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A time-dependent local-density theory of the photoemission spectra and polarizabilities of finite
systems is extended from atoms to molecules. The theory is implemented in a single-center formu-
lation and is applied to N, and C,H,. The partial photoemission cross sections and asymmetry pa-
rameters for the 17, and 30, levels are presented as well as the optical-frequency polarizabilities;
agreement with experiment is generally, but not uniformly, excellent.

I. INTRODUCTION

It has long been known that dynamical internal screen-
ing (which we denote as “dielectric” effects) significantly
affects the static and dynamical response of atoms, mole-
cules, and solids to an externally applied electromagnetic
field. In comparison with independent-particle calcula-
tions, one finds that for low-frequency fields there is a
considerable reduction in the magnitude of both the linear
polarizability! ~* a(w) as well as the hyperpolarizability.’
At higher frequencies (as probed, for example, by the
photoemission cross section) the collective effects respon-
sible for the dielectric screening characteristically shift os-
cillator strength to higher frequencies and broaden and
shift spurious peaks predicted by an independent-particle
calculation.! This same mechanism can act on a discrete
transition to produce a large contribution to the photo-
emission cross section where none existed before.>” Since
the Augerlike decay of excited particle-hole pairs are an
essential part of the dielectric response treatment, autoion-
ization resonances resulting from a discrete state mixing
with the (degenerate) continuum states® arise in this theory
in a completely natural way.*° In a fair proportion of the
cases studied to date, dielectric effects are sufficiently
large to produce qualitative as well as quantitative effects
in the photoemission spectrum.

The motivation for including dielectric effects in the
study of the electronic properties of finite systems is clear.
Following Zangwill and Soven,"* we believe that the most
practical way to do this is with a self-consistent time-
dependent perturbation theory based on a local-density-
functional approximation to the ground state of the sys-
tem. This approximation is known as the time-dependent
local-density approximation, or TDLDA. Formally the
procedure is similar to conventional time-dependent Har-
tree (random-phase approximation) and time-dependent
Hartree-Fock (random-phase approximation with ex-
change).'°~!2 It differs in the use of a local potential to
treat exchange and correlation. Experience with the atom-
ic system suggests that basing the theory on the local-
density ground state, rather than the Hartree-Fock ground
state, leads to much more accurate results with only a
fraction of the computational effort.
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The theory"* is quite straightforward. The external
field acting on the system is described by a scalar potential
¢=*(T,w). (Retardation effects, which require a full
vector-potential description of the electromagnetic field,
are unimportant for systems of atomic or molecular di-
mensions.) In the independent-particle approximation
(IPA) the particle density n (T,®) induced by this field is
given by the expression

on(F,0)= [ Xo(F,T",0)p™(F",0)d*F",

where X,(T,T’,w) is the (exact) independent-particle
density-density response function. We account for inter-
nal screening of this field by recognizing that the induced
charge density gives rise to an induced field equal to the
sum of a Coulomb potential (which a classical external
test charge would experience in the vicinity of the system)
and an induced exchange-correlation field. Thus, a more
nearly correct expression for the induced charge is

8n(f,0)= [ Xo(T,T",0)p°F(F",0)dF", (1)

where ¢pSCF( T,w) is the sum of the external field and the
two induced fields just described.
The Coulomb potential is

sVe(Trw)=e? [ Mf—'j"fﬂ?’ : @)

where e is the charge on an electron. We compute the in-
duced exchange-correlation potential by linearizing the
local-density-functional ~exchange-correlation potential
V,.(T) about the ground-state value:

Ve
8V, (T 0)= (T)dn (T,w) . 3)
an

The TDLDA consists of solving Egs. (1)—(3) simultane-
ously. An essential simplifying feature, compared to
time-dependent Hartree-Fock theory, is that the properties
of the unperturbed system enter only through the density-
density response function which in turn may be calculated
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in terms of Green’s functions, avoiding the complication
of infinite summations over virtual states. The
independent-particle susceptibility is given by the expres-
sion
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where the sum on i runs over all occupied single-particle
states, and the sum on j runs over all single-particle states;
€; is an eigenvalue, #iw is the photon energy, and 7 is an
infinitesimal. Transitions from occupied to occupied
states cancel between the two terms, so their inclusion is a
matter of convenience. The spectral representation of the
response function allows it to be expressed in terms of the
single-particle Green’s function of the system,

Xo(F, 7", 0)= 2¢, (D) (TG (T, 7", € +Fiw)

+ Z!ﬁ.(r)tﬁx( )GH(T, T, €; —fiw) ,

where
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Since the ground-state potential is local, the Green’s func-
tion satisfies the differential equation

[E+V*—V(D)]G(F,T",E)=8(F—T") (5)

in both the " and T’ variables. Owing to the particularly
simple nature of the inhomogeneous term in Eq. (5), the
solution is only slightly more difficult than determining
the solution of the related homogeneous equation in a sin-
gle spacial variable. The sign of the infinitesimal deter-
mines the boundary conditions on the Green’s function at
infinity. Since the TDLDA is a self-consistent first-order
perturbation theory about the local-density-functional
(LDF) ground state, the potential in (5) corresponds to a
neutral system and does not contain a long-range
Coulomb component.

