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Linear coupled-cluster method. II. Analysis of local exchange-correlation potentials
in beryllium and its isoelectronic series
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The Slater Xa method and its local-potential modifications are examined with reference to the
many-electron exchange-correlation effects in the beryllium atom and its isoelectronic series. The
linear coupled-cluster method and a hierarchy of approximations to it are employed for this pur-
pose. The role of the exchange parameter a in providing an accurate description of the exchange-
correlation effects is analyzed in the light of the electron-gas model. It is found that for Be atoms
an a value of 0.768, that which causes the local potential to mimic the Hartree-Fock potential, is
the best suited reference state for many-body calculations. The impact of the a variation on the
exchange-correlation corrections in the Be isoelectronic series is assessed. With increase in the nu-

clear charge Z, exchange-correlation corrections favor the use of a values closer to 3, the Gaspar-

Kohn-Sham limit, in the Xa model. The instabilities in the cluster equations induced by ring-
diagram terms are also noted. The futility of using gradient corrections to the Xa model to account
for exchange-correlation effects is brought out in the calculations. It is found that a simple scaling
of the electron-gas potential results in excellent single-particle reference states for many-body calcu-
lations.

I. INTRODUCTION

The Slater Xa method' is a local-density reformulation
of the Hartree-Fock self-consistent method. The basic te-
net of the Xa method is the approximation of the electron
density distribution in atoms by the uniform charge densi-
ty of the electron gas. The one-electron equations of the
Xa method,

3—3a p(r)
4m

C;(r) =e;4, (r) (1)

contain the kinetic, nucleus-electron attraction, the elec-
tronic Coulomb repulsion, and the exchange energy terms;
the last-mentioned term represents the uniform electron-
gas approximation to exchange energy. The adjustable
empirical parameter a is introduced to take into account a
part of the nonuniformity of the electron distribution in
atoms. The original derivation of Slater resulted in a
value of a= 1, while the variational derivation of Gaspar
and Kohn and Sham yielded a value of —', for a. The last
term in the left-hand side of Eq. (1) is strictly an
exchange-correlation term, since it is not exactly equal to
the Hartree-Fock exchange term.

The validity of the uniform electron-gas approximation
in atomic-structure calculations has been examined by
Brueckner. In atoms, regions which are neither too near
the nucleus nor far removed can be described as possessing
a slowly varying charge distribution and the uniform
electron-gas approximation would have reasonable validi-
ty. In regions very close to the nucleus the electron densi-

ty is high, but the density gradient is large and the
changes are rapid. In this region of large negative poten-
tial energy, the uniform electron-gas approximation leads
to spurious densities, thus causing unphysical behavior of
the distribution. Nevertheless, this is not a serious
shortcoming, for the kinetic energy term dominates the in-
terelectron interaction term close to the nucleus and if the
kinetic energy is treated exactly, as is done in the Xn
method, the use of the uniform electron-gas approxima-
tion is reasonable. However, in regions far away from the
nucleus the electron density is low and the interelectron
term becomes significant in comparison to the kinetic en-

ergy term, here the uniform electron-gas approximation
breaks down. Also, the uniform electron-gas approxima-
tion fails to portray correctly the effects of the long range
of the Coulomb interaction owing to its inability to ac-
count for the shielding interactions between the electrons.

Several corrections to the electron-gas approximation
have been made in order to take into account the nonuni-
formity of the charge distribution in atoms. The Xcx
method itself is an outcome of this. Use of any n value
other than —, in the Xa potential takes it outside the
electron-gas-exchange approximation. ' Values of a
higher than the Gaspar-Kohn-Sham (GKS) limit of —,

characterize some nonuniformity of the charge distribu-
tion. For systems with higher nuclear charge Z, better
descriptions are obtained with a values nearer to —,. As Z
increases, the high-density region in the atom expands and
the uniform charge approximation finds greater justifica-
tion. " Although values of a higher than —', may account
for nonuniformity of charge distribution, there are no
rigorous theoretical grounds for choosing a. Due to the
absence of a variational bound on o., the energy decreases
with increasing a.
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An interesting variant of the Xa formalism has been
proposed by Perdew and Zunger. ' This self-interaction-
corrected local spin-density functional formulation pro-
duces more accurate electron densities and improved
values for total energy and exchange and correlation con-
tributions. This method also affords a better scheme for
obtaining virtual orbitals than does the use of the latter
potential. To provide an accurate description of the atom-
ic electron distribution, it is necessary to study the change
in the exchange-correlation potential with u variation Uis-

