
y~~

', yJ ', (pa)
»d [ I p I

N y~~yJ) ] . The averages in Eq. (3.4) are
over the time-dependent Gaussian stochastic processes
which determine 0 and 8'. This is just a form of the
Brownian motion condition that the stochastic force
varies more rapidly in time than the remaining forces on
the Brownian particle. The second set of conditions re-
quire the correlation times te and t„ to be small compared
with the modulation, i.e., 5~t~&&1 and 5„t„&&1 where
5s=(0 )' »d 5„—:(u )' . The second set of condi-
tions lead to a Markovian description of the effects of the
driving laser fluctuations and justify a generalized
Fokker-Planck equation.

When the two sets of conditions on the time parameters
are met we can write

where dg) dr, dg2 rdy, d/3 ——dH——, de ——Hdl/f, —a—nd

dg& ——dS. The definitions of the ft(g) are

f, = ~r+a8'cos(0 ——P)

(3.2a)

f2 =r5F+ a.8'sin(0 P)—
ap ' a

k p+ —, g k tip,t ] x~ p X~ Xp

where

ki =f + —'gg, .

(3.6)

(3.2b) =f, +. (8'2)(2r) '[I „sin (0—P)+I ecos (0—P)],

f3= —y3% —(y~~yi)' 2 'Sr cos(P —g),
f4

—5a H —(y
~
~y j.)

' 2 'Sr sin(P —P),
f5 — y~~(S+N)+2(y~~yi)' rH cos(0 —itj)

(3.2c)

(3.2d)

(3.2e)
k2=fz+ 2 gg J ~m

(3.7a)

The definitions of the g~ are =f2+ ( 8' )(2r) '[(I e—I „)sin(0—P)cos(0 —P)],
gii ——I „' 8' cos(0 —P), g2i ——I „' 8' sin(0 —P),
gi2 ———I e 8'sin(0 —P), g2z ——I's 8'cos(0 —P),

(3.3)
k3=f» k4=f4 k5=f5,

(3.7b)

(3.7c)
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and

k1 1 g gljg Ij
J

=(8' )I „cos (8—P)+(8' )I csin (8—P),

k22 g g2jg2j
J

= ( 8') r„sin (8—f)+ (8 2) r~os2(8 —y),

(3.8a)

(3.8b)

k12 k21 g11g21 +g12g22

= ( 8')(r„—I', )sin(8 —$)cos(8—P) . (3.8c)
The inverse relaxation times I and I „are I ~

——6~t~:—T~ ', I „=5„t„=T„,and I @
——g I „. Another form

of our Markov conditions 5ets «1 and 5„t„«1can be
written using T~ and T„, i.e, tgTg

'
&&1 and t„T„'&&1

which are the conditions for the Born-Markov approxima-
tion. Equation (3.6) is too lengthy to write out explicitly
and since the drift terms are just the Maxwell-Bloch equa-
tions, we display only the diffusion terms explicitly:

p 5
k

(8')5+&a.."-P=
2

a2 1 8[I „cos (8—P)+ I csin (8—P)]+ [I „sin (8—P)+ I ecos (8—P)]
dr r2 gy2

+ — + — [(1„—I e)sin(8 —P)cos(8 —P)] p,1 8 8 8 1 8
rdpBr BrrBP

(3.9)

(e') „a' 1 a'

Third, one of the most important cases is where I ~~~I „,
there is some dispersion and the 1 ~ terms are the dom-
inant diffusion terms on the right-hand side of Eq. (3.9)
which becomes

(a') a . 1I e sin(8 —P) —— cos(8 —P) p .
2 Br r ay

(3.11)

(3.12)
l

R(r, g, r)= J p(r, g, &,Q, S,r)d&dgdS;

where the normalization of p is J p dr d P d H d g dS = 1.
The two independent parameters that determine the
diffusion terms of Eq. (3.9) are ( I „/I s) and
[sin(8 —P)/cos(8 —P)]. When phase fluctuations or jitter
dominate amplitude fluctuations we have I s » I „. In ab-
sorptive OB (cos(8—P)) »(sin(8 —P)), while in disper-
sive OB (sin(8 —P) ) » (cos(8—P) ).

