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Electron detachment in negative-ion collisions. I. Time-dependent theory
and models for a propagator
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A theory of electron detachment in slow collisions of negative ions with atoms is developed. The
theory is based on assumptions that are similar to, but more general than, the assumptions made in

earlier papers: The motion of the nuclei is described semiclassically, the electronic wave function is

expanded in a partially diabatic basis that includes a discrete state and a continuum, and certain
couplings are assumed to be small. With such assumptions the Schrodinger equation is reduced to a
nondenumerably infinite set of coupled differential equations, and then to a single integro-
differential equation (an equation with "memory") ~ It is shown that the solution depends upon two
functions, the energy gap A(t) between the discrete state and the continuum, and a propagator
9'{t, t ). General properties of the propagator are given and it is calculated for a very simple model.
Formal properties of the integro-differential equation are also investigated.

I. INTRODUCTION

This is one of a series of papers' dealing with electron
detachment in collisions of negative ions with atoms,

+8~A +8+e
The theory developed here can also be used to study vari-
ous types of ionization processes, such as Penning ioniza-
tion,

(1.2)

and dissociative recombination and dissociative attach-
ment,

er, when one tries to generahze the theory given in Ref.
1(a), one finds that the (Fourier transformed) equations
become quite complicated, and it is not clear how to ob-
tain a solution to them. In the present paper we show that
the desired generalizations can be achieved by retaining
the time t as the independent variable, and working with
an integro-differential equation.

II. FORMULATION OF THE THEORY

In this section we present the assumptions on which the
theory is based, and we develop the equations which are to
be solved.

A. Hypotheses

e +AS —+A +8,
but in these papers we focus on the first process, for
which there is a wealth of recent experimental data.

In an earlier paper"' the theory was developed starting
from a semiclassical close-coupling framework, following
ideas of Fano and Demkov. Certain assumptions were
made about matrix elements, and then the close-coupled
equations were solved by taking a Fourier transform from
time into energy. In the present paper we start from simi-

lar basic assumptions, but we develop the mathematical
aspects in a different way; the result is a formulation that
is simpler, more general, and in some ways more trans-
parent than the earlier formulation.

More specifically, it has been shown that the results of
the collision depend mainly upon the energy gap between
ion and neutral curves as a function of time, b, (t), and
upon the coupling between bound and free states, V i,(t).
In Ref. 1(a) we neglected the time dependence of the cou-

pling V i„and we took h(t) to be a quadratic function of
time. Obviously one wants a formulation that does not
lean too heavily on such specific approximations. Howev-

h(r;R(t)) f(r, t) =iirt-
Bt

(2.1)

If the electronic wave function is expanded in an ortho-
normal set of basis functions

T(r, ))= g b„())()„(r;R())), (2.2)

where n can be a discrete or continuous index, then the
vector of coefficients b(t) satisfies the coupled equations

i' b(t) =(F"+v~—P~)b(t),
dt

(2.3)

W=h+ U~P~+U~I'~,

h~„=(P (r;R)
~

h
~
P„(r;R)),

P, =(P (r;R)
~

iRVz~ P—„(r;R')) .

(2.4a)

(2.4b)

(2.4c)

We begin by describing the nuclear motion semiclassi-
cally, so that the wave function for the electrons satisfies a
time-dependent Schrodinger equation,
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In principle, the expansion (2.2) should include electmn
translation factors (ETF's). However, since we are main-

ly interested in such systems as H -He, in which the ac-
tive electron is clearly associated with and propagating
with a single center, the most important effects of ETF's
can be incorporated by taking the relevant nucleus to be
the center for the electron coordinates. A more sophisti-
cated approach would be needed for symmetric systems
(such as H -H) or for any system in which real or virtual
charge exchange is important, but even in such cases, the
effects of ETF's in slow collisions are probably not very
great.

Let the basis set consist of one discrete state P &(r;R),
which describes the electron bound to AB, and a continu-
um of free states, P,(r;R), representing the electron escap-
ing from AB with asymptotic kinetic energy e, which typi-
cally will be a few electron volts or less. Starting from
any such orthonormal basis, it is possible to make
transformations to representations which are partially dia-
batic and partially adiabatic. Let us select a representation
in which the couplings between the bound state and the
significant (low energy) part of the continuum are
represented diabatically, i.e., such that the radial nonadia-
batic coupling matrix element is negligible,

u P &,(R)=0 (2.5)

and couplings between the discrete state and the continu-
um are represented by matrix elements 1 &,(R). That
such a representation exists is shown in Appendix A. The
present theory is based upon models for the behavior of
the matrix elements in this representation.

