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Adiabatic following in multilevel systems
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The problem of achieving population inversion adiabatically in an N-level system using one or
more laser fields whose detunings and/or amplitudes are continuously varied is studied analytically
and numerically. The SU(N) coherence vector picture is shown to suggest unexpected inversion
procedures and also to give a generalized interpretation of adiabatic following. It is shown that the
(N —1)-dimensional SU(N) space contains an (N —1)-dimensional steady-state subspace I (t)
whose orthonormal basis vectors I l, . . . , I z l are given explicitly in terms of the Hamiltonian

matrix elements. The motion of the system can be interpreted as a "generalized precession" of S

about I . Multilevel adiabatic following occurs when the angle g(t) between the coherence vector S
and its projection onto I is very small. The multiple dimension of I is shown to provide a variety
of paths for adiabatic inversion. The adiabatic solution is obtained by solving N —1 simple equa-

tions for the directional cosines of S on I;. The adiabatic solution and time scale and the state tak-
en up by the atomic variable are discussed analytically and numerically for a three-level system.

I. INTRODUCTION

Multiphoton excitation of atomic and molecular sys-
tems with more than two levels is of considerable impor-
tance in many problems. In particular, three-level systems
have been central to discussions' of two-photon coher-
ence, Raman beats, three-level superradiance and echoes,
off-resonance transient response, and coherent multistep
photoionization and photodissociation. Some attention
was given to special cases of three-level adiabatic rapid
passage and recently to coherent multilevel adiabatic exci-
tation, which is also the subject of the present work.

An idealized formulation of the N-level excitation pro-
cess focuses on the problem of accomplishing complete in-
version in an arbitrarily spaced N-level system that is
chain-wise dipole connected by laser fields (Fig. 1), by
means of a continuous sweep of the laser field frequencies
and/or envelopes. The term adiabatic ' means that the
rate of change of the varying components is sufficiently
small so that a quasi-steady-state is maintained all along
the process. Of course this rate must be reasonably large
compared to the natural decay rates of the system if the
process is to be practical.

It is clear that the evolution of a coherently excited sys-
tem in a pure state can be described by the Schrodinger
equation with no need for the more complex density-
matrix formalism. However, it was the density-matrix
SU(2) coherence-vector theory which led to the complete
description and analytic solution of the adiabatic process
in two levels, termed adiabatic following. Moreover, this

solution is applicable also to systems in general mixed
states, and lends itself naturally to situations involving re-
laxation.

The recent development of the SU(N) coherence-vector
theory ' of N-level systems raised the immediate ques-
tion: Can this new picture provide a generalization of the
two-level adiabatic following picture which will serve as a
guide to the description of adiabatic processes and to ana-
lytic solutions in N-level systems?

We will show in this work that the answer is affirma-
tive, and we also obtain a variety of unexpected results.
The (N 1)-dimensiona—l SU(N) space is shown to con-
tain an (N —1)-dimensional steady-state subspace I (t)
given explicitly in terms of the field detunings and en-
velopes. As I develops adiabatically, the SU(N) coher-
ence vector is shown to follow it, and the conditions for
adiabatic evolution and, in particular, adiabatic inversion
are easily obtained. The problem is reduced to solving
N —1 simple real equations for the directional cosines of
the coherence vector referred to the basis vectors of I.

FIG. 1. N-level atom chain-wise dipole connected by N —1

lasers (N =4).
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For a three-level system these equations are easily solved
and we give an exact analytic solution for any shape and
strength of the field envelopes and any time dependence of
the detunings, all obeying the adiabatic conditions.

Other questions which we will answer include the fol-
lowing.

(i) What is the adiabatic time scale and what influences
it? Since the adiabatic process sweeps through regions
where no analytic guide was available and since the adia-
batic rate must compete with the decay rates of the sys-
tem, the answer to the question of time scale is of consid-
erable theoretical and practical interest.

