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In the context of two-body bound-state systems subjected to a plane-wave electromagnetic field, it
is shown that high field intensity introduces a distinction between long-wavelength approximation
and electric dipole approximation. This distinction is gauge dependent, since it is absent in

Coulomb gauge, whereas in "completed" gauges of Goppert-Mayer type the presence of high field

intensity makes electric quadrupole and magnetic dipole terms of importance equal to electric dipole
at long wavelengths. Another consequence of high field intensity is that multipole expansions lose

their utility in view of the equivalent importance of a number of low-order multipole terms and the

appearance of large-magnitude terms which defy multipole categorization. This loss of the mul-

tipole expansion is gauge independent. Also gauge independent is another related consequence of
high field intensity, which is the intimate coupling of center-of-mass and relative coordinate
motions in a two-body system.

I. INTRODUCTION

Very intense electromagnetic plane-wave fields are re-
sponsible for a variety of physical effects that are qualita-
tively different from those familiar in electrodynamics at
ordinary intensities. The specific intense field phenomena
examined in this paper are the loss of utility of the usual
multipole expansion of the electromagnetic field, and the
intimate coupling that the field introduces between
center-of-mass (c.m. ) and relative motions in a two-body
system of charged particles.

The work below is carried out in the context of the
two-body nonrelativistic Schrodinger equation in semiclas-
sical electrodynamics. One feature of very intense fields is
that charged particles can acquire relativistic velocities in
a low-energy problem that is otherwise entirely nonrela-
tivistic. Nevertheless, it is adequate to demonstrate
intense-field-induced departure from ordinary behavior in
the framework of nonrelativistic equations of motion,
even if fully relativistic treatment would be required to ob-
tain quantitatively reliable predictions. A further limita-
tion on the conclusions arrived at below is that they apply
to two-body systems. When a two-body system of
nonzero net electric charge is immersed in an intense field,
the c.m. of the system can undergo oscillations of substan-
tial amplitude. Unless the system is in a very dilute gas,
collisions occur which will negate the assumption of two-
body behavior.

Some of the results developed here were prefigured in
earlier papers, ' hereafter referred to as I. Among other
things, it was shown in I that the two-body Schrodinger
equation in a Goppert-Mayer-type gauge (called the
electric-field, or EF, gauge) becomes nonseparable in in-
tense fields in c.m. and relative coordinates in the long-
wavelength approximation (LWA). By contrast, the equa-
tions of motion are separable in Coulomb gauge (C
gauge) in the LWA. (The EF gauge is a simple extension
of the Goppert-Mayer gauge —which is electric dipole in

nature —to a full description of the fields. ) This is a result
which is physically puzzling, in that the nonseparability in
EF gauge could be interpreted to mean that the intense
fields cause an intimate coupling of c.m. and relative
motions, which should then be expected to appear in any
gauge. This puzzle is shown here to arise from the use of
the LWA in I when separability was examined. When a
more complete description of the field is employed, the C
gauge equations of motion also become nonseparable. The
distinction between present results and those in I highlight
another conclusion that was already implicit in I, that
whereas LWA and electric dipole approximation are
equivalent in C gauge, the LWA in EF gauge includes
terms that go beyond electric dipole. This conclusion con-
tradicts the commonly made presumption that LWA and
electric dipole approximation are interchangeable con-
cepts.

Section II is devoted to a demonstration that LWA and
electric dipole approximation are separate and distinct
concepts. This is done by first introducing EF gauge,
which is a simple extension of Goppert-Mayer gauge, to a
full statement of the potentials. The equations of motion
in c.m. and relative coordinates are reproduced from I to
show not only the loss of separability in intense fields, but
also to show the presence of electric quadrupole and mag-
netic dipole terms even when LWA is imposed.

Section III is concerned with the failure of the usual
multipole expansion when field intensity is high. This
failure occurs most transparently when the net charge of
the two-particle system is nonzero, but it occurs also when
the total charge vanishes. Multipole expansions are exam-
ined in both EF and C gauges.