An important simplification in the present theory is the
assumption that the coupling within the continuum itself
is negligible,

7 „=0, u P„=O, e&e' (2.6)

tP(R, r ) P~(1;R)Xvg~(R) ~

Taken by itself, such a product form implies that the nu-
clei have a definite (fixed) vibrational and rotational state

so transitions occur from the bound state to the free
states, and vice versa, but direct transitions from one free
state to another are neglected. Since this approximation
was not adequately explained in Ref. 1, we give some dis-
cussion of it here.

When a low-energy electron collides with a molecule, it
is well known that vibrational excitation is very unlikely
unless the electron is temporarily captured. In classical
language, the light electron cannot have much impact
upon the heavy nuclei, and it cannot easily cause them to
change their state of motion unless it is allowed to interact
with them for a long time. Conversely, in any collision
that does not involve temporary capture of the electron,
slow motion of the heavy particles does not significantly
affect the electronic state, and the electron scatters from
the molecule almost as if the nuclei were fixed.

In quantum mechanics, this idea is expressed in the
"adiabatic nuclei" approximation, ' in which the full wave
function for electrons and nuclei is taken to be a product

C ~(t)=b ~(t)exp — P „,„„,~(t')dt'Ileutra (2.7a)

t
C,(t) =b, (t)exp —J 7 „,„„.,(t')dt' (2.7b)

where 1 „,„„,~(t) is the energy of the lowest state in the
continuum, we have

dC, (t) oo

iR =b,(t)C, (t)+ J V, ,(t)C,(t)p, de,

dC, (t)
iA' = V«(t)C, (t)+ V, &(t)C &(t),

(2.8a)

(2.8b)

where

b, (t) =7 &,(t) —P „,„„,&(t),

V„(t)=7 „(t)—W„,„„.&(t),

V, , (t)=P, ,(t) .

(2.9a)

(2.9c)

Equation (2.8) is a nondenumerably infinite set of coupled

(V,J,M) and that the electrons sit in a state that adjusts
continuously to the nuclear position. Vibrational and ro-
tational transitions are not contained in this simple-
product wave function, but they can be calculated from it
by taking matrix elements of the form

J dr dRe ' '+~ J ~(R)U(r, R)P „(r;R)X~zM(R),

where U(r, R) is the potential energy of interaction be-
tween the incident electron and the molecule. In applying
this approximation, normally

~

k '
~

is set equal to
~

k ~;
hence although the vibrational and rotational energy
changes somewhat, the corresponding change in the elec-
tronic state is neglected.

The adiabatic-nuclei approximation is thought to be
adequate for cases in which there is no temporary capture
of the electron. ' For cases in which the electron is cap-
tured (as, for example, in e -N2 scattering near 2 eV), the
adiabatic-nuclei approximation has been used" to describe
the "background" scattering, i.e., that part of the scatter-
ing that is not related to capture.

In the present paper, we are concerned with collisional
detachment of electrons, in which there is an exchange of
heavy-particle translational energy with electronic energy.
We have distinguished between a discrete state, represent-
ing an electron captured by the molecule AB, and a contin-
uum, representing scattering other than by capture. Ac-
cording to the above argument, the nuclear motion prob-
ably does not have a large effect upon electrons in the con-
tinuum states: An escaping electron would move away
from the molecule as if the nuclei were fixed, and the slow
motion of the nuclei would not significantly change the
electron's direction or energy. In our language, then,
direct free-to-free transitions should be much less signifi-
cant than free-to-bound transitions, and it should be
reasonable to neglect them. ' '

Under these assumptions, the coupled equations (2.3)
take a simple form. Defining

r
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f de f, dt'
i

V i,(t') V, i(t')
j p,(t') (2.10)

converges for all finite to, t, and in the limits
to~—QQ p t~+ {X)~

In the work of Taylor and Delos"' several additional
assumptions were made. (v) Diagonal continuum matrix
elements form parallel curves, so V„(R)—V, , (R) has a
Qcgl1g1blc dcpcIldcncc oIl R, and

equations, which are the starting point of the present
theory. It should be emphasized that these equations are
not new: They were earlier used by Demkov and his col-
laborators, and the quantum version of them was briefly
discussed by Piquet-Fayard. Our contribUt1on 1s a ncw
method for solving these equations, and the application of
this method to certain collision systems.