All observable quantities may be computed in terms of
the frequency-dependent self-consistent charge density
and potential. Any component a,(w) of the polarizability
tensor (diagonal in the cases of interest) is proportional to
the induced dipole moment

av(w)zezfxvén(i'*',w)d3f" ,

in unit external field oriented in the corresponding direc-
tion. The total photoemission cross section (for the elec-
tric field in the vth direction) is proportional to the ima-
ginary part of the polarizability

o @)= —4matiolm [ x,5n(F',0)d’T"

where a is the fine-structure constant. Partial photoemis-
sion cross sections are related to the probability of leaving

the ion in a particular final state. The conventional
“golden-rule” expression may be employed, with the sub-
stitution of the self-consistent field for the external one.
Thus

o) =atiwE? | (¢ | g7 (T0) [¥) |, 6

where it is assumed that the final states are scaled asymp-
totically to plane waves and Ef is final-state energy. The
sum of the partial cross sections is the total cross section
under these definitions, so long as @3°F(T,w) is indeed a
self-consistent field as defined above. The independent-
particle approximation arises by using ¢®*'(T,w) instead of
¢¥(T,w) in Egs. (1) and (6).

In addition to the total cross section, photoemission ex-
periments give some information about the angular distri-
bution of the outgoing photoelectrons. For a gas-phase
target consisting of randomly oriented nonchiral mole-
cules, in the electric dipole approximation the photoemis-
sion angular distribution is given by'*

do ()= a(w)
dQ
where 9 is the angle between the electric field (of a linear-
ly polarized electromagnetic wave) and the outgoing elec-
tron direction, and B(w) is the photoemission asymmetry
parameter. A formula for S in terms of partial-wave ma-
trix elements Iy, is well known,*

I I% . (—
5S ‘2 imA Ty (—1)Y

UI'sm',v

——[1+B(w)P,(cosD)]

X C(11200)C(112v—+")C (11'200)

Cl2m —m') , (7)

where
S= 2 IILV l 2
L,v

and the C’s are Clebsch-Gordan coefficients. The

partial-wave matrix elements are given by

I,=(¥; o, | 9F)

where the final state is an integral transform of the usual
plane-wave—plus—incoming-spherical-wave final states

YD)

PO = [ 9DV (Q)dQ .

Use of the self-consistent field in place of the external
field does not effect the validity of the above formulas,
even though the self-consistent field is far from uniform
in space. The induced field is a linear function of the
external field; as such it has the same (vector) transforma-
tion properties which underlie the formula for B.

The theory just described has already been used to study
the polarizability! ~* and photoemission cross section*’
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of atoms and the hyperpolarizability of rare-gas atoms.’

In general, the theory was successful at the level of a few
percent, in contrast to the independent-particle approxi-
mation which was not even qualitatively correct in a num-
ber of cases. Results are generally at least as good as
those obtained with other approximations. In view of
these successes, we felt that it would be desirable to extend
the theory from atoms to small molecules. It is the pur-
pose of this paper to describe the formalism we used to
make this extension, and to present the results obtained in
the cases of molecular nitrogen and acetylene. A letter
presenting some of the acetylene results has already ap-
peared.” A recent article reviews the field of molecular
photoionization as a whole.!

II. MOLECULAR SINGLE-CENTER FORMULATION

Implementation of the theory just described requires
knowledge of the bound states and the Green’s functions
in a given geometry. The description of these quantities
must be sufficiently simple that the fundamental equa-
tions of the theory may be solved. We have chosen to
represent both the eigenfunctions and the Green’s function
using a single-center expansion about the molecular
center. This representation provides a conceptual and,
more importantly, computational simplicity in finding the
induced potential, which, however, is somewhat counter-
balanced by the (notorious) difficulty of solving molecular
problems with a single-center representation.

Our strategy for circumventing some of the difficulties
of the single-center expansion was to complete the
ground-state calculation in a Gaussian basis representation
and then project needed quantities onto a single-center
spherical harmonic representation. We performed a self-
consistent-field calculation in the local-density approxima-
tion,'®!7 using the Gaussian-orbital program developed by
Dunlop, Connoly, and Sabin.!* Basis sets consisting of
11s, 6p, and 3d orbitals on the nitrogen or carbon atoms,
7s and 2p orbitals on each hydrogen, and two diffuse s or-
bitals at the molecular center were used. These basis sets
are slight extensions of those suggested by van
Duijneveldt.! We chose the average atomic Schwarz?®
values for the Xa parameter, namely 0.751 97 for nitrogen
and 0.768 26 for acetylene. The potential was found self-
consistently in the Gaussian-orbital basis, projected into
the single center, and used without further modification.
The bound-state wave functions were recomputed in the
single center, as indicated below. Valence eigenvalues cal-
culated using the single-center expansion differed by about
1 eV from the Gaussian-orbital predictions when all sym-
metry allowed spherical harmonics up to /=19 were in-
cluded. The exchange-correlation potential taken from
the Gaussian-orbital program was used to derive the value
of 3V, (T)/0n. We used the Xa approximation, rather
than the more nearly correct density functionals!’ em-
ployed in the work of Zangwill and Soven;"*>7 however,
only minor changes result from this replacement.