Some of the results from Sec. III are employed in Sec.
IV to show that equations of motion in c.m. and relative
coordinates become nonseparable at high field intensity.
This was shown in I for EF gauge, but in C gauge a
demonstration is done here along similar lines. By exten-
sion, such lack of separability is true in all gauges. This
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loss of separability at high intensity is interpreted as an in-
herent field-induced coupling between relative and c.m.
motions. The investigation has to be done differently
when total two-body charges add up to nonzero or zero
net charge.

Section V discusses briefly the phenomenon of radiation
pressure, which also gives rise to a coupling between c.m.
and relative coordinate motion. However, the force due to
radiation pressure is a relatively weak force which gives
observable consequences only over a very large number of
wave periods. The intense-field effects treated here are a
direct consequence of the full Lorentz forces whose effects
are manifest within a single period of the plane-wave field.

with Ac as given in Eq. (1), leads to the EF gauge poten-
tials

A EF —— rE—(r, t),
k

AEF= ——r E(r, t),
N

(2)

where E(r, t) is the electric field. Equation (2) is a simple
generalization (albeit not unique) of the familiar Goppert-
Mayer gauge, in which the potentials consist entirely of
the scalar component of Eq. (2) rendered in LWA, i.e.,

II. LONG-%'AVELENGTH APPROXIMATION
VERSUS ELECTRIC DIPOLE APPROXIMATION

AGM ———r E(t),
(3)

A. CGauge

C gauge is such that a monochromatic electromagnetic
plane wave is described by a zero scalar potential and a
vector potential which depends only on cot —k. r, where co

is the circular frequency of the field and k is the field
propagation vector. A simple example is

Ac ——0,

for a linearly polarized wave.

B. EF gauge

The gauge transformation generated by the function

A=AC r,

The notation E(t) in Eq. (3) means that the r dependence
in the phase mt —k. r has been neglected. The potentials
in Eq. (3) obviously cannot be a full representation of the
fields, since a time-dependent field cannot be expressed by
a single-component potential. Nevertheless, Eq. (3) serves
very well at long wavelengths for many purposes, unless
the field is very intense. In the LWA, the E vectors in Eq.
(2) become E(t), but the vector potential remains nonzero
and equivalent in importance to the scalar potential when
field intensity is high. '

C. L%'A equations of motion

It was shown in I that when the two-body Schrodinger
equation is written in terms of c.m. coordinates R and rel-
ative coordinates r, the result in EF gauge in LWA is

iB,Q(R, r)= I e, R.E(t) e, r.E(—t)+(1/2m—, )[ i Vz+ —(ek/co)R E(t)+e, (k/co)r E(t)]

+(1/2m, )[ i V„+e„—(k/co)R E(t)+e, (k/co)r E(t)] + V(r)IP(R, r), (4)

where V(r) represents a presumed central potential be-
tween the two particles. With subscripts l and 2 assigned
to the two bodies, where

R=(m, r, +m2r2)/m, , r = r, —r2,

r~ ——R+nz2r/m, , r2 ——R—m
& r/m, ,

then the masses and charges appearing in Eq. (4) are de-
fined by

7?lg =I?l i +Vl2 ~ Alp =HZ] Vl2/1?lg

eg ——e]+e2, e„=(e[m2—e2m [ )/mg,

e, =(e$m 2+e2m ] )/m, .2 2 2

It was shown in I that the r-dependent term in Eq. (4)
which appears in association with 7z, and the R-
dependent term which appears with V'„areboth impor-
tant at high field intensity. They serve to block the
separation of variables in Eq. (4). Attention will now be
centered on two different terms in Eq. (4), namely the R-

r

dependent term in the same bracket with Vz, and the r-
dependent vector potential term with V, . When the indi-
cated squares in Eq. (4) are carried out, both cross terms
between the momentum operators and the vector poten-
tials have vector character given by (r E)(k p„),where

p„is just the —i V, operator. The same sort of term
occurs with R and p~. This expression can be rewritten
as

(r E)(k p, )= —,[(k p„)(rE)+(E p, )(k r)]

