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Elastic differential cross sections for small-angle scattering of 25-, 40-,
and 60-keV protons by atomic hydrogen
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Elastic angular differential cross sections for small-angle scattering of protons by atomic hydro-
gen have been measured. The technique utilized unambigously distinguishes the elastically and
inelastically scattered ions. The cross sections fall monotonically by 3 orders of magnitude in the
angular range from 0.5 to 3.0 mrad, in the center-of-mass system. The experimental data obtained
are in very good agreement with a multistate calculation and in fair agreement with both our
Glauber-approximation and classical-trajectory Monte Carlo results.

INTRODUCTION

Angular differential cross section measurements offer
the cleanest test for any theoretical approach of the
scattering problem. The simplest collisional process in the
one-electron system H++H( ls) is the elastic scattering of
the incoming proton on the atomic-hydrogen target. The
projectile ion is scattered by the target atom with no
changes in the state of either the target atom or the in-
cident ion. The theoretical treatment of that simple pro-
cess is not fully understood at intermediate energies. The
elastic scattering of protons by atomic hydrogen is also a
difficult experimental problem. The necessity to distin-
guish elastically scattered ions from both the inelastically
scattered ions and the unscattered ions requires high reso-
lution in both energy loss and scattering angle. The
University of Missouri —Rolla (UMR) ion-energy-loss
spectrometer has the high resolution which makes the
experiment possible. Preliminary results on the
proton —atomic-hydrogen elastic differential cross sections
have been presented by our group, ' but this paper reports
the first complete measurement of this elastic differential
cross section in the intermediate-energy range.

EXPERIMENTAL METHOD

A description of the UMR ion-energy-loss spectrometer
and the general method employed in ion-energy-loss spec-
trometry have been given in detail in Refs. 3—5. Both the
high angular resolution of 120 prad of the accelerator,
with its relative angular position known to within
3.3 & 10 rad, and the accuracy of +0.03 eV in determin-
ing the energy-loss scale, permit an unambiguous identifi-
cation of the elastically scattered ions.

The apparatus is a linear accelerator-decelerator system.
The accelerator section includes the ion source, extraction
lens, velocity filter, beam focusing, steering, and profile
monitoring elements. The decelerator contains the energy
and beam detection analysis apparatus. The collision re-
gion and mass analyzer are located between the accelera-
tor and decelerator section. The accelerator section and
collision region are rotated as a unit about an axis that

passes through the collision point, allowing the measure-
ment of cross sections which are differential in both
scattering angle and energy loss. Because of the complexi-
ty of the measurements and the magnitude of data re-
quired in order to get meaningful results, the data acquisi-
tion process is controlled by a minicomputer (Data Gen-
eral Nova 3/12).

In the collision between an incoming ion and a target
atom, the scattered ion loses energy due to the recoil of
the target atom even if no inelastic process is involved.
This recoil-corrected energy loss is calculated and set dur-
ing data acquisition by the controlling minicomputer.
The measurement scattering angle, count time, and emer-
gency and reset signals are also set and monitored. The
transmitted ion current and scattering cell pressure for
each measurement are channeled directly to the minicom-
puter, which corrects the measurement for scattering cell
pressure deviations, instrument and residual caused back-
ground, and normal-incident beam drift. The angular dis-
tributions of the incident and elastically scattered beams
are measured by recording the transmitted ion current
while pivoting the apparatus about the scattering center.
The scattering center lies within the geometrical center of
a high-temperature reactive scattering cell. This high-
temperature cell which is constructed on the basis of the
furnace target technique had a lifetime of approximately
340 h and excitation measurements indicated a dissocia-
tion fraction of the molecular hydrogen of over 95%.
The pressure in the scattering cell was measured with an
MKS Baratron model 170 pressure meter and was main-
tained constant during a data acquisition run by a micro-
computer based pressure controller using the analog signal
from the pressure meter.

To obtain absolute values for the differential cross sec-
tion the product of the atomic-hydrogen target density n
and the scattering region length I has to be known accu-
rately. In our case it was not possible to measure the pres™
sure in the scattering region directly and therefore we had
to normalize our experimental data. This normalization
was accomplished by measuring in the same data acquisi-
tion sequence not only the elastically scattered protons but
also protons which have lost an energy corresponding to
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the excitation of the atomic-hydrogen target to its n =2
level. By integrating the n =2 differential excitation cross
section with respect to angle we obtained a total cross sec-
tion at each incident energy. These total cross sections
were then set equal to the total cross sections reported by
Park et a/. , which in turn were normalized to a Born-
approximation calculation of Bates and Griffing
[o(n =2)=6.637X 10 ' cm ] for 200-keV-proton impact
excitation of atomic hydrogen to its n =2 level.

A consequence of the high-angular resolution is a low
count rate which rapidly decreases with increasing scatter-
ing angles. This effect places a limit on the angle 6t,„,at
which a reasonable signal-to-noise ratio can be main-
tained. In addition, the detectable incident beam is small-
est at the low-energy end of the operating range (20—200
keV) of the spectrometer. For elastic scattering at very
small angles the overlap of the transmitted unscattered
protons with those protons scattered through very small
angles gives the limit for the smallest observable angle
0;„. The detailed procedure for obtaining the elastic dif-
ferential cross section from the raw data is given in Ref. 3.