(ii) What are the "natural" intermediate states which
the atomic variables would assume as the adiabatic inver-
sion is performed? One of our unexpected findings is that
even though the atomic levels are assumed to be only
chain-wise dipole connected, the states involving only
one-photon coherences are not necessarily the states taken
up by the atomic variables (for X&2) as the adiabatic
process evolves. We will give an explanation of this pro-
cess.

II. THEORY

QpiA =[H,j;] .
Bt

(2)

For an N-level system of unperturbed energies
E;,i =1,2, . . . , %, irradiated by a laser field

N —j[

E(z, t) = g ez j+1(t)exp[ i (vj j—+1r —Kj j+1z)]+c.c. ,
j=l

(3)

we have in the rotating-wave approximation

We begin with the equation of motion for the SU(N)
coherence vector S=(S1,S2, . . . , S&2,). It is simply a

generalized rotation in X —1 dimensions,

5;=gf jkI jSk=I 5 .
j,k

Equation (1) is an alternative form of the Liouville equa-
tion for the density matrix P and Hamiltonian H,

S—(012~923~. . . ~ @13,024~. . . ~ V12, V23~. . . ~ U13, U24~. . . r 1U1,M2~. . . ~ RN 1)

I =(—01,—Q2, . . . , 0,0, . . . , 0,0, . . . , 61,b2, . . . , b'av 1),
where

(4)

jk Pjk+Pkj i "jk Pjk Pkj i J
1U1 = [2/I (I + 1)] ' (tU12+ 21U23 + + iw1 1+1), 1Vjk Pjj Pkk—— — (7)

and where Qj(t) is the Rabi frequency defined as usual in
terms of the atomic dipole moments dj j+~ and field en-
velope e& &+1(t) by

Qj(t) =21j j+1.eq j+1(t)/A

and where hj(t) is defined in terms of the detunings

b jk(t) =Vjk(t) —(Zj —Ek)/A',

61=[2/l(1+1)]' (412+2623+ +lb11+1) .

The antisymmetry of the SU(N) structure constants fjk
in Eq. (1) guarantees that the length of S(t) is constant.
Equation (1) contains, as its simplest case when X =2, the
optical Bloch equation expressed as a single vector preces-
sion equation

III. THE STEADY-STATE SUBSPACE
OF AN X-LEVEL SYSTEM

The striking property of X-level systems with X&2 is
that the steady-state subspace I of Eq. (1) contains X —2
solutions in addition to I" (see Appendix). The basis
vectors I 1, I 2, . . . , I ~ 1 of I can be given explicitly in
terms of 0;(t) and h,j(t) and are chosen to be orthonor-
mal with I 1

——I /I. General pmperties of I are easily
obtained from the equation of motion (1) by the defini-
tion,

I (3 I;=0,
orthonormalization,

(12)

(13)

is maintained and the coherence vector is said to be adia-
batically following I (t). In the following sections we ex-
tend this picture to an X-level system.

Equation (10) has the interpretation that the coherence
vector S is precessing about the torque vector I at a pre-
cession frequency I =

~

I
~

. Under the condition that the
torque vector I, initiaHy nearly parallel to S, changes its
direction slowly enough, the quasi-steady-state solution

SS=—II

and precession,

S I;=0.
Further, the directional cosines of S on I;

D; =S.I;/S
e

become constants of motion if I;=0. This can be inter-
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preted as a generalized precession of S about I . The rela-

tive position of S with respect to I can be measured by
the angle 7 between S and its projection Sz on to I . Both

Sz and g are given in terms of the directional cosines
D; =cos8; as follows:

The adiabatic conditions under which S will indeed fol-
low I are twofold.

(1) The initial detunings b.;J(0) and Rabi frequencies

Qi(0) must be chosen so that the initial-state vector S(0)
is in steady state, namely,

S, =SQD, r, ,
X(0)=0 . (21)

' 1/2
cosX= gD;

The evolution of the system is determined by the angle g.
Adiabatic motion is characterized by small-angle "preces-
sion" X(t)-0, but for completeness we will discuss later
also a nonadiabatic case with large-angle precession.