Up to th1S point, thc RssuIIlpt1ons that have been made
are the following: (i) semiclassical treatment of nuclear
motion; (ii) one discrete state and one continuum; (iii)
orthogonal diabatic representation; and (iv) neglect of in-
tl acontlnUUID coUpllngs. These assUHlptlons Rrc Icgarded
as defining "generic" properties of a broad class of sys-
tems. Specific forms of the matrix elements —i.e., the
time dependence and e dependence of A(t), V„(t), and
V, i(t)—are regarded as "constitutive" properties, which
depend upon the particular system being considered. Of
course it is assumed that all of the matrix elements are
bounded, continuous, and differentiable functions of e and
t; also, a sufficient condition for validity of our manipula-
tions is that

W„(R)=V„,„„,,(R)+e, 0~a& oo (2.11)

with e independent of R. Also the density of states p
independent of R. {vi) The R dependence (or t depen-
dence) of the coupling matrix element V, i between the
bound and free states can be neglected. (vii) The energy

gap &(t) is approximately a quadratic function of time.
Later, in our calculations, we will again use assumption

(v); nothing in our general formulation really depends

Upon th1s assUHlptIon~ but %'c will show that 1t 1s almost
always possible to define basis states in the continuum
such that their energy curves are parallel. Later also, in-

stead of (vi), we will use the approximation that all
bound-free coupling matrix elements have the same time
dcpcndcnce

8. Uncoupling the equations

The infinite set of coupled equations (2.8) is easily re-
duced to a single equation because it is possible to solve
Eq. (2.8b) for C,(t) in terms of C i(t)

i,,(t)=V i,,g(t) .

This approximation should be reasonably accurate for
most systems undergoing electron detachment, and it is
very convenient; it simplifies the formulas and the calcu-
lations, but we emphasize that it is not essential to the
present theory. Assumption (vii) is abandoned, and we al-

low in principle a general time dependence of b,(t). For
example, in some calculations"' (to be reported later) we
have used a quartic approximation to b,(t).

C,(t)=exp[ i@,(t, to)/A] —C,(to)+ (iA) ', dt' V, i (t')exp[i@,{t', to)/i']C i(t') (2.13)

C,(t„t,)= f V„(t)dt .

Substituting (2.13) into [2.8{a)]we obtain

dC i(t) oo

iA =b(t)C i(t)+ (imari)
' f dip, V i,(t)exp[ i4,(t, tc)/fi] f dt'—V, i(t')exp[i@,(t', to)/A']C, {t')

O

(2.14}

+ f dip, V, ,(t)e p[ x—iC,(t, to)/&]C, (to),

and, reversing fhe oi'der of iiitegi'atioil [valid if (2.10) con-

verges]
W(t)= f dip, V &,(t)exp[ —iC,(t, to)/A]C, (to) .

(2.16)
Thclc R1c two sets of boUndaIy conditions that apply to

norIDal collisions. If the system begins in the bound state,

S(t,t')=(iieet) ' f, «p, V i,,(t)
Xexp[ i@,(t, t')/A] V, ~(t'),—

C i(to) =1, C,(to)=0, (2.19)

(2.20)
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If the system begins in one of the free states,

C i(tp) =0, C,(tp) =5(e —ep)/p, (2.21)

then

W(t) =V, , (t)exp[ —i4, (t, to)/A'] . (2.22)

In the present paper, we will only consider the boundary
conditions (2.19), so C ~(t) satisfies the homogeneous
counterpart to (2.16),

i' A—(r)—C, (i)—f S(t,i')C, (i')dt'=0 .
dt 0

(2.23)

D. Discussion

The matrices h, I', P, and Vare all Hermitian, so the
total probability for finding the system in bound and free
states is conserved,

~c,(i) '+ f C,(i) I, 'i, aE=1. (2.24)

The quantities 9(r, i'), d'9 (t, t')/Bt, W(t), d&/dt,
C &(t), dC ~(t)/dt, and d C &(t)/dt all are continuous
functions of r, provided that certain integrals converge.
Proofs are given in Appendix B. These seemingly dull
mathematical properties turn out to be very important and
fundamental; later we will show, for example, that because
the second derivative is continuous, the local-complex-
potential model cannot be exactly correct, for it would
give a discontinuous second derivative to C ~(t).