In the single-center expansion a solution %(T) to the
coupled-channel equations is expanded in the form

W)= D Y. (nNY (Q),
L

where the ¥, (r) form the solution vector of ¥(T), Y, is a
spherical harmonic, and L is a compact representation of
the two angular momentum indicies / and m. If the ex-
pansion is terminated after a finite number of terms and
the variational principle is applied, we arrive at the
coupled-channel Schrédinger equation

S U(Vi+E8pp— Vi AN (r)=0, (8
I
where
o_1d> IU+1)
Vi= r dr2r r? '

The quantities V. are related to the physical potential by
the transformation

V=3 Crppr [ VD)Y(Q)dQ, ©)
<

where the C;; .~ are the Gaunt integrals f Y, Y. Y7 dQ.
Symmetry may be included by allowing only some of the
spherical harmonics in the sum. (A trivial generalization
is needed for, e.g., cubic harmonics.) Given an external
potential, we find a bound state using the method of Gor-
don.?! For a given energy there are a set of 2N solutions
to the system of N second-order differential equations (8),
where N denotes the number of symmetry allowed (/,m)
components within the truncated angular momentum sub-
space. Of these N are regular at the origin (the inner solu-
tions), and N vanish exponentially at infinity for negative
energies (the outer solutions). A bound state exists for
those discrete energies for which some linear combination
of the N inner solutions is equal in slope and value to
some linear combination of the N outer solutions. We
found that the nucleus of the heaviest element was the
best place to match the inner and outer solutions, because
the components of the solution vectors with large L are
big only in this region. By finding the energy of solution
to great precision (a part in 10'?), even the smallest com-
ponents of the solution vector could be made to join
smoothly from the inner to the outer solutions.

The Green’s function may be expanded in the single-
center form

G(T, T ,E)= 3 Y (Q)GrpAr,r',E)Y (),
LL'
where the components Gy ;- satisfy the coupled equations

S (VI+E)S L~ VipAr)]GLrpAr,r',E)
“~

N SLL'S(V ——r')

144

(10)

in both radial variables. The angular momentum decom-
position of the Green’s function is a crucial quantity in
our theory. We have found a convenient representation of
this quantity in terms of the regular and irregular eigen-
channel'*?? solutions of the coupled-channel equations.
The details of our constructive procedure are presented in
the Appendix.

The self-consistent-field equations of the TDLDA are
solved in a relatively straightforward manner. The in-
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tegral to find the charge density (1), while nominally over
space for each point in space, turns out to be no more dif-
ficult than doing a number of one-dimensional spacial in-
tegrations, thanks to the special form of G in Egs. (A7)
and (A8). The calculation of the Coulomb potential is
simple because the integration kernel | ¥—7' | ~!is diago-
nal in L when expanded in spherical harmonics. The
exchange-correlation term involves only multiplication.

Self-consistency is achieved with a dual strategy: for
several iterations (perhaps seven) the field resulting from
going around the loop implied by Eqgs. (1)—(3) is simply
plugged back in to the charge-density integral (1). The er-
ror in the calculated @5°¥(¥,w) may either grow or shrink
(roughly geometrically) by this procedure. Then, the
Aitken method of accelerated convergence? is applied to a
three-term historical sequence of the components ;< (r),
terms in the single-center expansion of @3F(T,w). Often
a nearly self-consistent solution results from one Aitken
step. Our convergence criterion was that ¢>“¥(¥,w) repro-
duce itself to an absolute magnitude of 107 at all points
in space, on a scale in which @*™*(T)=z. Typically about
ten iterations including perhaps two Aitken steps was suf-
ficient to produce convergence.

With ¢®*Y(T)=z, the partial cross sections are given by

oilw)=4matio S, | (¢; | 3T |9, ) |2,

where the eigenchannel continuum normalization of Eq.
(A5) is required, rather than the plane-wave normalization
of Eq. (6). Similarly, the partial-wave matrix elements
needed to compute B in Eq. (7) are given in terms of the
eigenchannels using the relation

5
I=3 U |3 [ )e "Upi’,
n

where v is the light polarization index. These relation-
ships may be derived by matching the asymptotic form of
the eigenchannel solutions to the asymptotic form of a
plane wave plus an incoming spherical wave, which is the
final state in photoemission,?* followed by an appropriate
integration over angles.
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III. RESULTS FOR NITROGEN AND ACETYLENE

A. General

Nitrogen and acetylene provide interesting model sys-
tems for a variety of reasons. There is a great deal of ex-
perimental data on both nitrogen®*—3* and acetylene,®*~%
as well as a number of theoretical calculations for nitro-
gen'22240=30 and acetylene.”**3¢5%:51 Despite consider-
able effort previous to this work, some of the data remains
unexplained, or at least explained only qualitatively. The
two molecules have filled shells in their ground states (un-
like, for example, O,), thus the problem of multiplets,
which are difficult to describe in a local-density-
functional theory, is avoided. Nitrogen and acetylene
represent a favorable case numerically: They involve only
first-row atoms which are combined into a high-symmetry
configuration (namely D ;). Even so, in calculating the
photoemission partial cross sections, we found it necessary
to restrict our attention to the molecular orbitals which
are primarily derived from atomic p states, namely the
17, and the 30,. (The single-center expansion describes
the nuclear regions least well; since the p-derived states
have a node at or near the nuclei, they are the best
described molecular wave functions.) Additionally, there
is some virtue in studying nitrogen and acetylene together
since they are isoelectronic.