IV. X-LEVEL ADIABATIC FOLLOWING

Clearly, as we sweep the detunings A,J and Rabi fre-
quencies Q;, the whole steady-state subspace moves with
time. Our generalization of adiabatic following is that
under the adiabatic condition (to be specified later), the

coherence vector S(t) follows 1 (t) with X(t)-0. The an-

gles (9; between S and I; may, on the other hand, change
with time so that S might move within I" during the adia-
batic process. It is the detail of this motion which deter-
mines completely the adiabatic solution, since X(t)=0 im-

plies

S(t) =S~(r) =s gD;(r) I";(t),

where the I;(t) are known.
In principle the directional cosines of the adiabatic solu-

tion can be determined by the X conservation laws
Tr(p")=const of the Bloch equation. The problem is then
reduced to solving X—1 coupled polynomials in the
N —1 variables. Alternately, one can introduce X —1

simple differential equations for the adiabatic D; where
most of the properties are apparent from the simple form
of the coefficients. These differential equations for the
directional cosines of the adiabatic following process are
easily obtained from Eqs. (1) and (18), giving the N —1

simple real equations

X —1

D; = g ggJDJ, i =—1,2, . . . , X —1 (19)
j=1

(2) The term "sufficiently slow" for the sweeping rate is
determined by

I
I;

I
«Qo (22)

that is, the rate of change of direction of all the I basis
vectors must be small compared to the precession rate Qo.
For two levels the precession rate is well known to be
Qo ——I . In general, for X&2, Qo is not known, but, as
will be shown in the next section, it can be bounded so
that Eq. (22) becomes a practical criterion for the adiabat-
ic rate of the X —1 level system.

Adiabatic following is most useful if one wishes to lead

the atomic state steadily from some initial state S(0) to a
definite final state S(T). Of course, not all pairs of states
can be connected. The initial and final states must obey
all the conservation laws compatible with the equation of
motion. The simplest example is adiabatic inversion,
where the initial ground state is led adiabatically to the
state where all population is in level X. The general pro-
cedure to follow is first determine initial and final values
for the detunings E,J and the Rabi frequencies Q;, so that

X( &)=X(0)=0,
and then sweep adiabatically from the initial to the final
values.

The striking result of this scheme for X ~ 2 is the mul-

tiplicity of possible paths for adiabatic following. Because
of the multiple dimension of I, the adiabatic condition

X(0)=X(T)=0 for any given atomic states S(0) and S(T)
can be satisfied by many choices of Q; and E,J. This
point will be discussed in detail in connection with three-
level adiabatic inversion in Sec. VI.

V. ADIABATIC FOLLOWING IN A THREE-LEVEL
SYSTEM

As an example, we will now discuss the adiabatic fol-
lowing process and its solutions for a three-level system.

The steady-state subspace I is two dimensional with
the orthonormal basis given by (see Appendix)

X —1
2g D; =1, g~=I'; I 1 . I ) ——I /K',

I =(I ' —uI, )/(I" —u )'~

(20)

with a=(I ' I &) and
I

2 2Ql(Q1+Q2 4~23~13)

—Q2(Q)+Qg —4b, )2b, (3)
2 2

Q)Q2(h)p —&23)

n', ~„+n', 6„—4A„A„A„
v 3(Q,E,2+ Qphg3 —4b, (gh236)3),

0
~~2

(6)2+2623)/~3

Detailed solutions of these equations for X =3 are
presented and discussed in Secs. V and VI.
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We notice two distinct points. First, three components
were omitted. These are the U,z coherences which vanish
in the steady-state solutions. The second point is the ap-
pearance of the two-photon coherence u i3 in I 2. This will
lead to the evolution of u &3 during the adiabatic process.

The three-level adiabatic solution is

S(t)=&[Di(t)1 i(t)+Dp(t)l 2(t)], (27)

where the directional cosines D;(t) obey the simple equa-
tions

(28)

with

D)+Dp ——1, (30)

g =~i'~2
giving

B
&
——cosO, B2——sine,

8(t)=HO f g—dt .