+ —'(EXk) (rXp )

which sho~s that terms of this type are a combination of
electric quadrupole and magnetic dipole contributions.
(Note that r && p„is the angular momentum operator, and
for a plane wave the magnetic induction B is
8=k)&E/co. ) The E in Eq. (7) is actually just E(t), re-
flecting the fact that Eq. (4) is an LWA expression. In
other words, the leading LWA terms in ER gauge include
electric quadrupole and magnetic dipole terms in addition
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to the usual electric dipole contribution. Actually„ the
terms mixed in R and r dependence represent further
terms beyond the electric dipole that are difficult to iden-
tify. The essential conclusion is that LWA and electric di-
pole approximation are different concepts. They are quite
unlike each other in EF gauge. Yet the difference is gauge
dependent, since LWA and electric dipole approximation
amount to the same thing in C gauge.

III. FAILURE GF MULTIPOLE EXPANSIGNS

E(rl, t)=aal sin(alt —k R—m2k r/m, )

E(r2, t)=aal sin(alt —k R+ml 4 r/m, ) .

Results for only the first element of Eq. (8) need be dis-
cussed, since the second part of Eq. (8) follows simply
from the replacement mz ~—m l. Equation (8) can be ex-
pressed as

E(rl, t)= aelcos(k. R+m2k. r/m, ) sin(alt)

—anal sin(k. R+m2k. r/m, ) cos(alt), (9)

which can be used as the starting point for a multipole ex-
pansion. A multipole expansion of Eq. (9) would normal-

ly be predicated on the hypothesis that k R
~

&&1 and

~

k r
~

&& 1. It will be presumed that the particles 1 and 2
are bound to each other, and that the electromagnetic field
has a large wavelength as compared to a characteristic ra-
dius ao of the bound system. It follows that

A. The multipole expansion

The electric fields experienced by particles 1 and 2 in a
two-body system follow from Eqs. (1) and (5) as

—aco sin( k.R)cos(alt)

—aal(mlk. r/m, )sin(k R)sin(cot)

—aalu(m2k r/m, )cos(k R)cos(alt) . (12)

Somewhat similar conclusions about coupling between
relative and c.m. motions follow also from consideration
of radiation reaction, which is neglected here. However,
radiation pressure can be shown to be of minor conse-
quence as compared to direct Lorentz forces, which ac-
count for the intense-field effects described here. Radia-
tion reaction forces vis-a-vis intense-field Lorentz forces
were appraised by Sarachik and Schappert. They con-
cluded that the Lorentz forces are dominant whenever

ro/A, « 1 for z & 1, or roz/A, «1 for z & 1; where ro is the
classical electron radius, I, is field wavelength, and z is the
field intensity parameter as given in the Appendix or in

Eq. (19) below. These conditions are well satisfied in
atomic and molecular physics problems even at extremely
ill gh field llltellslty.

charge in an intense plane-wave field can be significant.
Whereas a uniform motion of the c.m. is readily
transformed away, and is of no consequence here, an oscil-
latory motion is important. From the known classical
solutions for a charged particle in a plane wave, ' the am-
plitude of oscillation in the direction of the propagation
vector is such that (see the Appendix)

ik Ri & —,',
with the equality in Eq. (11) approached at high field in-

tensity. This is too large a value to permit the usual ex-
pansion hypothesis, so the leading terms in Eq. (9) are, in
view of Eqs. (10) and (11),

E(rl, t) = atocos(k R)sin(cot)

~

k r
~
=ciao&&1, (10)

which can be regarded as a statement of the LWA. In I,
the LWA of Eq. (10) was applied also to k R. However,
the oscillations of the c.m. of a system with nonzero net

~0

8. EF gange

The electromagnetic contribution to the potential ener-

gy in the Schrodinger equation in EF gauge is

—el I'I E(1 l, t) —e212 E(12,t) —egco( a'R)[cos( k R)sl11(alt) —slIl( k 'R)cos(cot) j

—e,al(a. r)[cos(k R)sin(alt) —sin(k R)cos(cot)j

+e,co(a R)(k r )[sin( k R)sin(cot)+cos(k. R)cos(co, t)j,

to first order in k r, where Eqs. (5) and (12) have been
used, in addition to the analog of Eq. (12) which relates to
rp.

