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A light ion, incident on a heavy atom with a speed v »e /A, may capture an outer electron as
follows: The ion first hits the electron and knocks the electron out of the atom with a speed v. The
ion then scatters elastically, through an angle 0, from the target nucleus so as to finally move in the
same direction, and with the same speed, as the emergent electron. Kinematics require that 0=60'.
This process is analyzed both classically and semiclassically, and it is shown that the angular distri-
bution has a sharp peak about 0=60'.

I. INTRQDUCTIQN

It is well known that the dominant contribution to for-
ward charge transfer in an ion-atom collision at asymptot-
ically high incident speed v is not the first but the second
Horn te~. The target electron e is scattered twice,
first by the projectile P and then by the target nucleus T.
In the first collision the e acquires the speed U and P is
scattered through a very small angle (v 3/2)m/M, whereI and M are the masses of e and P, respectively. In the
second collision the e scatters elastically from T and
emerges in almost the same direction and with almost the
same speed as P so that capture can occur. This double-
scattering mechanism corresponds to a second Born term,
and is understandable classically. In contrast to the
second Born contribution, the first Born contribution in-
vokes the high-speed components of the initial- and final-
electron wave functions and these components are very
small. The sharp peak in the angular distribution about
the small angle (V 3/2)m/M= 1.6', for electron capture
by protons from helium atoms, was recently observed.

We will be concerned here with the capture of an outer
electron from a heavy atom by a light bare ion P that is
incident with an asymptotically high velocity v; and
scatters through a large angle, emerging with a velocity

vf. We work in the laboratory frame, in which the target
nucleus T remains at rest, and we take the direction of in-
cidence to be the z axis, designated by the unit vector u, .
The process again involves two collisions, a P-T collision
to scatter P through a large angle and a P-e collision to
give e almost the same velocity vf as the emergent P
(see Fig I) Note that

I vf I

=
I

V I:vs'nce T's regar
ed as infinitely massive so that P scatters elastically from
T. The P-e collision cannot follow the P-T collision. If
it were to, the P-e collision would have to be head-on in
order for e to emerge in the same direction as E'; but
then the kineinatics would dictate that e would emerge
with twice the speed of P so that capture could not occur
(unless the high-speed components of the initial and final
electron wave functions were invoked). Therefore, the
P-e collision precedes the P-T co11ision. The speed of

e after its collision with P is v'=2v cos8' where 8' is the
angle at which e emerges relative to the direction u, .
For e to be captured by P we require O'=U and 0'=8.
In this classical picture we therefore require 8'=8=m. /3.
In other words, we expect the probability of electron cap-
ture as a function of 8, for fixed high incident speed v and
for 8 large, to be peaked about 8=m/3; the .high-speed
components of the initial- and final-electron wave func-
tions need not be invoked for 8 near tr/3. We examine
this situation. In our first approach the formal calcula-
tion itself is an entirely classical one; quantum theory
enters only in the assignment of a value to a characteristic
atomic dimension a which enters in the choice of our
model of an atom. Our second approach is a semiclassical
one. We will find that some of the results obtained are
special cases of results previously obtained in a (rough)
quantum treatment of "atoxn capture. " The classical
kinematics of the atom-capture process was studied previ-
ously, and the sharp peak in the angular distribution
was confirmed experimentally several years ago. We

FIG. 1. Diagram, not drawn to scale, showing the projectile
P incident with a velocity v; =vu, (speed v »e /fi) on the infin-
itely massive target nucleus T. The electron e is at a charac-
teristic distance a from T. The impact parameter of P relative
to T is very much smaller than a, and we take it to be zero. The
impact parameter of P relative to e is rather small compared to
a, and is denoted by b. After the collision P emerges with polar
angle 8=60, azimuthal angle 0, and speed

I vf I
=v; e

emerges with speed v'=v at angles 8'=60' and P'=0.
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II. THE CLASSICAL APPROXIMATION