We note the following interesting relations:

(31)

(33)

4

f'gdt= f'I=, .r,dt

I ) I2dt, (34)
0

and it can be shown that f I z d I, or f I', d I 2 is in-

dependent of the path and hence

VI. THREE-LEVEL ADIABATIC INVERSION
BY SVPEEPINCi THROUGH A TWG-PHOTON

RESONANCE POINT

Qnce we specify the initial and final atomic state, we
can use the adiabatic condition (23) to trace the various
possible paths for adiabatic passage between them. The
initial state {level 1) and the final state (level 3) are

f 12dl, =0.
Equations (33) and (35) imply that 0(t), and therefore the
adiabatic solution S{t) of Eq. (26), is determined by the
values of 5;J. and Q; only at t and to, independent of their
values in between. We also notice that the g function is
invariant under the exchange of the level indices 1 and 3
so that, for inversion, Eq. (35) leads to

P )(T)f I 2dI i ——0. (36)F )(0)

We find especially interesting the case of equal detun-
ings and Rabi frequencies, namely,

&»(t) =&»(t),

Q, (t)=Q,(t) .

It is easy to see that, in this case, g(t) =0 and the direc-
tional cosines D;(t) become constants of motion. The S
vector then depends on time only through I ] and I 2.

represented by

I
~»(0)

I
«and

I
~»(~)

I
WO. (39)

These coildltiolis (39) should be considered carefully be
cause they are somewhat unexpected, even anti-intuitive.
The natural way to excite the atom is to bring it first to
level 2 by resonant excitation of the 1-2 transition and
then proceed to level 3 by sweeping into 2-3 resonance.
We see, however, that (39) implies something close to the
opposite order of resonances. In fact the natural excita-
tion sequence, starting on 1-2 resonance with the first
laser, removes the ground state out of the steady-state sub-
space, which results in large-angle precession. Even after
avoiding this possibility by ensuring that (39) is satisfied,
we are still left with a lot of freedom for our initial and fi-
nal detunings.

If we restrict ourselves to processes where

D;(~)=D;(0),
we obtain the following condjtjon on the detunjngs

b, i2( T)= —523(0)=632(0),

&P3( &)= —&ig(0) =&2i(0) .
(41)

We notice that the final detunings can be obtained from
the initial values by exchanging the indices 1 and 3 con-
sistent with Eq. (36).

A specific scheme satisfying Q;(0)=Q;(T)=0 in Eq.
(41) is

Q (t) =A sin — tl I +g

A„(t)=a —A,t,
h»(t) =b —A,t,

where the initial detunings a and b are arbitrary except
that a«. Clearly at t = T =(a +b)/A. , the desired final
parameters are reached and, if A, is sufficiently small,
complete inversion will be achieved. The adiabatic restric-
tion on the sweeping rate k will be discussed later.

We notice three interesting points regarding the pro-
cedure sketched above.

(1) This proposed scheme can be achieved by a single
laser interacting with the two transitions.

(2) At t =T/2, the Rabi frequencies reach their peak
and the deiunings are at two-photon resonance:

S(0)= [0,0,0, 1, 1/v 3],
S(T)= [0,0,0,0, —2/v 3] .

We have again omitted the three U components, which all
vanish.

The adiabatic condition (23) implies that both states
must be expressed as a linear combination of I i and I 2,
or I' and I ' of Eqs. (24) and (25). It is easily seen that
the first three components are satisfied by imposing
Q;(0) =Q;(T)=0, namely pulse-shaped Rabi frequencies.
The last two components are then compatible with any de-
tunings except that we must have both
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that the "antinatural" case a & b is more favorable for adi-

abatic inversion.
Our solution for Di(t) for various initial conditions a, b

are shown in Fig. 2. These solutions are indistinguishable
from our numerical solutions of the full Bloch equation
(1). We notice at t =T/2 the points of minimum and

maximum for a &b and a &b, respectively. The border
straight line for a =b is the case of equal detunings [Eq.
(37)], where D; become constants of motion. We also no-

tice that D;(T)=D;(0). In addition, for sufficiently slow

rates A, , we found that D;(r =At) is independent of A, , con-

sistent with Eq. (34).
It is easily seen that Di is related to the quasienergy of

the system

FIG. 2. Quasienergy D, vs Atfor , various paths (initial condi-
tions a, b). For a11 paths we chose a +b = 10 and 3;=6.