In the limit as t~ ac, C
&
(r ) is oscillatory, but

~(r)
~

and C,(t)
~

must approach definite limits;
after all,

~

C &(ac)
~

is supposed to be the survival prob-
ability for the negative ion, and

~
C,( ao )

~ p, is the proba-
bility that an electron will be detached with energy near e.
We show in Appendix C that if f S(t, t')dt' goes to zero

0
sufficiently rapidly as t~ oo, then

C ~(t) =C ~(t)exp i f h—(t')dt' fr (2.25)
0

approaches a'finite limit as t~ ac.

curves, and this has been calculated for a number of sys-
tems. ' However, a more elaborate calculation would be
required to obtain S(t, t').

The properties of 9'(t, t') follow from those of the
phase function 4,(t, t'), the density of states p,(t), and the
coupling matrix element V &,(t). In the next section we
shall examine each of these elements of S(t, t'). Then in
Sec. IIIC, we give general properties of 9'(t, t') and we
present an important simplifying approximation, which
we call a "short-memory" approximation. In Sec. III D a
reduced propagator 9 (r) is given under a "separable" ap-
proximation, and in Sec. III E we show some model calcu-
lations of 9'(r) and its Fourier transform.

For the benefit of readers who do not want to know the
details, let us state the main result: Under conditions dis-
cussed in this section, S(t, t') 'can be written approximate-
ly as

9 (i, t') =
~ g (t)

~

'9 (t t'), —

where 9(t 'r'): 9—()rh—'as a shape like that shown in
Fig. 1, and g(t) has a shape like that shown in Fig. 2.
Also the Fourier transform of 9'(r) is called G(e), and it
has a shape like those shown in Figs. 3 and 4. The real
and imaginary parts of G(e) are, respectively, related to
the "level shift" and "width. " This is all we need to know
in order to understand the calculations given in the fol-
lowing paper.

(3.1)

B. Elements in S(t, t')

e=P «(R) —P „,„„,i(R), 0&a& ao (3.2)

and e will be independent of R. Hence from Eqs. (2.14)
and (2.9b) we have

I Phase fun. ction

If assumption (v) of Sec. IIIA holds, i.e., if the basis
functions P,(r;R) are chosen such that their energies
F «(R) form a set of parallel curves, then we can take e to
be that energy relative to the lowest state in the continuum

4,(t, t') =(t t')E . — (3.3)
The complete solution to the coupled equations (2.8)

under the boundary condition (2.19) is now accomplished
in three steps. (1) Evaluate the propagator 9'(t, t') defined
in Eq. (2.17); (2) solve the fundamental integro-differential
equation (2.23) for C &(i); (3) use C ~(t) in Eq. (2.13) to
obtain C, (t) 'In the nex.t section we derive the general
properties of the propagator S(t, t'), and we calculate its
value for a specific (and rather oversimplified) model.

It is difficult to imagine a representation for a
negative-ion system in which Eq. (3.3) would not hold.
To understand this, suppose (to simplify the argument)
that the detached electron occupies s waves only. Then

III. THE PROPAGATOR

A. Introduction

O
a

IO
o

According to Eq. (2.23), collisions in which the electron
is originally bound are governed by two functions, b(t)
and 9'(t, t'). In principle, both of these functions can be
obtained from ab initio calculations. h(t) is the gap be-
tween the negative-ion and neutral-molecule energy

0
0 6 8 IO

t (atomic units)

I I

12 14 16

FICx. 1. Reduced propagator 9(r) for the square-well model
defined in Ref. 14,'a).
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ro
D—-5
W

&(3

0
t (atomic units)

200

FIG. 2. Typical behavior of the dimensionless quantity g (t),
which multiplies the reduced propagator [Eqs. (3.1) and (3.21)].
(This graph shows exp[ (b —+v t )'~2], b=1, v=0 01, .with b

and v representing the impact parameter and internuclear veloci-

ty, respectively. ) On the same time scale, but using a different
scale for the ordinate, is 9'(t t'), w—hich is shown in more de-

tail in Fig. 1.

or
ktrL+5(k~, R) =Nor

ktv ——[Nrr 5(ktr, R)]—/L .

(3.&)

(3.6)

We take the limit N ~ ao,L~ oo,N/L finite. In that lim-

it k~ and ez ——ttI'kz/2m become independent of R.
So long as the continuum states have the asymptotic

form (3.4), with finite, continuous phase shifts, and pro-
vided that boundary conditions are applied in a large box,
it follows that the energies of the continuum states will

form a set of parallel curves, and that the density of states
will be the same as that for a free particle,

each basis state is a function only of scalar r (not vector

r). Basis functions are norlnally chosen to be eigenfunc-

tions of some simplified Hamiltonian, and at large dis-

tances they would have the asymptotic form

P„(r;R)=exp( —ikr) —expIi[kr +25(k;R)]I, (3.4)

where 5(k;R ) is the phase shift, which is a finite, continu-

ous function of k and R. The boundary condition

P~(r;R) =0 at r =L leads to

0
0 0.05

I

0.1

e ( har trees)

I

0.15

FIG. 4. Imaginary part of G(e) for the square-well model. It
is related to the "level width. "

in a box of volume L . It should be noted that these re-
sults need not apply if long-range (e.g. , Coulomb) forces
act on the escaping electron, since in that case the phase
shift may be infinite.