The projectile P, with atomic number Zp, is incident
with a velocity v;=Du, For p.urposes of simplicity, the
target nucleus T, with atomic number Zz. , is taken to be
sufficiently massive with respect to the mass of P for the
recoil of T to be ignored. The initial and final velocities
of P, namely v; and vf, define the scattering plane, which
is taken to be the x-z plane; we can assume that vf ——v;
(=v). The polar and azimuthal angles of scattering of P
are then 0 and 0. Since P is scattered through a large an-
gle 0 its impact parameter with respect to T will be very
small compared to an atomic dimension a, and we can
take the impact parameter of P with respect to T to be
zero. The electron e initially bound to T in an outer
shell is struck by P before P is scattered by T. The e
emerges with a velocity v ', with polar and azimuthal an-
gles 8' and P'. The e of mass m is initially uniformly
distributed over the surface of a sphere of radius a, which
in many cases should not be too bad an approximation for
an outer e . The initial speed of e, which is of order
e /A for an outer e, can be ignored, since v ~~e /A'. If
the e is to be picked up by P (after P has been scattered)
it must emerge with v '= vf, that is, with v'=v, 8'=8,
and P'=0. As noted above, by simple kinematics the light
e when scattered through an angle 0' by the heavy P em-
erges with a speed

v =2v cosO (2.1)

and we must therefore have 8'=0=m/3. P is incident
along the negative z axis, and its impact parameter with
respect to e will be taken to be b. Since the speed v'=v
imparted to e by the P-e interaction is much larger
than e /fi, we must have b «a. Thus, if 8" and P" are
the polar and azimuthal angles of e before it is struck by

hope this paper might stimulate a search for the predicted
peak at 60 in the electron-capture angular distribution.

We note that capture of an outer electron involves a
fractional loss of energy by P of the order of m/M. Re-
stricting our considerations to incident energies of P up to
just a few MeV, the loss of energy by P will be at most a
few keV. This loss is rather small, but there can be cases
in which it will not be very small compared to the width
of a nuclear resonance; for those cases, the very interesting
interface between atomic and nuclear physics explored by
many authors in the context of K-shell ionization may
also be of relevance in the present context. We note fur-
ther that when P scatters through 60 from T, there is no
difficulty in reconciling energy and momentum conserva-
tion with the condition that e emerge with the same
velocity as P; for this reason radiative capture, which
dominates over nonradiative capture at forward angles,
does not dominate at 60'.

In the large-angle scattering process under considera-
tion, both P and e are scattered, so that two collisions
must occur. This case is therefore less interesting concep-
tually than the forward scattering case. There the second
&orn term dominates as v —0o even though the first Born
term does not vanish.

P, we must have 6"=m.. Further, since the P-e interac-
tion is attractive, 'and since therefore P"=P'+sr, it follows
from P'=0 that P"=m. We assume, again for simplicity,
that P assumes two straight-line orbits of constant speed v.
It would probably not be too difficult to build in Coulomb
effects—see, for example, the Appendix of Ref. 9—but at
least at this stage it does not seem worth doing.

The experiment will consist of two measurements, the
differential elastic cross section for P on T, a,i(0), and the
differential cross section for charge transfer (or capture),
cr„~(0). One would seek a peak in the ratio, the relative
probability of capture,

P(0) =o„~(0)/~.i(0), (2.2)

at an angle near m/3. To simplify the measurements, one
would want cr,&(8) to be large. We therefore probably
want the P-T scattering to be primarily Coulombic rather
than nuclear, so large Zz is desirable.

The condition for capture to occur is taken to be that
the relative velocity of P and e after P has been scattered
by T be below the escape velocity, that is,

—,'m(vf —v') &Zpe'/a, (2.3)

+sin8 sin8' cosP') & 2/q, (2.4)

Zze /a

mv /2
(2.5)

Since we are concerned with Rutherford scattering, the
connection between the impact parameter b and 8' is given
by

tane'= Nlv

e 2/$ (2.6)

The use of Eq. (2.6) in Eq. (2.4) gives

2+ 1+8 sin —,8—4r sin8 cosP' &
2(r'+1)

q
(2.7)

The probability of capture is the ratio of the area on the
sphere of radius a from which an e will emerge with the
appropriate velocity to the total area of the sphere. Since
b &&a, we can ignore the curvature of the sphere in deter-
mining the "appropriate" area; the correction is of order
1/q . We then have as our classical approximation (CA)
for capture at a given angle