0;(T/2) =0,
ki3( T/2) =b.i2( T/2) +A /3( T/2) =0 ~ (45)

(3) From Eqs. (44), (45), and (31) we obtain g(T/2) =0,
so that at r =T/2, the D; have an extremum. Particularly
for a & b, D i ( T/2) has a minimum point and for b & a, it
has a maximum point. The opposite is true for D2(T/2).

It should be pointed out that a ~ b implies that the or-
der of resonances (which correspond to the Landau-Zener
level crossings) is Ass=0 bi3=0 ~i2=0, and the only
resonance which involves population is the two-photon
resonance, leading to a smooth and steady population in-

version as described later on. For a & b the order of reso-

nances is reversed and we obtain the natural excitation or-

der mentioned before. It can be shown that as a is de-

creased in favor of b and we are getting closer to the

natural scheme, the motion of the vector S becomes more
sensitive to changes of A,J and 0,; and a slower sweeping
rate is needed to maintain the adiabatic process. When a
approaches zero, the adiabatic process collapses complete-

ly and 1-2 oscillations followed by 2-3 oscillations occur.
This emphasizes our somewhat unexpected conclusion

0.8

0.6

04

0.2

-0.2

-0.4

-0.8 I I I I i I

0 I 2 3 4 5 6 7 8 9 IO
Xt

FIG. 3. Evolution of the coherences u~2, u23, and u~3 during

the adiabatic process. (A; =8, .a = 10,b =0. )

Clearly D; measures the relative contribution of I; to the

atomic state S [Eq. (27)]. We expect that, for a & b, as D2

approaches its maximum value, ihe contribution of I 2 is
increased and we will see the development of the atomic
two-photon coherence u&3. This is shown in Fig. 3. We
notice the smooth and steady flow of the atomic coher-
ence typical of a very small-angle precession. This
characterizes the evolution of all variables, coherences,
populations, and directional cosines. The smooth and
steady flow of populations towards complete inversion is
shown in Fig. 4. Since this case is for a relatively strong
field, for which II;(T/2)-hi2(T/2), we also see a power
broadening effect as p22(t) rises and falls during the inver-
sion pmcess. For a weak field, for which
0;(T/2) & b i2(T/2), we obtain a similar behavior except
that p22(t) remains zero all along the process, with

pii(T/2) =p33(T/2) = —,'.
The striking difference between the weak- and strong-

field adiabatic inversions is the adiabatic rate. For our
strong-field case, the adiabatic rate is by 2 orders of mag-
nitude greater than the adiabatic rate of the weak-field
case. This is shown in Figs. 5 and 6. Here we see the col-
lapse of the adiabatic process with increasing rates X. As
A, becomes small, the lines converge to the adiabatic solu-

tion, which is identical to our analytical results. We find
that the weak-field adiabatic rate is X-O.O1A,o, whereas

I.O—
0.9-
0.8—

0.7—

~ 0.6—

~ 0.5-

CL
& 0.4—
C)
cL 03—

0.2—

O. I—

0 I 2 3 4 5 6 7 8 9 IO
Xt

FIG. 4. Adiabatic population inversion in a strong-field laser

(3;=8,a =10,b =0).
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the strong-field adiabatic rate is A, —1b,o. In all our calcu-
lations we use the frequency unit b,z

——[h~z(0)
+bz3(0)]/10. These rates can be predicted by our adia-
batic condition

~
I;

~
&&Q~ [Eq. (22)].