The usual lowest-order c.m. multipole term is the elec-

tric dipole term —e,co( a R)sin(al t), or, equivalently,
—e,R E(t). This is contained in the first term on the
right-hand side in Eq. (13) if

~

k.R
~

&&1. However, if
the field is intense, then k.R. is noi small and the first two
terms on the right-hand side in Eq. (13) are of similar im-
portance. This in itself is adequate demonstratj. on of the
failure of the usual multipole expansion.

The usual lowest-order relative-coordinate multipole
term arises from the third term on the right-hand side in
Eq. (13). ~hen

~

k.R
~

&& 1, this term is just e„rE(t). —
Here again„a value of k.R which is not small destroys
this identification of the leading term. When k.R is con-
strained only by Eq. (11), then a multipole expansion loses
its meaning entirely. There is, furthermore, an intimate
mixing of r and R coordinates which will be explored in
the following section.

The statements made above refer to the case where
e,+0, i.e., where the bound system exhibits a net electrical
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charge. If the system is neutral, then the first two terms
in Eq. (13) vanish, the magnitude of k R is small, and the
last four terms in Eq. (13) reduce simply to the simple
relative-coordinate electric dipole term. It remains, how-

ever, to examine the vector potential terms in EF gauge.
The kinetic energy terms in the Schrodinger equation in

EF gauge are

(1/2m i )[ i V—i —e iApp( r i, t)] +(1/2m2) [ i—72—e~App( rp, r)]

= (1/2m, )I i V—z+e, k(a R)[cos(k.R)sin(cot) —sin(k. R)cos(cot)]+e„k(a r)[cos(k R)sin(mt) —sin(k R)cos(cot)]

—e„k(aR)(k r)[sin(k R)sin(cot)+cos(k R)cos(cot)]I

+(1/2m, )I i%—„+e„k(aR)[cos(k.R)sin(cot) —sin(k R)cos(cot)]+e, k(a. r)[cos(k.R)sin(cot) —sin(k. R)cos(cot)]

—e, k(a R)(k.r)[sin(k R)sin(cot)+cos(k. R)cos(cot)]I (14)

This result, and the potential energy terms in Eq. (13),
reduce exactly to Eq. (4), (i.e., to the result found in I)
when the additional assumption

I

k R
I
«1 is imposed.

The first comment that can be made about Eq. (14) is
that, in the small

I
k R

I

limit, electric quadrupole and
magnetic dipole terms persist, as pointed out in Sec. II C.
Secondly, it was shown in I in the small

I

k.R
I

limit that
mixed r, R terms exist that are as important at high field
intensity as the unmixed terms. These mixed terms can-
not be given any simple multipole interpretation. Thus,
even in the small

I
k R

I
case in EF gauge, a multipole

expansion loses its utility at large field intensity. Howev-
er, as has been pointed out above, when e,+0 it is not jus-

I

tifiable to use a small
I

k R
I

assumption when the field
intensity is high. Instead, k.R is limited only by the
higher range of the limits expressed in Eq. (11). Thus all
the terms written in Eqs. (13) and (14) must be retained,
and the customary version of a multipole expansion of the
field has 110 utility at all.