Pc&(0)=f Jdb bdg'(4na )

with the allowable domain of b and P' defined by Eqs.

where a is the P-e separation immediately after the P-T
collision. One easily finds that a =a for all 8. (The rela-

tive speed of P and e immediately after their collision is

U, and it takes P a time a/u from the time of the P-e
collision to reach T.) Using Eq. (2.1), we can rewrite Eq.
(2.3) in terms of the angles which define the directions of

vf and v' as

1+4 cos 0' —4 cos8'( cos8 cos8'
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(2.5}—(2.7). From Eqs. (2.5) and (2.6), we have

b=~a/q .

It follows that

PcA(&)= f fdred/'(4mq2)

(2.8)

(2.9)

term 2(r +I)/q by 8/q. Further, we can approximate
cosp' by 1 ——,'p' . But for q —oo, PCA(0) is vanishingly

small unless 0=a/3 and ~=3', so we can make the fur-
ther replacement —since P' is already very small —of
2rsin0$' by 3P' .

Equation (2.7) can therefore be rewritten as

for p such that the numerator is non-negative and
PcA(p) =0 if the numerator is negative. The total proba-
bility of capture is given, in our classical approximation,
by

PCA = PCA p 2' dp

This gives
1/2

16m 2
PCA

3q(q —2}2 q
(2.11)

There is not much point in using Eqs. (2.10) and (2.11)
as they are, for only the leading terms can be expected to
have physical significance. (Even apart from quantum ef-
fects, we have already ignored 1/q corrections. ) We
therefore simplify the above equations to

PcA(p) = [—(2p —1 )'+(8/q)]/(4q'),

—,[1—(8/q)'/ ](p (—,[1+(8/q) ],
PCA(p, ) =0, otherwise,

(2.12a)

(2.12b)

(2.12c)

with the domain of r and p' defined by Eq. (2.7). PcA(6)
as defined by Eq. (2.9), subject to Eq. (2.7), can be evaluat-
ed exactly. Introducing

p =coso,

one finds (after some tedious algebra which we omit)

—4p'+ 4p —1+(4/q)(3 —2p) —(4/q')
CAP =

4(q —2)

(2.10)

2»no)2+ (3'/'p')' & (8/q) —1 —8 sin' —,
' 0+4 sin'&

=(8/q) —(2p —1)' .

Introducing u=r —2sin8, w=3' P', and R (p)=(8/q)
—(2p —1), with p restricted to the region for which
R (p) )0, we have

u'+w'(R'(p), 8/q)(2p —1}',
and Eq. (2.9) becomes

PCA(p)=3'/2 f f drdp'(4~q )

= f f du dw(4vrq )

f f du dw=~R2(p), and we thereby obtain Eq.
(2.12). Equation (2.13) follows easily.

III. THE SEMICLASSICAL APPROXIMATION

As in the classical approximation, we assume that P
moves in straight-line orbits of constant speed, with zero

impact parameter relative to T. The P-e interaction,
which we denote by V(x) with x the P eseparati-on, is

treated as a perturbation. [We will ultimately set

V(x)= —Z2e /x, but through Eq. (3.5) the derivation is

much more general. ] The difference from the classical ap-

proximation of Sec. II lies in our treatment of e, which

is here treated quantum mechanically. The normalized
initial- and final-state spatial wave functions are denoted

by P;(r) and P&(r), respectively; the corresponding ener-

gies are denoted by e; and e~. It will be convenient to in-

troduce the time-dependent wave functions

(3.1a)

PCA

7/2
2K 2
3

(2.13)
(3.1b)

i (v/+mv /2—)t/A im v/ r /A',
j/ r vIt—

In arriving at Eqs. (2.12), we recogruzed that the
(4/q)(3 —2p) term is only a correction term, and this en-

abled us to approximate (4/q)(3 —2p) by (8/q), replacing

p by —,, its value at 8=m/3. [We cannot simply drop the
term in PCA(p) in Eq. (2.10) proportional to (4/q); the
remaining expression is negative for all p other than p = —,

and is equal to zero at p = —,.]
Rather than derive the full expressions given by Eqs.