Although the small-angle precession rate Qz is not
known, it can be bounded. We notice in Fig. 5 that the
bottleneck of the adiabatic process is the point of two-
photon resonance at t =T/2. The natural frequencies of a
three-level system at two-photon resonance are well
known (Brewer and Hahn of Ref. 9) and we take the
smallest natural frequency

I.O

0.8—

0.6—

D 04—
I

0.2—

0—

v;„=[(Q(+Qp+ b, (p)
'~ —b, ,~]/2 (47) -O. 2

0 6 8 IO

as a lower bound for Qz.
In the limits of weak (Q; «4&z) and strong (Q; )4~q)

fields, we obtain immediately
FIG. 6. Collapse of the adiabatic process for a strong-field

case (A;=8,a =10),D& vs A, t.

Q 1 /2~12o~ w

or (48)
VII. THREE-LEVEL ADIABATIC INVERSION

BY DELAYED PULSES

Namely, the precession rate Qo is bounded by the two-
photon Rabi frequency, Q, =Q~/2b, ~q, for the weak
field and by the single-photon Rabi frequency Q; for the
strong field. The left-hand side of the adiabatic condition
is easily calculated at t = T/2 and we obtain

The paths for adiabatic inversion discussed so far do
not exhaust all the possibilities. A completely different
adiabatic inversion scheme is obtained by imposing two-
photon resonance at all times, h»(t) =0. Under this con-
dition the adiabatic restrictions (23) and (40) lead to the
following conditions:

(51)

~

b, )~ ~
/Q, for Q; &&

for (49)

2Q, Q, «
~

Q', —Q', ~, at r =0 and T

/

Q](&)—Qp(T)
/

= —
/

Qy(0) —Qp(0)
/

(52)

(53)

The adiabatic condition therefore becomes

The first inequality is immediately recognized as the
well-known condition for elimination of level 2 and
reduction to an effective two-level atom (levels 1 and 3),
with the effective Rabi frequency

Q,'for Q;« ib, „~
l~izl «

Q, for Q;) (b.,~i

consistent with our numerical results.

(50)
Q)Ap0, =
2A)q

and the effective detuning
2 20)—Qp

4~iz

(54)

(55)

I.O

0.8—

Conditions (52) and (53) can now be written in terms of
these effective parameters as

0.6—
at r=0 and T

b,,(T)= —6,(0) .

(56)

(57)

D( 0.4—

0.2—

-0.2
0 2 4 6 8 IO

FIG. 5. Collapse of the adiabatic process for a weak-field
case (A;=2, a =10),D& vs A,t.

Q, (r) =A,r,
Q,(r) =a Ar, — (58)

as shown by the solid lines in Fig. 7. The effective detun-

These conditions are the well-known conditions for two-
level adiabatic inversion and could be predicted by the
SU(2) vector theory applied to the "effective" two-level
system. If we wish to work out a practical version of this
scheme, we must sweep the Rabi frequencies in opposite
directions, for example,
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0 i

FIG. 7. Sweeping scheme of the effective detuning

4, ={0~—A2)/46~~. Q~ ——At, Q~ ——a —kt {solid lines). The ex-
tension of the scheme to two delayed pulses is drawn by the
dashed lines.

ing will reverse its sign at T =a /A, and inversion is then
reached.

This scheme can be extended to two delayed pulses as
shown by the dotted lines in Fig. 7, giving a smooth adia-
batic inversion with X(t)=0 all along the process. We
mention this example to demonstrate the fact that adia-
batic inversion can be obtained simply by designing a
proper delay between the pulses. It is interesting to note
that without a delay the process becomes completely
nonadiabatic. In particular, if 0& ——Az, under the same
conditions [b,~3(t)=0,0; &&b, ~2], the effective detuning
vanishes and we obtain on-resonance effective two-level
Rabi oscillations. In the SU(3) space we found that the
motion of the system is then a large-angle precession with
g(t)=60'. This is consistent with the 120' inversion angle
characteristic of three levels.

VIII. SUMMARY

In this work we solved the problem of N-level adiabatic
following. It was shown that the (N I)-dimensio—nal
SU(N) space contains an (N —I)-dimensional steady-state
subspace I which governs the generalized precessional
motion of the system. Our generalization of adiabatic fol-

lowing is that the coherence vector S follows the whole
steady-state subspace I . The adiabatic solution was

shown to be determined completely by the motion of S
within I, namely by the time dependence of the direction-

al cosines D; of S on I . X —1 simple equations for D;
were presented and complete solutions were obtained for
three-level systems with any time shape of the detunings
and Rabi frequency obeying the adiabatic following condi-
tions. The adiabatic rate conditions were formulated in
the geometrical terms of the adiabatic following picture.