Molecular nitrogen and acetylene each have 14 elec-
trons. The occupied orbitals are the 1o, and the lo,,
which are the atomic 1s levels; the 20, and the 20, bond-
ing and antibonding combinations of functions with
predominantly atomic 2s character; the 30,, which are
bonding combinations of the atomic p, levels (where the z
direction is the molecular axis); and the orbitally degen-
erate 1m,, bonding combinations of atomic p, and p, lev-
els. Additionally, our potential binds an unoccupied 1,
level, the antibonding combination of p, and p, orbitals.
All other bound states, such as the infinite collection of
Rydberg states, are not present in the calculation because
the ground-state potential is neutral.

The eigenvalues of our calculations, both in the
Gaussian-orbital basis set and the single-center expansion,
are shown in Table I. The two calculations are in agree-
ment to within about 1 eV for the valence levels. To ra-
tionalize the eigenvalues, recall two simple facts: nitrogen

TABLE 1. Eigenvalues and ionization potentials (IP) for nitrogen and acetylene (in eV).

Nitrogen Acetylene
Expt. Expt.
Bound Gaussian Single (Ref. 26) Gaussian Single (Ref. 51)
state basis set center 1P basis set center 1P
log —384.2 —346.0 —270.8 —247.5
loy, —384.1 —349.2 —270.8 —249.5
20, —28.3 —27.5 —18.6 —-17.1 23.5
20, —133 —12.5 18.8 —14.1 —134 18.7
30, —10.3 —10.6 15.6 —124 —11.9 16.4
17, —11.6 —12.4 17.0 —7.2 -7.0 11.4
1, —1.9 —2.6 —0.3 —-0.3
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has a slightly greater atomic number than carbon (Z=7
vs Z=6), and the nitrogen bond length is somewhat short-
er than the carbon-carbon bond (0.110 nm vs 0.120 nm;
for reference, the carbon-hydrogen bond length is 0.109
nm). Pairs of molecular orbitals derived from the same
atomic orbitals should be deeper on the average in nitro-
gen and more strongly split. This is born out in the eigen-
values, with the sole exception that the 30, level is deeper
in acetylene than in nitrogen. Oddly, the 30, eigenvalue
would be lower in nitrogen if the N-N distance were
larger. Thus, whereas nitrogen is primarily 7 bonded, the
o component in acetylene is more important. This view is
born out by vibrationally resolved studies of the relevant
atomic states.>?

The experimental ionization potentials are also given in
Table I. The ionization potentials differ from the eigen-
values by a few electron volts which is characteristic of
local-density eigenvalues in general. We interpret the re-
gion of the calculated continuum with photon energies be-
tween the calculated eigenvalue and the experimental ioni-
zation potential as being a continuum representation of
the “missing” Rydberg states. Thus we believe that pho-
ton energy not electron kinetic energy is the appropriate
variable to use for comparison between theory and experi-
ment. This view is supported by the existence of sum
rules on the photon energy."*3! Moreover, it may be
shown that in the present theory, the partial cross sections
are zero at threshold, whereas in the presence of a
Coulomb potential the partial cross sections are finite at
threshold.* The energy range between the eigenvalue and
the ionization potential gives the calculation a chance to
build up and meet the data at threshold. On the other
hand, the theory is incapable of predicting the ionization
potential; the neglect of the Coulomb potential in the final
state prevents the theory from making a meaningful pre-
diction of the photon energy at threshold.

The optical-frequency polarizabilities for nitrogen and
acetylene are shown in Table II. The inclusion of dielec-
tric effects substantially reduces the polarizabilities ob-
tained from the independent-particle approximation, and
brings agreement with the data at the level of a few per-
cent. The data of Table II are similar to the result ob-
tained in the TDLDA theory for atoms.!~* The substan-
tial reduction of polarizability has an obvious physical ori-
gin; in the static limit, the charge induced by the external
field screens the field, so a smaller total moment is in-
duced. In addition to seeking the agreement in the polar-
izabilities for its own sake, our theory satisfies the sum
ru1e14-,51

fow a(w)dco

(1)2

where a(0) is given by the theory, be it the IPA or the
TDLDA. Such a rule is only useful if (as in the case of
the TDLDA but not the IPA) the value of a(0) is given
approximately correctly. The dispersion from optical fre-
quency to the static limit is small. The IPA and the
TDLDA also satisfy the f-sum rule.