Three special cases of the diffusion operator in Eq. (3.9)
are thermal fluctuations in the driving laser where
I „=I ~—= I and we have

(82) 52 1 8 (3.10)
Qy

2 p~ (jp2

Second, in absorptive OB (sin(8 —P)) vanishes and the
right-hand side of Eq. (3.9) is approximately

l

The most important consequence of Eq. (3.12) is that in
the practically important case where I & is large and we
have some dispersion, the cavity amplitude fluctuations
caused by the driving laser phase fluctuations I ~ are ap-
preciable. In pure absorptive OB the driving laser phase
fluctuations have very little effect on the amplitude fluc-
tuations of the cavity field. Thus, the combination of
driving laser phase fluctuations with some dispersive OB
leads to enhanced fluctuation effects which will cause the
system to jump from one branch of the OB curve to the
other branch before the mean-field turning points are
reached.

IV. HIGH-Q CAVITY LIMIT

Since the full set of equations [Eq. (3.6)] contains so
many terms and so many parameters, we find it useful to
consider the effect of driving laser fluctuations in particu-
lar cases. Consequently, in this section we obtain the mas-
ter equation for the high-Q limit and solve the master
equation after linearization. In order to adiabatically
eliminate the matter variables in Eq. (3.6) to obtain the
master equation in the high-Q limit we require the condi-
tion (a/y1) «~ be satisfied. The adiabatic elimina-
tion of the matter variables leads to the master equation
for

BR 5
BT Br

—r + ( 8' ) cos(8 —P)—

r5F+ (8') sin(8 —P)—1

r BP

+ [I „sin (8—P)+I icos (8—P)] R
mr (e')—

+$&~ +r~ 2r

~5~ r
R

1+5g+r

+ [I „cos (8 p)+I csin—(8—p)]+ [I „sin (8—p)+I llcos (8—p)]
(e') a'— a'

Br r2 QP2

+ — [(I'„—I e)sin(8 —P)cos(8 —P)] R,2
r BQBr
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where r=vt and a frequency with an overbar has been made dimensionless by dividing by a. The fluctuation-dependent
P drift term of Eq. (3.6) has been exactly canceled by a corresponding term in the diffusion coefficient. Equation (4.1)
does not satisfy detailed balance and thus we do not know the exact stationary state, let alone the time-dependent solu-
tions. One of the purposes of the present paper is to show that the amplitude and phase fluctuations on the driving laser
have different effects on the amplitude and phase of the cavity field, which we can do by simplifying further. We first
obtain the master equation for the phase variable R (P, r) by integrating Eq. (4.2) over the amplitude variable r:

aR(p, r)
ar

+ ( S' ) (I „—I's)sin(8 —P)cos(8 —P) R(g, r)
r

+ [I'„sin (8—P)+I scos (8—P)] R(g, r),(s') a'
2

a/2 r2 (4.2)

where the notation ((. ))~ means the integration of (
. . ) over r in the conditional probability holding P constant.

The nonlinearity of the drift and diffusion coefficients make Eq. (4.2) very difficult to solve, therefore we linearize Eq.
(4.2) about the mean-field solution and obtain

aR(Xr) a a
(4.3)

where X=/ —8 and A,~
—=(( S')/r, )(c soX), =1 +~(1+5z+r, ) '. The diffusion coefficient D~ is

D& = —,
'

( S' )r, (I „(sinX ),+ I s( cosX ), )

= —,
' [1+((b,S')') S', ']

t l „[~(1+5„'+r,')—' —5~]'+I,[1+M(1+5„'+r,') —']-'I, (4.4)

where r, is the solution for the amplitude in Eq. (2.13);
S'= S'o+ES' where (b, S') =0 and thus (S' )
= S'0+ ((4S') ). We used the mean-field results ' '