The multiple dimension of I (for N & 2) was shown to
allow a lot of freedom for the detunings, leading to a
variety of possible paths for the adiabatic process and, in
particular, for X-level adiabatic inversion. Two specific
schemes for three-level adiabatic inversion were discussed.
The first one sweeps the detunings 612 and 623 linearly
from their arbitrary initial values a and b, and can be
achieved by a single laser. It was found that for a &b
where the three resonances (two one-photon resonances
and one two-photon resonance) occur in a nonintuitive or-
der, the quasienergy of the system D; reaches a minimum
at the point of two-photon resonance, and the adiabatic
rate can be made faster than in the case of the intuitive

resonance order (a & b). It was shown that the fastest adi-
abatic rate is achieved for a &b (nonintuitive detuning
sweep) in the strong-field limit when the peaks of the Rabi
frequencies are comparable to the intermediate detuning
b, ~2 at the point of two-photon resonance. We also noticed
and explained the evolution of the two-photon coherence
u13 during the adiabatic process, even though the levels
are only chain-wise connected.

The second inversion scheme was shown to consist of a
properly arranged delay between the two laser pulses with
5]3(t)=0 and b, &2(t) »Q;(t) all along. We have shown
that, without the proper delay, the process ceases to be
adiabatic, providing an example of a large-angle general-

ized precession of S in the SU(3) space.
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APPENDIX

J J+1 J J+1 J J+1 J+1 J J+2+ J —1 J —1 J+1 '

J J+1 J J+1 J J+1+ J+1 J J+2 J —1 J —1 J+1

(Al)

' 1/2
2 j+1

J J

' 1/2
2(j —I )

0) wjj

and for k &j+1
jk jk jk k —1 j k —1 k j k+1

+Qj 1VJ 1,k+QJVJ'+1, k

Vjk ~jk jk++k —l~j, k —1++k~j,k+1

+j—1+j—1,k +j ~j +1,k ~

(A2)

1 /2
2J

l8j J—
2(j —I)

Qj 1Vj 1 J+ J

' 1/2

J JJ+1 '

(A3)

where variables with indices less than 1 or greater than N
should be set equal to zero.

The steady-state equations are obtained by setting all
derivatives to zero. From Eqs. (Al) —(A3) it is seen im-
mediately that all the V,J components must vanish and we
are left with equations involving only u,J and wj. Specifi-
cally,

The equations of motion for the N —I components of
the generalized Bloch vector in the rotating-wave approxi-
mation are
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Q,,'—QJ. J+,AJ o;;—15330;

(A4)

u 12 +1[(+1 4~23~13)w12 + II2w23 ]~D

u23 +2[(+2 4~12~13)w23+ I lw121~+

u 13 —20102(523W 12 A]2w23 ) /D

where

~12( ~23~13 +1) +2~23 '
2 2

(A7)

—5;;+15~JQ; . (A5)

2612+12+ Q2u13 = 201W1

2423u23 —Qtu13 =Q2w, —v 302w2,

+2~ 12 1~ 23 +~13~ 13 —O ~

leading to

(A6)

It can be seen that det
~

a
~
&0, and there exists a unique

solution for any independent choice of w;;+1. Since there
are exactly 1V —1 independent such choices, we obtain
N —1 independent steady-state solutions. For N =3 Eq.
(A4) reduces to

If we take w12 ——512 and w23 ——523, the solution is I . A
second independent solution is obtained by taking
w12 ——w23

——D, and the solution is then

Q1(01+02 4623613)2 2

+2(+1++2 4~12~13)2 2

20102(512—b 23 )

+1~12 +2~23 4~12~23~13
2 2

~(+1~12 +2~23 ~12~23~13)
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