2. Coupling matrix element

The coupling matrix element V l, (t) depends upon the

system, the type of coupling (electrostatic, rotational, etc.),
and the representation that is chosen. As t~ac, V l, (t)„
goes to zero faster than 1/t, but not faster than e

where t is some constant. In principle, V l,(t) can be ob-
tained from an ab initio calculation, using formulas (2.4)
and (2.5). There are now some reasonably accurate calcu-

lations of wave functions for negative ions, p l(r;R), but
at the present time, practically nothing is known about

free states P,(r;R) representing an electron scattered from
an unstable neutral molecule such as HHe. For the time
being, we will get the information we need by examining
simple models, and by comparing theoretical calculations
with experiments.

p, =(2m)' e ' L/(2M), (3.7) C. General properties of S(t, t') and short-memory
approximation

and of course it is independent of R.
With more effort, it is possible to establish the same re-

sult in three dimensions, in which case the density of
states is

Based on the above properties, we can write

S(t,t')=(i )ttl' f V l, (t)exp[ ie(t —t')/t]—rt

mL
pk dk = k sin8dk d8dg

8m. A

X V, I(t')p, de
(3.8)

from which follows the symlnetry

(3.9)

assuming that the wave functions are normalized to unity

Re G(e]

(10 hartrees)

S(t', t) = S*(t,t') . —

Also, for any fixed t

lim 9(t,t')=0,

(3.10)

(3.11a)

and for any fixed t'

lim 9(t, t') =0 . (3.11b)

—-10

FIG. 3. Real part of the Green function G(e) for the square-
well model [Ref. 1(a)]. This is the Fourier transform of 9(rl,
and it is related to the "level shift. "

Since the range of the coupling matrix element V l, (R)
is normally a few Bohr radii, it follows that the time scale
on which 9'(t, t') is significant is no more than a few
atomic length units divided by the collision velocity. For
example, consider a slow collision, with the nuclear veloci-

0.01 atoIMC lllll'ts. Ill this case 9 (t, t ) ls negllglble
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Since the order of magnitude of b,e would be 1 a.u. of en-

ergy (27.2 eV), the order of magnitude of b,r would be 1

a.u. of time (2.42X10 ' sec). Thus 9(t, t') would be
negligible for any t, t' such that

~

t t'—
~

is greater than a
few atomic time units.

This important fact provides a useful simplifying ap-
proximation for 8 (t, t'). The fundamental integro-
differential equation (2.23) may be said to be a differential
equation with memory: The time derivative of C

~ (t) de-

pends not only upon the present value of C &(t), but also
upon its value at all times in the past. The argument
above indicates that the equation's memory is short.

To make use of this, let us rewrite Eq. (3.9) in terms of
variables t and w=t —t':

9'(t, t') =S(r;t) (3.13a)

=(iA') ' f V i,(t)exp( ierlfi)—
X V, i(t r)p, de . —(3.13b)

Equation (3.13) is exact. Suppose now b,r is small com-
pared to the time over which V, i(t) changes significant-
ly:

unless both
~

t
~

and
~

t'
~

are less than a few hundred
atomic time units.

Equation (3.9) also contains (t t—') in the exponent. To
see its effects, let us momentarily ignore the time depen-
dence of V i,(t). Then as ~t t'—

~

~Do, 9'(t, t')~0
again. However, this happens on a much shorter time
scale: with ~=t —I, ", the span of time intervals A~ over
which 9(t, t ') is significant is inversely related to the
range of energy b,e in which V &, is significant

(3.12)

G, (e;t)= f i
V i, (t)

i
(e—e') 'p, de'. (3.19)

This will appear again in the following paper. For future
reference let us also note that for e close to the positive
real axis,

(3.20)

V i,(t) =g(t) V (3.21)

where V &, is independent of t and g(t) has a shape as
shown in Fig. 2. This gives

9 (t, t')=9""(t,t') =g (t)g (t') (t —t'),
where

9 (r) =9(t t')'—

(3.22a)