(S'0/r, )(cosX), =1+~(1+5„+r,) ', (4.5a)

(S'0/r, )(sinX), =~5~(1+5„+r,)
' —5~ . (4.5b)

We neglected the usually small contribution to A,~ of the
drift term in Eq. (4.2) proportional to (I „—I s), because
for most parameter ranges, it makes only a small contri-
bution. For a solution and full analysis of Eq. (4.3) see
Ref. 3, where Eq. (6) is the same functional form as the
present Eq. (4.3). The results of Ref. 3 can be used with
the present more general definitions of k~ and D~, Eq.
(4.4). In Ref. 3 we found that the parameter that mea-
sures the importance of phase fluctuations in the cavity is
(D~/k~). For (D~/A&) &&1, fluctuations of the phase are
relatively unimportant. When (D~/A&) is of the order of
unity or greater, the phase fluctuations become important
and phase fluctuations can cause a transition from one
branch of the OB curve to the other branch. Note, how-
ever, that the phase fluctuations remain bounded and do
not undergo critical slowing down even at the turning

I

points of the OB curve. In the frequently occurring case
where the I s term is larger than the I „ term in Eq. (4 4)
we have

Dplkp~ , [1+((b S')—)8'o ][1+~(1+5„+r,2) '] .

For a driving 1aser linewidth of the order of a kilohertz or
less, for a typical range of parameters, we have
D~/A, ~&10 —10 ' and the phase fluctuations on the
driving laser have relatively little effect on the cavity field
phase variable. However, if the linewidth of the driving
laser exceeds a few kilohertz the phase fluctuations in-
duced in the cavity field by the driving laser will cause the
system to jump from one branch of the OB curve to the
other well before reaching the mean-field turning points.
The above limit on D~/A, ~ is a lower limit because if we
have some dispersive QB and I „ is not zero, there will be
an amplitude fluctuations component added to the I ~
component thus increasing D&/A, ~.

We obtain the master equation for the amplitude r by
integrating Eq. (4.1) over P which leads to the following
equation:

aR(r, r) a
87 BT

1 S'—r+(S')(cos(8 —P))„— +— (I „(sin (8—P)), +I s(cos (8 P)), ) R—
1+5'+r'

g2
, [1.„(cos'(8—P))„+I (sin'(8 —P)), ]R ,

37
(4.6)

where the notation (( . . ) )„ indicates the integration of (. . . ) over P in the condition probability holding r constant.
When we linearize Eq. (4.6) about the mean-field stationary state we obtain
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BR («, r) 8
A,,(« «, —)+D, R («,w), (4.7)

where

~(1 «,—+5g) 1 ~5~
, , +—r„„, , —5„+r, 1+

(1+5~+«,')' 2 1+5„'+«,' 1+5~+r,
(4.8)

2
rs ~5gD„= ' [1+((68')') @ ] I, „, , —5, +r„ 1+P 1+5' +r, 1+5g+r,

(4.9)

and «, is the amplitude solution of Eq. (2.13), i.e.,

T

2= 2 ~5gI',=«, 1+ „, , + „, , 5F—
1+5&+r' 1+5~+r'

(4.10)

The Green's function for Eq. (4.7) is

[(« «, ) —(« «,—)O—exp( —A,„r)]
G [(« «, ),r; (« «,—)0,0]=Z —'exp

2D, 1 —exp —2A, „'«
(4.11)

where

Z '= I2irD„[1—exp( —2A,„r)]A,„'I
'

and where (« «, )o is—the initial value of the deviation of «

from the mean-field stationary state. The initial value of
the amplitude deviation is forgotten on the time scale A,„
and the stationary state is reached on the same time scale.
Equation (4.7) represents a competition between the am-
plitude relaxing to the stationary state measured by A,„and
amplitude diffusion measured by D, . If A,„»D„ the
steady state is reached before there is an appreciable
spread in « «, due to flu—ctuations and the dispersion
o, =D„/A, „ in the steady state is small. Thus «remains
close to «, with small fluctuations in the steady state. On
the other hand, if D„»A,„, then there is an appreciable
spread in « «, before the steady —state is achieved and the
steady-state dispersion is large. We can see the effect of
D, » A,„most clearly by considering the interval
D„'&r&A,, ' in Eq. (4.11) which becomes