TABLE II. Optical-frequency polarizabilities of N, and C,H,
at 2.71 eV (in cubic angstroms) are given for light polarization
parallel (||) and perpendicular (1) to the molecular axis.

bl a
(A3 (A3
N,
IPA 5.10 2.35
TDLDA 2.19 1.55
Expt. 2.27 1.55
(Ref. 34)
C,H,
IPA 27.30 4.24
TDLDA 5.46 3.04
Expt. 4.86 2.94
(Ref. 34)

B. Partial cross sections

In atomic studies,*’ it has been established that if
there is a great deal of oscillator strength in a small region
of photon energy (be it in a bound-to-bound transition or
bound-to-continuum transition) in the IPA, the inclusion
of dielectric effects shifts the oscillator strength to higher
energies and broadens it. Typically, agreement with ex-
perimental data is much improved. On the other hand,
when the IPA cross section is featureless, the dielectric
screening is of little importance. The same is true in mol-
ecules.

It is useful to review the dipole selection rules for the
D, group. Parity is always changed, i.e,, g<>u. For
light aligned parallel to the molecular axis, m is un-
changed. For light aligned perpendicular to the molecular
axis, m is changed by 1, thus o<>7 and 7«8 are allowed.
The gas-phase average is one-third parallel and two-thirds
perpendicular light.

The 30, partial photoemission cross section of nitrogen
is shown in Fig. 1(a). The independent-particle cross sec-
tion shows the “shape resonance” previously identified*®4°
with the 30, —€0, transition. The shape resonance is a
final-state effect which may be viewed either as an anti-
bonding combination of atomic p, orbitals (0*) or as a
quasibound /=3 (about the molecular center) state trapped
in the well of the nuclei and prevented from leaking to in-
finity by the centrifugal barrier for larger radii. In analo-
gy with the studies of rare-gas photoemission, the effect of
the TDLDA is to shift the cross section to higher ener-
gies, and to broaden it. The agreement with the data is
quite striking. The redistribution of oscillator strength is
negligible for light perpendicular to the molecular axis.
The perpendicular light contribution amounts to a feature-
less, nearly constant background of 3 Mb over the range
of interest.

The calculated cross section for the 30, level in ace-
tylene, shown in Fig. 1(b), is very similar to the case of ni-
trogen. The parallel light part of the cross section has
structure similar to the shape resonance in nitrogen; the
narrow IPA result is shifted and broadened by the intro-
duction of dielectric effects. For light in the perpendicu-
lar direction, the featureless cross section of about 3 Mb is
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FIG. 1. Partial photoemission cross sections for the 3o, lev-
els of (a) nitrogen and (b) acetylene; theory (— — —) IPA,
( ) TDLDA; experimental data from (a) Ref. 27 and (b)
Ref. 36.

little changed by the introduction of dielectric effects.
(The exception, a sharp feature around 14 eV, due to the
autoionization resonance, is discussed below in the context
of 1, level photoemission.) Unfortunately, the agree-
ment with the data is not so good in this case. Semiquan-
titative agreement is achieved, but the dielectric effects
reduce the agreement in this case. The origin of the
discrepancy is unclear. Nevertheless, one may regard the
30, partial cross section as being dominated by a shape
resonance, only part of which occurs above the ionization
potential in the region accessible to photoemission experi-
ments.

The measured photoemission partial cross sections of
the 17, levels in nitrogen and acetylene bear little resem-
blance to each other, as a comparison of Figs. 2(a) and
2(b) indicates. However, the nitrogen cross section does
resemble the background of the acetylene cross section.
Apart from the resonance in acetylene, the IPA gives a
good account of these levels; the broad agreement with ex-
periment is little effected by the introduction of dielectric
effects.

16 T T T 32
I 1 \ 1 Coty T,
o": (b)
12+ % 124
h
¢
o r \\. 1
(Mb) I\
8- o \ 16
r 8 N 7
N
“ \
4 T 8
.\
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PHOTON ENERGY (eV)

FIG. 2. Partiai photoemission cross sections for the 1, lev-
els of (a) nitrogen and (b) acetylene; theory (— — —) IPA,
( ) TDLDA; experimental data from (a) Ref. 27 and (b)
Ref. 36.

The resonance in the 17, level in acetylene is primarily
the result of a Fano autoionization.® The 20, —> 17, tran-
sition is predicted to occur at 13.1 eV in the single-center
calculation, and 13.8 eV in the Gaussian-orbital calcula-
tion. Since this energy is above the ionization potential
for the 1w, electrons, this bound-to-bound transition
strongly influences the self-consistent field as the photon
energy is varied through this region. Indeed, the
independent-particle susceptibility has a pole for photon
energy equal to the eigenvalue difference of an occupied
and an unoccupied bound state. In view of this, the pres-
ence of a sharp structure in the cross section is reasonable.
The calculated 30, cross section in acetylene is similarly
effected, but the energy in question is below the ionization
potential for this level rendering the feature unobservable
by photoemission. No autoionization is predicted for ni-
trogen simply because there is no symmetry-allowed
bound-to-bound transition with an energy greater than the
eigenvalue of some other level. The autoionization reso-
nances in nitrogen involving the Rydberg series?®?’ do not
appear because the Rydberg states are smeared to a con-
tinuum in the neutral potential of our calculation.