=(iA') ' f dep,
~

V i, ~
exp( e'er/h)—

is a reduced propagator. The corresponding short-
memory approximation is

D. A separable approximation and a reduced
propagator

A further approximation provides physical insight and
an additional simplification. Even if the coupling matrix
elements are significant over a broad range of the continu-
um, transitions might only occur into a rather narrow
range. For example, if the collision is slow, usually only
very-low-energy electrons are produced. Within that nar-
row range of continuum energies, it may be reasonable to
assume that all of the coupling matrix elements have the
same time dependence

or, using V, '
id V, &

ldt=u lao and Eq. (3.12),

(3.14)
S"'(r;t)=9,'"(r;t) =g'(t)9(r) . (3.23)

The following properties of 9(r) are easily proved.
Separating real and imaginary parts,

ub, rlao —Au/(aors, e) « 1 .

If this condition is satisfied, we may substitute
V, i(t r)=V, ~(t) in—Eq. (3.13b) to obtain

9'(r; t)=9', (r; t)

= f ~

V ),(t) ~
exp( ierlfi)p,—de/iA. (3.16)

,(r;t) will be 'referred to as the short-memory approxi-
mation to S(r;t).

The Fourier transform of 9'(r;t) turns out to be very
important; it is defined as

G(e;t)= f exp(ier/fi)S(r;t—)dr . (3.17)

Using the short-memory approximation, we have

G(e;t)=G, (e;t)
= f exp(i er/A) $,(r;t)dr . (3.18)

If e is given a small positive imaginary part, using Eq.
(3.16), we may reverse the order of integrations over r and
e to obtain

f deep, i
V i, i

&0 (3.25)

if the integral converges. 9z(r) is an even function of r
and 9'1(0) &0,

i d9z/dry, 0=0. For all r,

(3.26)

lim 9(r) =0 .
7~ 00

(3.27)

By the same argument as before, the period of time over
which 9'(r) is significant may typically be only a few
atomic units.

The Fourier transform of 9(r) is

9'(r) = 9~(r)+i 9't(r),
9'z(r)= fi ' f dep,

~

V &, ~

si—n(erliil), (3.24b)

9'z(r)= fi ' f dep,
~

V &—, ~

c s(o/er)ir.t(3.24c)

9z(r) is an odd function of r, so 9'~ (0)=0. Also
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E. A model for 9(r) an'd 6 (e)

In the preceding section we obtained G(e) (3.28a), the
Fourier transform of 9(r). Equation (3.28b) shows that
for Ime & 0, this G(e) is the same quantity that Taylor
and Delos obtained in Eq. (2.20) of Ref. 1(a), denoted
there as G (e). Therefore, we can take over many of their
results. For e~O, G(e) is real, negative, and it goes to
zero when e~ —ao as

~
e~ '. For Re(e))0, G(E) is

complex, and its imaginary part is given by (3.20), with

V „replacing V, ,(r). At e=O, the derivative of G(e)
is discontinuous.

For more detailed information, we need a model for
V I,. For now we shall use the model given in Ref. 1(a),
in which the interaction between the active electron and
the neutral AB molecule is replaced by a square well. (We
emphasize that this model is quite oversimplified, and it
does not constitute an essential part of the present theory. )

The resulting V, &
is given by Eq. (3.7) of Ref. 1(a)

(denoted there V~o),

2VI
V

(L,Mx)'"
k, sin(ko, ro)cos(k pro) —koicos(koi ro)sin(k

pro�

)X—
2 2

&oI —k]

ki ——[{2m/A' )(E+ Vo)]'~,

koi ——[(2m/fi )(Eo+ Vo)]'i

M=-(ki/kz)cos (k&ro)+sin (k&ro), (3.29)

X=ro+ [Vo/(Eo+ Vo)]sin (koi ro)/ko2

k2 ——[(2m /i')e]'i, ko2 ——[—(2m /iii )Eo ]'i
~

I/2

( ~)
—1/2L '2m '

2m'

Vo and ro are the depth and width of the potential weH,

Eo is the energy of the bound state in the well, and VI is
the strength of the perturbing potential that couples
bound to free states. For a numerical calculation, we took

Vo ——0.4671,

ro ——-2.0,
VI ———0.09,
Zo ————O. O36

(3.30)

where Vo, VI, and Eo are in units of hartree, and ro is in
units of bohr.

The resulting 9 (r), calculated by numerical evaluation

G{e)= I dr exp(i er/fi) 9'(i.) .