i-vis the many-electron exchange-correlation effects.
Many-body perturbati. on theory has been employed to

study the nonuniform charge distribution in atoms start-
ing with a high-density electron-gas approximation. ' Ma
and Brueckner' have treated the nonuniform charge den-

sity as a perturbation to high-density electron gas. Their
analysis was based on the treatment of the electron-
electron interaction to all orders in the ring diagrams and
the external field producing the nonuniform density to
second order. The ring diagrams yield terms which take
into account the Coulombic screening and are extremely
important for description of atomic charge distributions.
The slow density variation was accounted for by expan-
sion of the exchange-correlation potential in powers of the
density gradient. For atomic systems, where regions near
the nuclei with high-density gradients exist, the expansion
leads to infinite energies. The gradient-corrected
exchange-correlation potential has, however, been found
to disobey the sum rule. ' An interesting result of
Brueckner's study is the observation that ring diagrams
are important for the perturbation series. Other stud-
ies, ' ' using coupled-cluster (CC) methods, also em-
phasize the role played by these diagrams in electron-gas
correlation corrections. In contrast, Sinanoglu's atomic
many-electron work, ' starting with Hartree-Fock refer-
ence states, finds ladder diagrams to be more important.

In paper I of this series, ' we outlined the linear CC
methodology and the hierarchy of approximations to it
for the calculation of exchange-correlation effects in
atoms starting with Xo. reference functions, and analyzed
the pairwise contribution to the exchange-correlation ener-
gies in the beryllium atom. This paper describes the ap-
plication of the linear CC many-body theory and a
hierarchy of approximations, to study the exchange-
correlation corrections in beryllium and its isoelectronic
series and to assess the role played by a in treating the
exchange-correlation effects. This paper also examines
the use of gradient corrections in the Xa model and the
relative importance of ring and ladder diagram terms for
exchange-correlation corrections.

II. THEORY

The linear CC method and its hierarchy of approxima-
tions, (i) to (vi) described in part I' are employed in this
paper for the calculation of exchange-correlation correc-
tions in beryllium and its isoelectronic series. The struc-
ture of the cluster equations, Eqs. (13) and (14) of paper I,
which determine the t"p coefficients for the exchange-
correlation correction calculation, becomes clear if they
are rewritten in the following manner:

&a lf ir)+(&a If"
I
a& —&r

I

f" r))t".+At."+Z, =O

III. COMPUTATIONAL ASPECTS

The radial part of Eq. (1) is set up and orbitals and en-
ergies are obtained. ' The Latter modification has been
used in generating the orbitals. The radial equations are

—d l(l +1), +, +V(r) P.t(r)=Faint(r»
dr r

(4)

P„t(r)= rR„t(r),

V(r)= + —J X„t[P„t(t)J dt
—2Z 2

[P.~( t) 1'
+2 +~ ( dt+ V~~ fol r (ror

V(r) =—
—2(Z —%+1) for r ~ro .

V&~, the Slater exchange potential, is given by
1/3

3
Vx ——3a X„t[P„t(r)]

4wr
(7)

The virtual basis set consisting of one s-type and six @-
type Xa orbitals are generated and used in the CC calcula-
tions. A modified Zare routine has been developed to
calculate the Pock-type matrix elements and the r,&