The autoionization resonance is not sufficient to ac-
count for all of the cross section very near threshold.
However, a second mechanism may be observed in the cal-
culation. For light parallel to the molecular axis, the IPA
predicts a very small cross section for the 17, level in
both nitrogen and acetylene. The f-sum rule is satisfied
almost completely by oscillator strength associated with
the discrete 1m,-—>1m, (or m—7*) transition.*®*> The
TDLDA readjusts this oscillator strength, adding a piece
to the calculated continuum. In acetylene, some of this
appears above the physical threshold to account for the
missing cross section. In nitrogen, the same mechanism is
active, but only the part of the continuum between the
eigenvalue and the ionization potential is effected; thus
the effect is unobservable by photoemission. This effect is
in strict analogy to the physics of atomic barium,’ the
only difference being that in barium the oscillator strength
is pushed farther into the observable region.

A minor but well-established feature of the photoemis-
sion spectra in nitrogen is the two-electron excitation?%?’
in the region of photon energies from about 22 to 25 eV.
A virtual state is formed in which the 17, and a Rydberg
state are occupied. The rapid decay of one of these elec-
trons into a core hole ejects the other into the continuum.
The process has a non-negligible strength presumably be-
cause the lm,—1lm, transition has great oscillator
strength. Since the present theory only accounts for
single-particle excitations such a feature would not be ex-
pected to be seen in the present calculation. Indeed it is
not. There are similar small features in the cross sections
of all levels considered so far which are not accounted for
by the present theory; these are in the vicinity of 22 to 25
eV for nitrogen and 18 to 22 eV in acetylene. It seems
probable that these features are associated with the same
two-electron excitation in acetylene as in nitrogen. With
this interpretation, the modest difference in energies is due
to the difference in the lw,— 17, transition energies
which are 9.7 eV for nitrogen and 6.9 eV for acetylene in
our Gaussian-orbital calculation. That is, if there were no
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other differences between nitrogen and acetylene, the
two-electron excitation would be expected to lie about 3
eV lower in acetylene than in nitrogen.

C. Angular distributions

Additional information about gas-phase photoemission
spectra may be obtained from the asymmetry parameter
Blw). As noted above, B is related to the angular distribu-
tion of the outgoing electrons; o(w) and B(w) together
form all the information obtainable from a nonchiral gas-
phase target in the electric dipole approximation.'®
Overall, there is good agreement between the theoretical
and experimental 3 values.

The most striking feature occurs in the 17, level of ace-
tylene, shown in Fig. 3 of Ref. 9. The experimental
data’®3® show a general increase in the range of photon
energies from 13 to 26 eV with the exception of a large
dip in the range 13—17 eV. The present independent-
particle calculation does not reproduce the dip in the spec-
trum, only the background. The inclusion of dielectric ef-
fects, on the other hand, produces a prominent dip in
rough quantitative agreement with experiment. The gen-
eral picture of an autoionization resonance in this spectral
region is reinforced by the existence, and explanation, of
this feature.

In the 30, level of acetylene, the TDLDA predicts a dip
in 3 which is similar to the 17, level calculation in loca-
tion and magnitude.® This structure is only of theoretical
interest, since the photon energies in question are below
the physical ionization threshold. Above threshold, the
TDLDA brings about a marked improvement in the
agreement with experiment compared to the independent-
particle calculation. It is somewhat curious that the intro-
duction of dynamic screening should improve agreement
with 3 but reduce the agreement with o for this level.

In nitrogen, good agreement with the experimental
data® is achieved for both the 30, level and the 17,. For
these levels, the effect of dielectric screening improves the
agreement with experiment marginally at best. The
discontinuity in the experimental asymmetry data shown
in Fig. 3 around 23 eV may be related to the two-electron

06—

20 25 30 35 40
PHOTON ENERGY (eV)

FIG. 3. Gas-phase photoemission asymmetry parameter for
the 30, level of nitgrogen; theory (— — —) IPA, ( )
TDLDA; experimental data from Ref. 30.

state discussed above. The evidence for this is the energy
is the same and the calculations do not reproduce the
feature. If two-electron effects were important in this
spectral region, we would expect to see them in both levels
of both molecules. In the experimental nitrogen 17, and
acetylene 30, spectra, the data is ambiguous. For ace-
tylene 1m,, structure in 8 does appear at about the same
energy as the hypothesized two-electron excitation in the
cross section.

D. Comparison with other calculations

Photoemission from nitrogen and acetylene have been
studied before using a variety of techniques. Hartree-
Fock based approaches include Stieltjes-Tchebycheff mo-
ment analysis!>3%4+4552 and the Schwinger variational
principle applied using a single-center expansion.*’” Addi-
tionally, the Xa scattered-wave (Xa SW) method had been
applied.?*®% The Stieltjes-Tchebycheff theory has been
extended to the time-dependent Hartree-Fock level in a
study of nitrogen photoemission with light aligned along
the molecular axis only.!?

To a certain extent, the previous calculations were of
similar quality to the present ones; however, there are
some important exceptions. First, the autoionization reso-
nance in the 17, level of acetylene is not accounted for by
Hartree-Fock theory in a calculation of the cross sec-
tions,?” or by the Xa SW approximation for the asym-
metry parameter’ (these being the only available studies).
The background of these curves is more or less correctly
given; these calculations are comparable to the present
IPA. Second, the Hartree-Fock calculation of the 1,
photoemission cross section in nitrogen is much too
large.'>*’ The 17, — 1, transition appears in the contin-
uum. A random-phase approximation with exchange
(RPAE) calculation'? or special procedures*’ are necessary
to push the spurious oscillator strength below the photo-
emission threshold. Third, there are indications that there
are non-Franck-Condon effects in the 30, level of molecu-
lar nitrogen.”® This may limit the extent to which the
present fixed nuclei calculation can explain certain details
of the photoemission cross section and asymmetry param-
eter.