(2.10) and (2.11), we limit ourselves to a sketch of the
derivation of Eqs. (2.12) and (2.13). We begin by noting
that the main contribution to PcA(8) comes from p'=0
and r=tan8'=tan(m/3)=v 3. The spread in r and in P'
wi11 become vanishingly sma11 as q —oc . Neglecting
correction terms to PCA(8) which vanish as q —ao, we can
therefore approximate the inequality (2.7) by replacing the

A =I +I+, (3.2)

where I and I+ give the contributions due to P-e col-
lisions before and after the P-T collision, with

iI = ——f dt fdr P/(r, t)V(r v;t)g( t—r) . (3.3)

I+ differs from I in that the range of integration of I; is
not —oo to 0 but 0 to oo, and in the replacement of
V(r v;t) by V(r vIt) —We no—w intr. oduce the Fourier

The argument of P/ accounts for the fact that P moves

with velocity vI after its collision with T; the phase fac-
tors other than ie/t/A are—other manifestations of that
effect. Using first-order time-dependent perturbation
theory, the amplitude A for capture is given by
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transform for an arbitrary function f(r ):

f(k)=(2vr) ~ fdr e '"''f(r) .

tively, the integration over

~( k ]+ k 2 k 3 kf ), where
r is proportional to

Expressing P;(r), V(r v;—t), and Pf(r vf—t) in terms of
their Fourier transforms, involving k1, k2, and k3, respec-

I

kf =HZ vf /A .

Integration over k3 is then immediate and gives

I =(—i/R)(2~) f dt f dk& f dkze' 'pf(k&+k2 kf) V( kp)p;( k)),
where

A=cof/ —,
' co+k, vf+k2. (vf —v;)

with

cof; =(ef—e; )—/A', to—:mv /A' .2

Since P;(k~) is small unless k~ ( I/ao, we have k& &&mv/h=kf The .presence of Pf(k&+k2 —kf) then demands that
kq-kf. We can therefore approximate V(k2) by V(kf), which enables us to remove V from the integral. We now
make the transformation

k2~ k2 —k1+ kf,
and find

I =( —i/A')(2m) V(kf) f dte'x'f dk~p(k~)e ' ' fdk2pf(k2)e

where

and

kf v;=mvf v;/A= mv cos8/fi=c—ocos8

X—:cop +( 2
—cos8)co .1

The integrals over k~ and kz are just Fourier transforms.
We therefore have

of 8, but rather oscillates rapidly over the entire range of
integration, and indeed I+ is negligible compared to I
This is simply the statement that the P-e collision
should occur before (or just at) the P Tcollision. -This too
has a simple physical explanation, as discussed in the In-
troduction.

We now have as our semiclassical approximation (SCA)
for the capture probability at an angle 0:

I = —(i/A')(2~) V( kf )J(8),
where

0
J(8)=f dte" "' '"'P*(v;t vft)P;(v;t);—

we have dropped the term cuf;t from the exponent since

P; ( v; t) is small for (v; t/ao ) larger than unity, so the signi-
ficant range of t is

~

t
~

& ao/v and therefore
~
tof;t

~
&& 1.

We now make the important observation that the in-

tegrand is a rapidly oscillating function of 8 except in the
neighborhood of cos8= —,'. (That the capture probability
would peak at 0=60' is a result easily anticipated, as not-
ed in the Introduction. )

An analogous analysis of I+ shows that the integrand
of I+ does not yield any similar maximum as a function

Since the (Born-approximation) differential cross section
for the P ecollision, in-their center-of-mass frame, is

O.p, (8)=2~(m /fi ) V(kf)
~

we can write

PscA(8) = (2M/m) der&, /dQ
~
J(8)

~

2

Setting p=cosO, we then have
1

PScA PScA(P )2~ dP—1

To evaluate I'scA, we set 0=60', that is, p=- —,, every-
where in PscA(p) except in the oscillatory exponential;
thus, we replace vf by uu &3, where the unit vector u /3 is
at an angle of 60 with respect to u, . We then obtain

0 0
PscA (2') (I/——m) dcrz, /dQ f dt f dt'K*(t)K(t')e' ' ' ' L(t' t), —

where 1

L(t t') = dp—e—1

and

K (t)—pf [(u, —u j3)vt]p;(u vt) Since a characteristic value of t —t' is a0/U, a characteris-
tic value of ro(t —t') is ao/(filmv), a very large number,
and we have
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L (t —t') =(2~/co)&(r' —r) .