The Coulomb gauge potentials of Eq. (1), when referred
to the coordinates of particles 1 and 2 of a two-body sys-
tem, can be expanded in a fashion akin to the electric field
expansion in Eq. (12). The kinetic energy terms in the
two-body Schrodinger equation then become

(1/2mi)[ —iV i —eiAC(ri, t )] +(1/2m2)[ igz ——e2Ac(r2, t )]

= (1/2m, )I i V R ——e, a[cos(k R)cos(cot)+sin(k. R)sin(cot)]+e, a(k. x )[sin{k.R)cos(cot) —cos(k.R)sin(nor)] I

+(1/2m, )I —i V'„—e„a[cos(kR)cos(mt)+sin(k R)sin(cot)]+e, a(k r)[sin(k R)cos(cot) —cos(k.R)sin(cot)]I

The lowest-order terms when
I

k R
I
«1 are just the

LWA or electric dipole approximation terms. These are
the same in this gauge, Unlike the EF gauge. These lead-

ing terms follow from acos(k R)cos(cot) in Eq. (15),
where that term has the coefficient e, in the curly bracket
with —i V~ and the coefficient e, in the bracket with

i V„Whe—n .
I

k.R
I

is not small, then

e, asin(k. R)sin(cot) and e„asin(k.R)sin(cot) are of similar
importance to the electric dipole term. Therefore, these
extra terms destroy the usual multipole expansion, even
without reference to the terms proportional to k r in Eq.
(1&).

The above conclusion holds true when e,&0. When
e, =0, not only does that portion of Eq. (15) proportional
to e, vanish, but then

I

k.R
I
«1 because there is no net

charge on the bound ~sstem. In this case, however, the
curly bracket with —i V~ contains

—e, a(k r)cos(k. R)sin(cot)= —e„(k.r/co)E(t) . (16)

This leads to an interaction term in the Hamiltonian given
by

Hi —— e„(kr/—co)[pg E(t)]/m, ,

which is to be compared to the Pz/2m, arising from the
same bracket in Eq. {15) containing the —iV'~ (or p~)
operator. A general order-of-magrutude comparl[son of
these two contributions leads to

I
e, (k r/co)[pz. E(t)]/m,

I

Pg /2m,

2e IEIao
(18)

I p~ I

where ao is a characteristic size of the bound system. The
result (18) is precisely of the form of Eq. (68) of I, and so
the conclusions reached in I hold here as well. Specifical-
ly, it was shown in I that Eq. (18) is proportional to z'~,
with a factor of proportionality close to unity, where z is
the intensity parameter
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z=e a /2m

and a is the amplitude of a. Thus the interaction term in
Eq. (17) is of major importance in an intense field. Since
this term bears no relationship at all to a conventional
multipole expansion of the field, the final conclusion is
that high field intensity causes the usual multipole expan-
sion to lose all utility whether e,&0 or not.

IV. FAILURE OF SEPARABILITY

A. EF gauge

The information necessary to assess separability of the
c.m. and relative-coordinate equations of motion has al-

ready been established. Although mixed r, R terms exist
in Eqs. (13) and (14) beyond those that were identified in

I, nevertheless the separation-blocking terms identified
and appraised in I are sufficient to establish the essential
conclusion. This conclusion is that at high field intensity
[when z as given in Eq. (19) is within 2 or 3 orders of
magnitude of unity] the equations of motion in EF gauge,
expressed in c.m. and relative coordinates, cannot be
separated. Physically, this is because the c.m. and relative
motions become coupled when the field is intense.

B. Cgauge

In I only LWA terms were retained, and the equations
of motion were found to be separable in C gauge. Terms
beyond the LWA are presented in Eq. (15). In the expres-
sion in Eq. (15) that contains the i V, ope—rator, it is the

term —e, acos(k R)cos(nit) which is responsible for the
LWA or electric dipole approximation term when

~

k.R
~

&&1. When e,&0 and the field intensity is high

enough that
~
kR

~

is in the upper part of the range in Eq.
(11), theii the term —e, acos(k R)cos(cot) acquires some R
dependence. Even more important is the fact that
—e„asin(k.R)sin(cot) achieves as much significance as the

I.WA term and has strong R dependence. Since this R-
dependent term appears in direct association with the
—i V„operator, Eq. (15) is clearly nonseparable.