It is worth noting that the Xa SW calculation of the
30, level in nitrogen is in better agreement with the
present IPA calculation than a cursory glance at the pub-
lisked figures would indicate. While Davenport* reports
a peak at 32 eV, his curve has been shifted by 7 eV to ad-
just the calculated threshold (i.e., the 30, eigenvalue) to
the experimental ionization potential. If this shift is omit-
ted, the Xa SW peak is at 25 eV, which is the same as the
present IPA calculation. The peak heights and widths
remain somewhat different, however.

IV. CONCLUSIONS

The TDLDA has been extended to allow the treatment
of dynamical screening or “dielectric effects” in the pho-
toresponse of molecules using a single-center expansion.
The single-center expansion has been used extensively by
other authors in the study of molecular photoemission and
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electron scattering. On the other hand, studies of molecu-
lar photoresponse at the present level (equivalent to the
RPAE) are very few. The present theory is capable of
predicting static and optical-frequency polarizabilities,
photoemission cross sections, and asymmetry parameters,
and may be extended to the problem of hyperpolarizabili-
ties and multiphoton ionization as well.

The inclusion of dielectric effects causes a marked
reduction in the calculated values of the optical-frequency
polarizability yielding agreement with experiments. As
suggested by general theoretical arguments and atomic
TDLDA calculations, the inclusion of dielectric effects
shifts oscillator strength to higher energies. In the present
systems, this effect is somewhat subtle; the inclusion of
these effects improves agreement with experiment only in
certain cases. It would have been difficult to appreciate
the importance of this shift in the context of a model po-
tential (e.g., a muffin-tin potential): One could always im-
agine that the difference between the independent-particle
calculation and the experiment was due to an inaccurate
description of the potential. In acetylene, an autoioniza-
tion resonance in the 1w, level is calculated yielding
agreement with experiment in both the photoemission par-
tial cross section and the asymmetry parameter.
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APPENDIX

Our purpose in this appendix is to present the construc-
tive procedure used for computing the Green’s function in
a single-center representation. A similar procedure has
been presented by Nesbet.’* The Green’s function satisfies
the equation

(0—H,)G (T, T")=8(T—T"), (A1)

and a similar equation in 7’. As discussed in the text, we
expand G (T,T’) in spherical harmonics in both variables

G(T,r")= 3 Y (Q)GrpAr,r) Y (Q'), (A2)
LL’
where in principle the double summation runs over all
values of L=(/,m) and in practice the summations are
truncated as described in the text. Substitution into (A1)
leads to

(E+VDGLLArr')— 3, Vi (NG (rr")
LI
8LL'8(r ——r’)

’ ’

rr

where the quantities V7. are defined in Eq. (9) and the
right-hand side arises from the relation

8F—)=3 ¥, (Y (o) 2r=r)
< rr

The angular components of the Green’s function satisfy
the coupled-channel differential equations (10) in both ar-
guments. Regarded as a function of 7, at the point r =7’
the angular components must be continuous in value and
have the proper discontinuity in slope to produce the 8§
function in the second derivative. The first condition im-
plies that

Grornr') | = 40=Grrrr') | =0, (A3)

while the second condition implies

d , d ,
r? = Grelnr )|r=r'+0_EGLL'(r)r M r=r—0|=8r" .

(A4)

Our method for constructing the Green’s function is as
follows. We integrate the coupled-channel equations
starting at the origin of coordinates to find N independent
solutions, where, as was discussed in the text, N denotes
the number of symmetry-allowed (/,m) components
within the restricted angular momentum subspace. We
use a matrix Numerov method and include the stabiliza-
tion procedure discussed in Refs. 50 and 54. We find the
K matrix in the standard way and diagonalize it to find
the eigenphase shifts and then the regular eigenchannel
solutions. The form of the eigenchannel solutions depends
upon whether the energy is positive or negative. For posi-
tive energies, with k2=E, the eigenchannel solutions have
the asymptotic form

Y (D)= (14+A2) "2 S [y(kr) — Auny(kr)] YL (Q)Cy, |
. L

(AS)

where the quantities A, and Cy, are the eigenvalues and
eigenvectors of the K matrix

2 KLL’CL'n :}"n CLn .
T

(These eigenvalues are often parametrized in terms of
phase shifts §, with the relationship A, = —tan§,.) Using
a sequence of matrix manipulations, the regular eigen-
channel solutions at points where the potential is vanish-
ing is easily found in terms of the initial set of regular
solutions. For general values of r the regular eigenchannel
solutions will be written in the form

Uu(D)= 3 Y, (NYL(Q) .
L

We also need eigenchannel solutions for negative ener-
gies. Let i; and k; be the modified spherical Bessel and
Hankel functions, respectively, which are defined by the
relations

i(kry=i~Yj(ikr)

and
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ky(kr)=i'[jj(ikr)+in(ikr)] ,

where in this regime k?’=—E. A K matrix may be de-
fined by forming regular solutions having the asymptotic
form