Ps&& then simplifies to

Ps&& ——(2n) (A/mv) dcrp /dQQ,

where

Q:—J ds
~
P/[(u /3 u, )s]P;( —su, )

~

we have introduced

(3.4)

(3.5)

PscA = (2n) 4

mv

Z 2

mv /2
(3.6)

IV. COMPARISON OF THE CLASSICAL
AND SEMICLASSICAL APPROXIMATIONS

The classical approximation (CA) and the semiclassical
approximation (SCA) differ in two ways:

(i) In the CA the e is initially uniformly distributed
over the surface of a sphere of radius a, while in the SCA
the e initially has a density distribution given by

(ii) In the CA, capture is defined by the condition

~ v& —v'
~

is less than or equal to the escape velocity, cor-
responding to capture into any bound state, while in the
SCA we evaluate capture into a particular bound state,
with normalized wave function P/(r ).

We will limit our discussion of the connection between
the CA and the SCA approximations to the total capture
probabilities, ignoring the probabilities for capture at a
given angle 8. To emphasize the differences between the
CA and SCA derivations of the total capture probabilities,
we will no longer use the symbols Pz~ and Ps~& but will

use Pc/, (a +bd) and Ps&—/, (i~f) to represent the total
capture probabilities for the two approximations.

Turning to Psc/, (i ~f), we sum over all bound states f,
and using Eqs. (3.6) and (3.5), arrive at

s—=—vt .

This result agrees with Eq. (3.14) of Ref. 6. The present
treatment gives the angular distribution Psc~(8), a result
not contained in Ref. 6; the situation we have considered
here is simpler than that considered there, for we are con-
cerned here with m «M.

If now we specialize to V(x) = —Zpe /x, we have

da'pz/dA=(2Zpe2/mv )

and therefore

1

6''A'

3/2
2mZpe

and Eq. (4.1) becomes
T

8~
Psc~(l ~bd) =

3

7/2
Zpe p ~

P;( —su, )
~

mv /2 0 s
ds

(4.2)

Comparison with Eq. (2.13) shows that Pc~ (a ~bd )

and Ps&/, (i +bd ) becom—e identical on identifying

~
P;( —su, )

~

with

p, (s)—:5(s —a)/4ma

the density for an electron uniformly distributed over the
surface of a sphere.

V. DISCUSSION

since the sum over all bound states must be a spherically
symmetric function, we replaced the argument of P~,
namely (u /3 u, )s, by its absolute magnitude, which is
just s since

~

u ~/3 ug i
= 1. We now assume that the ini-

tial state i is one with reasonably large quantum numbers,
so that

~
P;( —su, )

~

peaks at reasonably large values of s.
It is then a reasonable approximation to replace pbd by its
%KB approximation since the bulk of the contribution to
the integral in Eq. (4.2) comes from states f with reason-

ably large quantum numbers at relatively large values of s.
Sums over a number of particular subsets of bound states
were evaluated in the %KB approximation in the course
of the analysis of a problem very similar to the present

problem, the connection between the classical and quan-

tum treatments of forward charge transfer. The sums
evaluated included the sum over all bounds states which

we require here, but that sum can be obtained trivially by
means of a Thomas-Fermi statistical approach for nonin-

teracting electrons. [We are not summing over the dif-

ferent states of many (interacting) electrons but over all

hydrogenic bound states of a single electron. ] Thus, since
the spin of the electron is of no relevance here so that
there is no additional factor of 2, we write

(4m. /3)p~(s )
pbd(s) =

(2m')'

where the Fermi momentum pF(s) is defined by

pF(s)I2m =Z~e Is .