G [(« «, ),r;(« )«, 0]—0—
=(4irD„) '~ exp[ (« «0) /4D„r] .— —

Thus we see that for D, ~ k, the amplitude diffuses in-
stead of relaxing to r, until ~ becomes of the order A,„'.
The preceding discussion applies to the phase variable
with D4, instead of D, and A& instead of A,„. The impor-
tant new result for the amplitude is that A,„—+0 at the
turning points, whereas A,~ is always greater than zero
even on unstable states. The amplitude variable conse-
quently undergoes critical slowing and Auctuations in the

(A«(r)b«)—:I (« «, )G[(« —«, ),~;(« «, )0,0]— —

X (« —«, )0&,[(« —«, ),]
&& d (« «),d(« «, )0— —

=e " (D, /~r» (4.12)

where 6«:« «, and—where we used Eq. (4.11) for—G and
I'„ the steady-state amplitude distribution function. The
spectrum of the amplitude fluctuations in the linear ap-
proximation is thus a Lorentzian of width A, When we
substitute Eq. (4.9) in Eq. (4.12) we obtain the relative
fluctuations

amplitude grow without limit as the turning points of the
OB curve are approached.

The role of driving laser fluctuations is important be-
cause the D, due to driving laser fluctuations is usually or-
ders of magnitude larger than D„ for incoherent spontane-
ous emission. Consequently, the inequality D, &A,, is
satisfied farther from the mean-field turning points and
the discontinuous jumps from one branch of the OB curve
to the other branch will occur over a spread of values of
the driving laser field rather than just the two values of 8'
at the mean-field turning points. The combination of
dispersive OB where (sin(8 —P) ), » (cos(9—P) )„
which is the easier case to achieve experimentally, and
I ~& I „,which is the more common case in lasers, make
D„ large and thus the amplitude fluctuations more pro-
nounced. The spectrum of the amplitude fluctuations is
the Fourier transform of the two time amplitude correla-
tion function (A«(r)A«) which we obtain in the following
manner:
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(hr(r)hr) abatically, resulting in three equations for the matter vari-
ables P—+ and S. If o. depends on time stochastically, the
adiabatic solution of Eq. (2.12a) is

(3 ) =(~+i 5F) '(aa i@*—{P ) +a)

At the turning points of the OB curve the relative fluctua-
tions diverge. Fluctuations will become important when
the relative fluctuations become of order unity or greater.
Since A,,~0 as the turning points are approached the fluc-
tuations will always eventually become important. How-
ever, the larger the factor in large square brackets in Eq.
(4.13) is, the further from the turning points will be the
place where fluctuations start to cause transitions from
one branch to the other. The relative fluctuations in Eq.
(4.13) depend on seven dimensionless parameters so it is
difficult to analyze. There are a few inequalities the pa-
rameters must satisfy, such as (tc/yI) «~ ' the high-Q
limit, ~/(1+5& ) & 8 the requirement for the existence of
QB, and 5z has to be less than the mode spacing in the
cavity. Otherwise, there are few restrictions on the vari-
ables. We can obtain upper bounds on the effect of fluc-
tuations by considering the bounds on the various dif-
fusion coefficients by taking (sin X) or {cosX) equal to
unity. We find the following bounds: D„&{8' )(I e/~),
D,' & ( 0' ) ( I „/a ), D p & ( {8' ) /rg ){I g /a ), and