RESULTS AND DISCUSSION
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The experimental and theoretical differential cross sec-
tions for elastic scattering of 25-, 40-, and 60-keV protons
by atomic hydrogen are shown in Figs. 1—3. The shape of
the displayed experimental data shows the typical features
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FIG. 2. Same as Fig. 1 for a laboratory collision energy of 40
keV.
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of differential cross sections at these intermediate energies.
Firstly, they are highly peaked at small scattering angles,
which means the scattering is almost all in the forward
direction. Secondly, in the center-of-mass system they fall
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FIG. 1. Comparison of the experimental and theoretical an-
gular differential cross sections at a laboratory collision energy
of 25 keV for the elastic scattering of protons from atomic hy-
drogen, in the center-of-mass frame. For discussion see text.
The error bars represent one standard deviation from the mean.
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FIG. 3. Same as Fig. 1 for a laboratory collision energy of 60
keV.
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3 orders of magnitude in the observed angular range from
0.5 to 3.0 mrad. With increasing projectile velocity (from
1 a.u. for 25-keV protons to 1.55 a.u. for 60-keV protons)
the differential cross sections decrease in magnitude over
the whale range of angular scattering.

A trial measurement of the proton-molecular hydrogen
elastic differential cross section was made. The measured
elastic differential cross section for an H2 target is very
similar in shape and in magnitude to the elastic differen-
tial cross section for an atomic-hydrogen target. Because
at all angles where comparisons were made the difference
in the cross sections was less than a factor of 3, a 5% H2
contamination in the target would have less than a 10%%uo

effect on the measured elastic differential cross section.
The error bars shown represent only the rms statistical

errors. As discussed in detail in Ref 3.the systematic
errors arising from both the measurement technique and
the data-analysis program should have only a minor effect
on the curve shape and the magnitude of the data. More-
over, the curve shape of the differential cross section
would be unaffected by systematic errors induced by the
data-analysis program.

Various theoretical calculations were carried out in or-
der to compare with the experimental data. These are also
shown in Figs. 1—3. The Born-approximation calcula-
tion, as expected, is not in agreement with the experimen-
tal data. In general, the Born results have the wrong
curve shape and they are larger than the experimental re-
sults in magnitude over the observed scattering angle
range except at the very small scattering angles where the
Born results cross over the experimental results. The
agreement between the experimental data and the Born re-
sults obviously improves as the incident proton energy in-
creases.

We also carried out a full Glauber-approximation calcu-
lation' using the techniques developed by Thomas and
Gerjouy. " This Glauber-approximation calculation com-
pares more favorably with the experimental data particu-
larly at small scattering angles. However, at the larger
scattering angles the Glauber approximation results are
greater in magnitude than the experimental data and they
indicate a slightly different curve shape. Of course, the
Glauber-approximation diverges at the scattering angle of
0 (Ref. 10) and thus is not expected to follow the experi-
rnental data at extremely small scattering angles. In com-
parison the Glauber-approximation results for proton—
atomic-hydrogen elastic scattering do not provide as im-
pressive an agreement with experiment as do the Glauber
results for the proton excitation of the atomic-hydrogen
target to its n =2 level. ' The poorer agreement of the
Glauber-approximation with the experimental data in the
case of the elastic scattering may be due to the fact that
this approximation does not adequately account for the ef-
fect of the electron capture and ionization channels.
However, considering the simplicity of the Glauber-
approximation calculation, the theoretical results for the
differential elastic cross sections of proton —atomic-
hydrogen scattering are in remarkably good agreement
with the experimental measurements.

Our classical trajectory Monte Carlo (CTMC) calcula-

tion is in fair agreement with the experimental data. ' '
The curve shape of the CTMC results are fair except
again for the extremely small scattering angles near 0
where the CTMC results tend to diverge. In general the
magnitude of the CTMC results are lower than the experi-
mental data. The CTMC calculation suffers from the
same problem as the experiment; namely, the differential
cross section falls orders of magnitude over a very small
range of scattering angles. This means that a very large
number of trajectories are required in the CTMC calcula-
tion to obtain reliable results for the larger scattering an-
gles. For scattering angles 0, greater than 2 mrad the
CTMC data points have a tendency to converge to or even
to cross over the experimental results. However, the
CTMC calculation is a three-body calculation and thus it
contains the effect of the other scattering channels on the
elastic scattering. The CTMC method treats consistently
the three reactions, excitation, electron capture, and elastic
scattering, and cross sections are produced simultaneously.
Except for classical mechanics and the use of a micro-
canonical ensemble for the ground-state hydrogen atom,
there are no other approximations. The Coulomb poten-
tials are exact and the dynamics of the collision process is
done exactly. This may account for the good overall
agreement of the CTMC results with the experimental
data.

A sophisticated multistate (MS) calculation by Shake-
shaft is available for proton-hydrogen atom scattering
using a scaled hydrogenic basis set. ' Thirty-five basis
functions, centered about each proton, were included in
the expansion of the electron wave function. The use of a
scaled hydrogenic basis set allows one to include the ioni-
zation channel as well as the excitation and electron cap-
ture channels. By applying a procedure discussed by %'i-
lets and Wallace, ' differential cross sections can be ob-
tained from the transition amplitudes calculated by Shake-
shaft. ' The results for the elastic scattering of protons
from hydrogen atoms using the procedure mentioned
above are given by Wadehra and Shakeshaft. ' These
multistate results (also shown in Figs. 1—3) are in very
good agreement with the experimental data over the whole
observed angular scattering range both in magnitude and
curve shape.

In conclusion this paper shows that there are only
minor discrepancies, with the exception of the Born ap-
proximation, between the experiment and the various
theories for the elastic proton —atomic-hydrogen scatter-
ing in the intermediate-energy range. However, for this
particular scattering process additional data at larger
scattering angles are needed for a complete test of the
theories. Also experiments at lower collision energies are
important for a full understanding of the proton —atomic-
hydrogen scattering process.
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