Again, if e is given a small positive imaginary part, then
we may use (3.22b) in (3.28a) and reverse the order of in-
tegration to obtain

G(~)= I Z~'p,
~

V „~' (~ ~—'), lm~&0.

of the integral (3.22b) is shown in Fig. 1. The integral
converges rather slowly, but it is not hard to calculate.
The heavy line in Fig. 1 was obtained using an upper limit
of a=2.5 hartree. The most important result here is that
9'(r) seems to be a rather plain, structureless function
having the geneal properties given in the preceding sec-
tion. If this turns out to hold in general, then reasonable
results can be obtained using quite simple models for
9(r).

When tIle upper limit of the numerical integration is
raised further, to 40 hartree, some structure starts to ap-
pear in 9(r) near r=0; this is shown as the fine line in
Fig. 1. We do not believe that this structure is very im-

portant; it arises from the very slow oscillations in V
as a function of e, it appears only when we include states
that are Uery high in the continuum (e ) 1 keV—detached
electrons tend to have energies around 1 eV), and it may
be an artifact of the square-well model. In our calcula-
tions, discussed in the following paper, we have taken
9(r) as given by the smooth, heavy line in Fig. 1. The
Fourier transform of this 9'(r) is given in Figs. 3 and 4.

IV. SUMMARY

Under assumptions given in Sec. II A, processes in
which transitions occur from a discrete state to a continu-
um are described by solving an integro-differential equa-
tion (2.23) for C I(t) (the probability amplitude for find-

ing the system in the discrete state), and using this solu-

tion in Eq. (2.13) to find C,(t) (the amplitude for finding
the system in the continuum state of energy e). To solve
(2.23) we need to know the energy gap h(t) between the
discrete state and the continuum, and we need to evaluate
a propagator S(t, t'). Energy gaps for several systems
have been calculated, ' but little is known about the prop-
agatoI'.

We have derived some of the general properties of this
propagator, and we have examined some simplifying ap-
proximations for it. The two approximations we con-
sidered are (i) a short-memory approximation, and (ii) a
separable approx1IIlat1on. The short-memory appl ox1IIla-
tion makes use of the fact that the nuclei move slowly,
and therefore the time interval bt(-ao/U) over which
V, i(t) changes significantly is long compared to the
time interval Ai.=Pi/hE over which S(t,t ) is significant.
The separable approximation assumes that the important
matrix elements V, & (t) have approximately the same
time dependence. These two approximations are indepen-
dent; in any given system, one or both or neither might be
applicable.

Using the separable approximation, the propa ator can
be written approximately in the form (3.1), with (r) and
g(t) behaving as indicated in Figs. 1 and 2. The Fourier
transform of 9(i.), which turns out to be related to the
local-complex-potential, is shown in Figs. 3 and 4. In the
following paper we will develop methods for solving the
fundamental integro-differential equation (2.23), and we
will show some typical solutions.
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APPENDIX A: DIABATIC AND ADIABATIC
REPRESENTATIONS

1. Fundamental theorem

Given a set of coupled equations (2.2) associated with
an expansion of the type (2.1), we shall show that repre-
sentations exist in which I'~ is block-diagonal

'pR
O—I,I

(Al)—II,II

so that P-matrix elements between selected pairs of states
vanish. This is a (rather trivial) generalization of a
theorem first established by F. T. Smith.

For R~oo, let us divide the basis set IP„(r;R)I into
two completely arbitrary classes of states, designated as
type I and type II, and let us renumber the states such that
all states of type I precede all states of type II. Normal-
ly17

The matrix generating this transformation satisfies the

equation

and the boundary condition (A4) implies a unique solu-
tion'. In this new representation, matrix elements of P
are generally nonzero. Second, restricting ourselves to the
subspace of states of type I, we construct a unitary matrix
that diagonalizes W& i (the projection of P onto the "I"
subspace). This transformation leads to nonzero P matrix
elements within the I subspace, but those connecting I to
II still vanish. The result is a representation satisfying
(A5).

2. Interpretation

In the present case we have one discrete state (type I)
and a set of continuum states (type II), so the above
theorem establishes that there is a representation in which
P" i, (It. ) vanishes, and couplings between the discrete
state and the continuum are represented by P i,(R).

The theory given in this paper does not, of course, re-
quire that P i,(R) actually vanish, only that it be negli-
gible,

lim P „(R)=0 all m&n
R~ao

(A2a) U P i,(R)((X i,(R) .

lim P „(R)=0 all m, n
8~ Qo

P~~(R)=0 all m, all R .