' in-

&aPIUIr~&+(&aIf Ia&+&~If I~&

—&r lf I
r &

—&&
I f I

s &)t"~+~t"'~+&2=o-

A and B are the coefficients of the diagonal terms t~ and

t~'~, respectively, and Ej and K2 represent the nondiago-
nal terms with their coefficients. A, 8, IC~, and K2 con-
tain the ladder, ring, and other diagram terms, which
represent the hole-state scattering interactions occurring
via the creation of particle-hole pairs and interactions aris-
ing from the scattering between hole-hole, hole-particle,
and particle-particle states. In the work of Singhal and
Das, ' the nondiagonal term in Eqs. (2) and (3) was re-
placed by a constant times the diagonal coefficient and the
resulting equations were solved. In our calculations, the
diagonal and nondiagonal terms are treated exactly. Ap-
proximation (i) considers all the diagram contributions to
Eqs. (2) and (3), while approximation (ii) considers only
the Eq. (3) containing the t"'p terms; approximations (iii),
(iv), and (v) neglect all the ring-diagram terms and consid-
er various ladder-diagram term summations; (vi) gives

the second-order Rayleigh-Schrodinger-perturbation-
theory (RSPT) approximation. The relative importance of
the various diagram contributions can be gleaned from a
comparison of the results obtained in the various approxi-
mations (i) to (vi).
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TABLE I. Results of linear coupled-cluster calculation: a variation and exchange-correlation corrections (in units of 10 har-
tree). Values in parentheses are total energy (in units of hartree).

0.68

Approximation
(iii)

—22 404.045
(—14.782 995)

(iv)

—25 129.4250
( —14.810249)

(v)

—1897.7925
( —14.577 933)

(vi)

—4310.7810
(—14.602 063}

0.72 —28 863.8570
(—14.851 329)

—17084.9550
(—14.733 540)

—19302.3650
(—14.755 714}

—17 860.7830
(—14.741 298)

—1923.7571
(—14.581 928)

—4369.6467
(—14.606 387)

0.768

0.80

—9746.76 23
(—14.663 598)

—6859.2434
(—14.636 302)

—5092.8685
(—14.619779)

—10240.2450
(—14.668 532)

—8107.4418
(—14.648 785)

—6445.2239
(—14.633 302)

—13.778.7920
( —14.703 918)

—11461.7600
(—14.682 328)

—9437.6154
(—14.663 226)

—13 198.0 470
( —14.698 110)

—11 204.0440
(—14.679 750)

—9386.6006
( —14.662 716)

—1958.4480
(—14.585 715)

—1983.7816
(—14.587 548)

—2018.1891
( —14.589 032)

—4450.4306
(—14.610634)

—4510.7829
(—14.612 818)

—4594.3078
(—14.614 793)

0.88 —4241.4928
( —14.611465)

—5354.7283
(—14.622 597)

—7968.3180
(—14.640 733)

—8061.2239
(—14.649 662)

—2055.0989
(—14.589 601)

—4685.8230
( —14.615 908)

0.92 —4457.9586
( —14.612 840)

—4569.6320
(—14.613 956)

—6857.5275
(—14.636 835)

—7042.9386
( —14.638 689)

—2094.9697
(—14.589 210)

—4786.5156
(—14.616 125)

1.00 —1241.1588
(—14.575 937)

—3462.1602
( —14.593 147)

—5378.2290
( —14.617 307)

—5605.6193
( —14.619 581)

—2182.4171
(—14.585 349)

—5013.4015
(—14.613 659)

'Indicates the instability of the cluster equations.

tegrals over the Xa orbitals. The linear CC equations in
the approximations (i) to (vi) are set up and solved using
the LU decomposition algorithm.

IV. RESULTS AND DISCUSSION

A. Role of the exchange parameter a

The exchange-correlation corrections obtained using the
linear CC method and the total energies for the respective
a values are presented in Table I. With increasing a, the
exchange-correlation corrections are generally seen to de-
crease in all the approximations except in (v) and (vi). The
exchange-correlation corrected total energy tends to de-
crease in magnitude with increase in a. The work of Her-
man et aI. indicates that inhomogeneity causes the local
one-electron potential to increase in magnitude and hence
drive the e value above the GKS limit of —', . For higher
values of a, the exchange-correlation potential can be
written as

V» = —3( —,'+x) — p(r)
4m

display incorrect trends reflecting the shortcomings of
partial diagram summations. The results obtained with
the exclusion of ring-diagram terms in approximations
(iii) and (iv) overestimate the exchange-correlation correc-
tions arising from improper screening of charge at large
distances. An interesting feature that merges from our
calculations is the ill-conditioning of the equations for
cases where n approaches the GKS limit. The origin of
this erratic behavior rests with the most divergent terms
arising from the ring diagrams; exclusion of the ring dia-
grams stabilizes the equations as seen in approximations
(iii) to (vi) (Uide Table I entry for a=0.68). From the
comparison of the exchange-correlation corrected total en-
ergies with non-relativistic experimental energies, it ap-
pears that the best value of the former is obtained for a
reference state with +=0.768; this Xa reference state
mimics best the Hartree-Fock counterpart.