2 1,(kr)YL(Q.)—EKLL'kp(kr)Yi(.Q) .
L L'

The K matrix is still real and symmetric and diagonaliza-
tion allows one to form eigenchannel solutions according
to the definition

‘lpn———> 2 [1l(kr)—knk,(kr)]YL(ﬂ)CLn .
L

Every regular eigenchannel solution v,(T) has a corre-
sponding irregular solution &,. For positive energies the
irregular solution is defined to have the asymptotic form

En(D)—>(1+A7)"2 3 [my(kr)+ A js(kr) 1YL (Q)Cy
L

(A6)
while for negative energies

En(F)—> S ky(kr) YL (Q)CL,
L

These forms, of course, hold only in the asymptotic region
where the potential vanishes. For smaller values of » we
integrate inwards using (A6) to supply the initial condi-
tions. For arbitrary r the irregular eigenchannel solutions
will be written as

En(T)= 2 £ (NYL(Q) .
L

Together the set (A5) and (A6) span the restricted angular
momentum subspace.

Since the Green’s-function components satisfy the
coupled-channel equations they can be written as some bi-
linear combination of any complete set of solutions. A
representation of this type takes a particular concise form
when the complete set employed are the (regular and ir-
regular) eigenchannel solutions. We show below that for
positive energies the angular momentum components of
the Green’s function defined by (A2) may be expressed in
the form

2 k(N (r) =i (r], r <7’

Grotrr) =11 (a7)
2k[§Ln(r)‘i‘an(r)]l/}L’n(r')’ r>r'

while for negative energies
zk¢Ln(r)§L’n(r,)’ r<r'

GLL'(I',}")Z (A8)

S kELa (P (r), r>r .

It is clear from inspection of the asymptotic forms of
the eigenchannel solutions that the quantities just defined
satisfy the boundary conditions at infinity, outgoing wave

for positive energies and decaying for negative energies.
For positive energies, the outgoing wave boundary condi-
tions are required by the sign of the infinitesimal in the
spectral sum (4). The forms (A7) and (A8) satisfy the con-
ditions (A3) and (A4) provided that

D P WL (F)—r, ()L (r)]=0 (A9)

and

Srre
S [ (Pien (N —Yia(DELa(PI=—25 . (A10)

where the primes denote differentiation with respect to 7.

In order to verify (A9) and (A10) we develop some gen-
eral relations between regular and irregular solutions to
the coupled-channel equations. Let the sets of functions
{F (r)} and {GL(r)} represent any two solution vectors.
Then direct substitution into the differential equations
shows that the Wronskian

W(F,G)=r?S [FL(rGy(r)—F; (nGL(r)]
L

is a constant. Using the asymptotic forms (A5) and (A6)
and the orthonormality of the eigenvectors of the K ma-
trix, it follows that

W“J’n,’/’m )= W(§n,§m )=0
while

1
W (Ynsim) =5 Bom

Now let J,(T") denote any N linearly independent regu-
lar solutions to the coupled-channel equations which satis-
fy the Wronskian relations

W(J,,J,)=0. (A11)

We form the matrix #(r) whose nth column is the solu-
tion vector J;,(r). The linear independence of the N solu-
tions ensures that the matrix is nonsingular. Define the
matrix P

Pan(P= [ LA A Y (P 2, (AL2)

where the lower integration limit is an arbitrary constant.
We define the quantities

NLm(r)=2JL,,(r)P,,m(r) . (A13)

Straightforward differentiation and use of the Wronskian
relations (A 11) shows that these satisfy the relations

-z
n

1 —1a
an+r—2[(fT) 1JLm

and

ViNm= 3 (ViJ1n)Pum(r) .
n

These relations may be used to show that the functions

Nu(T)= 3 Ny (1YL (Q)
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are solutions to the coupled-channel equations which
satisfy the Wronskian relations

W (N ) =8 .

Furthermore, the J, and the N,, are linearly independent.
This procedure whereby one can generate N additional
solutions given knowledge of the set J,(T) is a direct gen-
eralization of the procedure discussed in, e.g., Morse and
Feshbach®® for generating a second solution to a one-
dimensional second-order differential equation.

Now replace the set J,, by the regular eigenchannel solu-
tions 1,. Since the v, and the set generated by Eq. (A13)
(with J, replaced by 9,) form 2N linearly independent
solutions, then for some choice of constants 4,,, and B,,,

gn = 2 (Anmwm +BnmNm) .

But use of the Wronskian relations among the ¥, and &,
shows that B,,, =k ~!5,, while use of the Wronskians
among the £, shows that 4, must be symmetric. Thus

ELm(N=k ™' Z U1 (Qpum(r) (Al4)

where the matrix Q differs from P by a constant sym-
metric matrix. The proof of the relations (A9) and (A10)
is now immediate. Substitution of (A14) into (A9) shows
that the latter is true, owing to the symmetry of Q. The
differentiation required by the substitution of Eq. (A14)
into (A10) may be carried out using the definition of P in
Eq. (A12).
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