We therefore have, approximately,

mv2/

where

)& J i P;( su, )
~

pbd(s)ds—,

i bd(s) =—X I 4/(» I

'
f

Psych, (i ~bd): QPsc~(i ~f)—
f

(4.1)

Fz = , Mv »(M/m)e; . — (5.1)

A necessary condition for the validity of the result for
Psc~(i ~bd) given in Eq. (4.2) is that filmv be very small
compared to any other relevant dimension. Assume for
simplicity that the effective charge seen by the outer elec-
tron in its initial state is of order unity and that P is a pro-
ton. Let the initial state have a characteristic dimension
a; capture will tend to occur to final states with com-
parable dimensions. With e; =A /ma, the condition
A'/mv «a leads to
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In the derivation of Eq. (2.12a) we dropped corrections of
order 1/q; on using e; =e /a, the requirement 1/q «1
reproduces the condition (5.1).

The restriction imposed on Ep by (5.1) can be very
strong. The condition is eased for capture of an electron
initially in a high Rydberg state. To be concrete, assume
that n is of order 10 and 1 is of order n. e; will then be of
the order of tenths of an eV, and we demand that EI be
very much larger than hundreds of eV; one would prob-
ably require Ez to be at least of the order of some keV's.

P;(r) would be almost hydrogenic, and it would not be
difficult to estimate the value of the integral in Eq. (4.2).
The situation is rather different for capture from an atom
with no electron in a high Rydberg state. e; (and the sig-
nificant ef's) are then of the order of a few eV's, and Eq.
(4.2) for Psc~(i ~bd) will probably not become valid until

E~ is at least of the order of 500 keV. Further, it is much
more difficult than for an atom with one electron in a
high Rydberg state to estimate P;(r) for the most weakly
bound electron in an atom in its ground state, say; one
could use Hartree-Fock calculations to obtain P;(r). Fi-
nally, the replacement of phd(r) by its WKB approxima-
tion would be far less reliable in the non-Rydberg case.
The dominant contributions to capture might then well

come from a few low-lying states f. One might be in-

terested in capture to a particular final state, but the ex-

periment will be much simpler if one allows capture to
any bound state. To determine the probability for capture
to any bound state one would probably not want to use

Eq. (4.2) for Ps«(i ~bd); it would probably be better to
sum PscA(i ~f), given by Eqs. (3.4) and (3.5), for a few of
the low-lying states f.

For a concrete case, one would use the best (t);(r)
available —the Pf ( r ) are hydrogenic and therefore
known —and evaluate Eqs. (3.4) and (3.5) for a few states

f. We restrict our attention to a crude estimate of cap-
ture; one might, for example, be interested in some other
process and simply wish to have an order-of-magnitude
estimate of the capture process under consideration in or-
der to be able to determine whether or not the capture
process need be a matter of concern. Assume then that we

have a heavy atom with one electron in its outer shell, and
that the shell has an orbital angular momentum quantum
number I which is not too small, say 4 or 5. Averaging
over its angular momentum projections gives a spherically
symmetric density function p;(r) which can be crudely ap-

proximated by 5(r —a)/4' 2 (where a is of order ao). We

then return to Eq. (2.13) and have, with e = —,
' mv,

7/2
2% 2

Pc~(a ~bd) =
3 q

7/2
Z&e ya

3
(5.2)

The estimate given by Eq. (5.2) is probably not very accu-
rate until e is at least ten times greater than Zze /a; at
that value of e,

q =16: 0;„=31',
0 .„=82,
P«( —, )=5X10

q =80: 0;„=49',
0 .„=70',
P«( —,

'
) =4)& 10

ACKNOWLEDGMENT

This work was supported in part by the National Sci-
ence Foundation under Grants Nos. PHY-79-10413 and
PHY-81-19010, and by the Office of Naval Research
under Contract No. N00014-77-C0553.

P«(a ~bd) = —, && 10, q =20 .

The estimate of the form of the angular distribution
given by Eq. (2.12), essentially that in the square brackets
in Eq. (2.12a), is probably more reliable than is the esti-
mate of the total capture probability given by Eq. (2.13).
Furthermore, the experimental detection of the peak in the
angular distribution would be easier to perform than an
absolute measurement of the cross section. We note first-
ly that P«(p) is symmetric about p = —,'. We note further
that as q increases, the width of P«(p) decreases, but
that unfortunately the magnitude of the peak, which
occurs at p = —,', also decreases. More precisely, we have
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