TABLE II. Exchange-correlation corrections in B+ using the
linear coupled-cluster method. All energies in units of 10 har-
tree.

As a increases, the exchange-correlation potential be-
comes more negative and the repulsive interactions be-
tween electrons are decreased, i.e., the electrons tend to get
correlated. This is reflected by the decrease in exchange-
correlation corrections with increase in a. Approxima-
tions (v) and (vi) which contain only the particle-particle
ladder-diagram term and the second-order RSPT term,

0.6667
0.7200
0.7600
0.8200
1.0000

—7695.3764
—70S 1.5219
—6635.2321
—6099.1759
—4967.7677

(v)

—7482.7350
—6945.0998
—6S85.3787
—6106.9325
—5037.5205

—3041.1873
—3072.S524
—3098.3189
—3140.4789
—3290.0548

Approximation
(iv) (iv)

—6835.8627
—6936.6784
—7019.2298
—7153.4568
—7621.9410
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TABLE III. Exchange-correlation corrections in C + using
the linear coupled-cluster method. AH energies in units of 10
hartree.

TABLE IV. Exchange-correlation corrections in N + using
the linear coupled-cluster method. All energies in units of 10
hartree.

Approximation
(iv) (vi)

Approximation
(iv) (v)

0.6667
0.7200
0.7600
0.8200
1.0000

—6943.5014
—6620.3550
—6400.9709
—6105.4934
—5428.5215

—6850.3057
—6569.6645
—6374.8716
—6106.8170
—5467.8338

—3890.5391
—3923.2230
—3949.8733
—3993.4032
—4144.4496

—8597.6926
—8721.1798
—8820.6700
—8980.8207
—9515.1630

0.6667 —7133.6626
0.7200 —6905.2496
0.7600 —6747.8262
0.8200 —6532.9445
1.0000 —6030.6421

—7068.7165 —4662.1036
—6867.4398 —4698.2472
—6726.3593 —4727.3879
—6530.4300 —4774.4806
—6057.6573 —4935.8323

—10 179.7050
—10327.7660
—10445.7030
—10633.3450
—11 250.1030

B. a variation and isoelectronic series

Tables II, III, and IV present the exchange-correlation
corrections obtained for B+, C +, and N + using the
linear CC method under approximations (iii) to (vi). For
higher Z, lower a values are favored for larger exchange-
correlation corrections in approximations (iii) to (vi). In-
crease in Z causes the contraction of the orbitals and
homogenizes the charge-density distribution- to some ex-
tent, thus favoring a values closer to the GKS limit.
Whereas for Be, the cluster equations are found to be
stable for a values above 0.70 in approximations (i) and
(ii), for higher Z they are stable only at increasingly higher
values of a. The divergence of the ring-diagram summa-
tions in the electron-gas model using perturbation theory
manifests itself here through the ill-conditioned behavior
of the cluster coefficients in approximations (i) and (ii).
The exclusion of the ring diagrams as in approximations
(iii) to (vi) ensures the good behavior of the equations for
all a values.

C. Gradient corrections to exchange

The gradient corrections to exchange within the Xu
method have also been examined in the light of
exchange-correlation corrections obtained in the linear CC
calculations. The exchange potential with gradient correc-
tions is of the form

Vx (r)=[a+A«P) jVxi(P»

'2G()14Vp~Vp
2/3 3 p p

(10)

Vx~ ——a 1+tanh —G(p) Vx) .