(A2b)

(A2c)

We consider unitary transformations of the type

P„'(r;R)= g U „(R)P (r;R) (A3)

with the restriction

The existence of such representations follows from the
well-known transformation rules for P and I'~:

(A6a)

lim U~„(R)=5~„.
A —moo

For any R, a state P'„(r;R) is said to be of type I (or II) if
it correlates asymptotically to a state of type I (or II), i.e.,
if y'( r;

~

R
~

~m ) is of type I (or Il).
We may label the states in class I by the dummy index

mi (or ni) and those in class II by the dummy index m»
(or nii). Then (theorem) there exist R-dependent unitary
transformations such that for all m&n&n» with mi&ni

~ma =O
I II

(A5b)

To obtain a basis set satisfying this condition, it is not
necessary to use the procedure discussed above. There are
good reasons to believe that negative-ion states calculated
by the methods of Olson and I.iu have this property (A8).
Those states were calculated by a kind of "restricted"
configuration-interaction method: The zero-order basis
functions did not have any dramatic 8 dependence, and
the (square-integrable) basis set excluded very diffuse
states. In other words, starting with an approximate par-
titi.oning between bound and free states, and using a basis
in which the entire I' matrix is small„Qlson and Liu diag-
onalized hi 1, the projection of h onto the bound states.
The resulting discrete energy levels often pass right
through the continuum, but show avoided crossings with
other discrete states. Hence it is reasonable to think that
P i,(R) will be small in this representation.

In this appendix we sketch proofs which give sufficient
(but not necessary) conditions that C i(t) and its first two
derivatives, 9'(t, t ) and its derivative, and dW/dt are all
continuous.

As stated earlier, it is assumed that b,(t), p„V«(t), and
V, i(t) are differentiable functions of t. If in addition,
for all t, t'

(A6b) aild

We inay construct a representation satisfying (A5) in two
steps. First, in the full space of states of types I and II,
we can construct U& such that I'+ vanishes identically.

I Mi(e)de converges, (Blb)
0

then S(t,t') is a continuous function of t (Weierstrass M
test' ), and so is 9'(t', t). If
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iP, V I,(I) i
&M, (c) (82a) dW ~ 8de I p, V I,(t)exp[ —i@,(t, t')/R]] C,(to),

M2 e de converges, (82b)

then Jr(t) is a continuous function of t. It then follows
that Eq. (2.16) has solutions C I(t) which are continuous
and differentiable; furthermore, dC I(I)/dt is also con-
tinuous. If

provided that the integrals converge.

APPENDIX C: CONVERGENCE PROGF

(87)

@nd

Ip, V I,(t)exp[ i@—,(t, t')/A]V, 1(T') I (M3(c)
We give here a proof that the quantity C 1(t), defined

in Eq. (2.25), approaches a finite limit as t~ 00. A suffi-
cient (but by no means necessary) condition for this result
is that

lim f dt f dt'~ $(t, t')
~

& ao .

Ip, V I,(t)exp[ i C&,(t, t')/fi—] I (M4(E)a (84a)

M3 e e converges, (83b)

tllc11 I)9 (I,I )/BI cxlsts ancl lt ls colltlfluolls. Llkcwlsc lf

Under this condition, the proof is simple. The existence
of the limit (Cl) implies thai for any e there exists a T'
such that

f dt f, dt'
i
9(t, t') &e

for all T],T2 greater than T'. %ithout loss of generality,
let us take Tz & T~. Now

M4(e)de converges,
0

then dW/dt exists and is continuous.
Differentiating Eq. (2.16) we have

d C I(I)i' = [&(t)C I(I)]+&(I,I)C, (i)
dt

B9(I I')
C (,)

dW
to dt

(84b)

(85)

dC
I (T1 ) —C l(T1 ) = f dr

1

dC
&f dt,

dC I (I)
=exp 'i f h(t")dt" /fi

0

&& f, $(I,I')C, (I')dr',

and since the right-hand side is continuous, so is the left-
hand side.

Derivatives of 9' and W are given by

=(iIIi) ' f dF. IP, V I,(t) so

dC 1(t)
« f, i

$(I,I')
i
dr',

0

&&exp[ —iC (1, r'r) A/']]V, ,(t),

(86)

C, (T, ) —C, (T, ) & f dr f, dr'i 9(I,I')
i

&e
1 0

for all TI, T2 greater than T'. By the Cauchy criterion, '

C I(t) approaches a finite limit as t~ ~.
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