When e, =0, then one must consider
~

k.R
~

to be
small. Attention will now be directed to the expression in

Eq. (1S) that contains i Vz. With the hypo—theses e, =0
and

~

k R j && 1, the expression in question reduces to

[ i Vii —e„—a(k r)sin(cot)] =[ i Vii —e„(k—r/a))E(t)]

The issue of the significance of the field-dependent term
in Eq. (20) was discussed in Sec. III C above [see Eq. ,'16)],
where it was concluded that high field intensity caused
this term to be very important. This is then another ex-

ample of a mixed R, r term which blocks separation of
variables. That is, high field intensity causes the two-
body equations of motion in C gauge to become nonsepar-
able whether e,&0 or not.

V. COMPARISON %PITH RADIATION PRESSURE
EFFECTS

It is known (see, for example, Refs. 8 or 9) that radia-
tion pressure will also induce a coupling between c.m. and
relative coordinates. However, radiation pressure effects
and the explicit intensity effects considered here operate
through different mechanisms and on different time
scales.

Radiation pressure arises from the fact that momentum
transfer between the atom and a plane-wave electromag-
netic field is collinear with the field propagation direction
for photon absorption and for induced emission; but for
spontaneous emission the recoil is random. This leads to a
net force on the atom in the k or —k direction, depend-
ing on the relative populations of ground and excited
states. To set an order of magnitude, suppose the radia-
tion pressure force on a two-level atom has reached its
strong-field saturation value of Ak/2, where A is the
Einstein A coefficient. This force will produce an ac-
celeration of the atom which, in the course of a single
wave period, produces a displacement R given by

(21)

For order-of-magnitude purposes, one can set A =10"
sec ' and replace I, by the mass of a hydrogen atom.
The result is

As Eqs. (21) and (22) show, radiation pressure gives rise to
quite small forces which make their effects felt only after
very many wave periods. On the other hand, the intense-
field effects treated here arise directly from the full
Lorentz forces, and they have major consequences within
a single period of the electromagnetic field. For instance,
the limit expressed in Eq. (11) represents an oscillation of
the atom s c.m. in a single wave period in the frame in
which the c.m. is, on average, at rest. It may thus be com-
pared directly with Eq. (22), which represents the c.m.
motion in one wave period, starting from rest. Eventual-

ly, of course, the acceleration due to radiation pressure
can have macroscopic consequences, but the disparity be-
tween Eqs. (11) and (22) means that intense-field effects
and radiation-pressure effects are properly viewed as in-

dependent phenomena.
There is a physical picture one can form of the intense-

field coupling of c.m. and relative motions which follows
from the figure-eight behavior reviewed in the Appendix.
This figure-eight motion constitutes an intrinsic angular
momentum transferred to the charged particle by the
field. This is in contrast to the linear, zero-angular-
momentum motion executed (in the frame where the par-
ticle is at rest on average) by a charged particle in a quasi-
static electric field or in a low-intensity plane wave. The
intrinsic angular momentum of the particle motion in an
intense field can be thought of as leading directly to
higher-order multipole moments in the motions of the
charged particles constituting the bound system, thus giv-
ing rise directly to c.m. and relative-coordinate coupling.
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APPENDIX

An exact classical solution for the motion of a free,
charged particle in a linearly polarized plane-wave elec-
tromagnetic field is given in Refs. 4 and 5. In the frame
of reference in which the particle is, on the average, at
rest, the particle follows a figure-eight trajectory. With
the y axis along the direction of polarization, and the x
axis along the direction of propagation of the field, the
solution is

E= aco cos(cot —k r ),
B=(k/co) &(E .

The quantity z in Eq. (A3) is the same intensity parameter
defined in Eq. (19).

The amplitude of the oscillatory motion in the k direc-
tion is, from Eqs. (A2) and (A3),

i
cox,„=z/4(1+z) .

For high field intensity, Eq. (A4) yields

(A4)

The electric field vector and magnetic induction vector
that give rise to Eqs. (Al) and (A2) are

coy = —g' cos(cot —cox),1/2

cox = ——,
'

g sin2(cot —cox),

where

g=—2z/(1+z) .

(A 1)

(A2)

(A3)

lim cox
~

(A5)

Since the x axis is aligned with k, Eq. (A5) gives rise to
the result in Eq. (11),
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