Vx& is the Xu potential for a= 1, and P is an adjustable
parameter. The exchange-correlation corrections in the
approximations (i) to (vi) have been obtained for the
gradient-corrected Xa potential in the beryllium atom for
three different values of P at a =0.667 and 0.768. The re-
sults are given in Tables V and VI, The gradient correc-
tions are seen to stabilize the cluster equations for
a =O.667, although poor estimates for exchange-
correlation correction are obtained as compared to the
gradient-uncorrected case (vide Table I). Use of higher a
values appear to partially account for the atomic density
gradients. The divergence caused by the presence of the
('p2p)p ~~3 term in the gradient expansion (varies as 1/r
as r +0) has been over—come by the introduction of a con-
vergence factor, so that the product of the convergence
factor and G(p) remains equal to G(p) for much larger
range of r. With the introduction of the convergence fac-
tor the exchange-correlation potential has the form

TABLE V. Gradient-correction and exchange-correlation corrections in Be using the linear coupled-cluster method a=0.667. En-
ergies in units of 10 ' hartree. Values in parentheses are total energy (in units of hartree).

—3278.4954
(—14.S92 580)

—4125.9437
(—14.601 054)

Approximation
(ill)

—13378.3820
(—14.693 5790)

(iv)

—14213.6810
(—14.701 932 0)

—1839.1958
(—14.578 187)

(vi)

—4085.1655
(—14.600 647)

0.0030

—657.7841
(—14.566 538)

—505.0548
(—14.565 001)

—2632.6784
(—14.586 287)

1834.8544
( —14.578 299)

—11028.1810
(—14.670 242 0)

-9413.S238
(—14.6SS 08S 0)

—11134.7520
(—14.671. 308 0)

—9258.8639
( —14.652 5390)

—1824.6300
(—14.578 206)

—181S.9446
(—14.578 109)

—4020.9400
( —14.600 169)

—3975.2725
(—14.599 703)
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TABLE VI. Gradient-correction and exchange-correlation corrections in Be using the linear coupled-cluster method a=0.768.
Energies in units of 10 hartree. Values in parentheses are total energy (in units of hartree).

0.0016 —828.7893
(—14.574 513)

—2563.8942
( —14.591 864)

Approximation
(iii)

—8987.0716
(—14.656 096)

(iv)

—8869.2180
(—14.654 917)

(v)

—1912.6811
( —14.585 352)

{vi)

—4238.7990
(—14.608 613)

0.0023 —410.3095
(—14.569 403)

—1670.2231
(—14.582 002)

—7925.6058
( —14.644 556)

—7728.8740
(—14.642 589)

—1899.3797
(—14.584 294}

—4171.5107
{—14.607 015)

0.0030 —59.9383
(—14.564 564)

—1117.3397
(—14.575 138)

—7130.1377
(—14.635 266)

—6902.5808
(—14.632 991)

—1891.8719
(—14.582 884)

—4123.5034
{—14.605 200)

As pointed out by Herman, lower P values are seen to be
favored for the beryllium atom. The gradient corrections
to the Xct model are seen not to produce any significant
improvements in total energy.

V. CONCLUSIONS

The import of the study reported in this paper rests on
the analysis of the local potential Xcx approximation. Ow-
ing to the use of uniform charge approximation, the Xa
model shares the problems inherent to electron-gas
theories. The ill-behaved terms arising from the ring dia-
grams indicate the inappropriateness of the unmodified
electron-gas approximation for atomic structure studies.
However, with a proper scaling of the local potential all
the divergences inherent in the electron-gas approximation
are seen to be eliminated. Gradient corrections to the Xa
potential do not cause any significant improvements in the
exchange-correlation corrections and total energies. Un-
like in Brueckner's study, where only ring diagrams were
found to be important, or in Sinanoglu's study, ' where
only ladder diagrams were found to be important, in this

study with the Xa model, it is found necessary to take
into account both ladder- and ring-diagram terms.

It is seen that by using the linear CC method extremely
accurate total energies are obtained with proper scaling of
the exchange parameter in the reference state. For Be the
best scaled value of a is found to be 0.768, a value that
causes the reference state to mimic exactly its Hartree-
Fock counterpart. However, as Z increases lower a values
are preferred and in the limit of very large Z it is inferred
that the more homogeneous high-density distribution en-
ables the parent electron-gas model to serve as a good
reference state. The accuracy achieved in the many-body
calculations with properly scaled reference functions along
with the computational simplicity of the linear CC model
recommends the use of Xa model in such calculations.
Further work on nonlinear CC models and the examina-
tion of self-exchange corrected Xo, model is in progress.
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