D~ &((8' )/r, )(I elm) where the superscript d (a) means
dispersive (absorptive) OB. For high-Q cavities the radia-
tion relaxation frequency a is of the order of 10 . The fre-
quency I e (I @=(8' )I'„) is the width of the driving
laser due to phase (amplitude) fluctuations, respectively.
Thus, unless the linewidth of the driving laser is of the or-
der of a kilohertz or less, then for large intensities {8' )
we have dimensionless diffusion constants which are of
the order of unity or greater which will lead to large fluc-
tuations from one branch of the OB curve to the other.
The Inagnitude of I 8 is (5@a/I~). The existence of a
Fokker-Planck equation for driving laser noise requires
5gts «1. Consequently if we assume 58te 10 ' th-en

if 59, which is ((58) )'~, is comparable to or greater
than about 10 Hz, the effect of driving laser phase fluc-
tuations on OB fluctuations will be large. Similarly, if 5@,
which is ((ES') ), is comparable to or greater than about
10 Hz, the effect of driving laser amplitude fluctuations
will be large.

V. DISCUSSION AND CONCLUSIONS

There are various straightforward extensions of the re-
sults of this paper which are possible using techniques the
same as or similar to those we used in Secs. III and IV.
We obtain the low-Q cavity limit for the case of time-
independent driving laser, i.e., e independent of t, when
(yI/~) &&~ by eliminating the radiation variables adi-

when the additional conditions te,t„»II are satisfied.
After the elimination of (A ) the three matter equations
for {,P+ )an—d {S)are Langevin equations for the matter
variables witll stocliastlc forces pl'opol tloI1R1 to the sto-
chastic functions u(t) and a'(I) The. subsequent deriva-
tion proceeds in the same manner as the high-Q limit in

Sec. IV. Alternately, if Is and t„stai fsy the inequality
sc » ts, t„ then the stochasticity itself is eliminated adia-

batically and ihe only sources of fluctuations remaining in
the problem are those due to incoherent spontaneous emis-
sions which are treated in Ref. 2(b). Ideally, one would
like to solve the full nonlinear Maxwell-Bloch equations
with fluctuations, i.e., Eq. (3.5), but this would be ex-

tremely difficult. Even the linearized form of Eq. (3.5) is

very difficult because it requires the simultaneous diago-
nalization of the drift and diffusion operators. It is possi-
ble to compute the spectra of the linearized form of Eq.
{3.5) usiIlg the method of LllglRto, wlllcll consists of dl-

agonalizing the drift terms and calculating the time-
independent quadratic correlation functions for the steady
s'tate. The spectra are determined by the linearized
Maxwell-Bloch dynamics and steady-state quadratic
correlation functions of the dynamical variables. All of
the results of this paper and all the results mentioned so
far in this section are based on the assumption that the
stochastic process in the driving laser satisfies the condi-
tion of fast modulation, i.e., 5sts « 1 and 5s ts « 1. The
assumption of Gaussian processes and fast modulation
leads to Fokker-Planck master equations. Frequently the
stochasticity of the driving laser will undergo slow modu-
lation, especially for the phase variable. It is not possible
to get a Fokker-Planck equation when the stochasticity is
slowly modulated because the process becomes non-
Markovian and any master equation will have to have
memory, i.e., a time-dependent kernel. In the lowest order
of the slow modulation limit, one solves the Maxwell-
Bloch equations with a and u' as time-independent pa-
rameters. Next, one averages the solution of the
Maxwell-Bloch equations over P(a, a*), the distribution
function of the stochastic variables. Higher-order correc-
tions depend on the time dependence of the Green's func-
tion of the laser fluctuations. The spectra of the linear-
ized Maxwell-Bloch equations can be explicitly calculated
in the slow modulation limit.

All of the results derived and discussed in this paper
have been based on noise in the driving laser. However,
there is another way that noise can come into the problem,
namely, the laser cavity itself can have jitter. The cavity
jitter problem is fundamentally more difficult because the
noise is internal rather than external. The overall ap-
proach in this paper is applicable for the most part and
both the high- and low-Q cavity limits can be carried out
explicitly.
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