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Distorted-wave theory of heavy-particle collisions at intermediate energies
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The quantum-mechanical description of heavy-particle collisions is extended to the intermediate-
energy range through the use of a second-order distorted-wave approximation. Cross sections are
calculated using close-coupled solutions for low partial waves and first- and second-order unitarized
distorted-wave solutions for higher partial waves where the distorted-wave method is accurate. The
method is appli. ed to the calculation of charge transfer cross sections for collisions of C + with H,
and of 0 + with He over the energy range 0—5 keV/amu, and to investigate the inAuence of the
charge transfer channel on ion-impact excitation of 0+.

I. INTRODUCTION

Charge transfer processes of multiply charged ions in
collision with neutral atomic systems affect the ionization
structure and impurity transport, the thermal balance, and
the radiation losses of plasmas. Heil, Butler, and Dalgar-
no' have presented a close-coupled quantum theory of
low-energy charge transfer processes and applied it to cal-
culate rate coefficients for charge transfer in collisions of
neutral hydrogen atoms with doubly and triply charged
ions of carbon, nitrogen, oxygen, and neon at temperatures
obtaining in astrophysical nebulae, corresponding to col-
lision energies of less than 10 eV/amu. Charge transfer
reactions are important also in fusion plasmas, particular-
ly near the plasma edge, but the relevant collision energies
are above 100 eV/amu. In their calculations, Heil et al. '

solved the equations of quantal close-coupling theory by
numerical integration, a procedure which is impractical at
high energies. We present here a unitarized, multichannel
di.storted-wave approxi. mation which can be carried
through readily to second order in the coupling strength
and which improves rapidly in accuracy as the energy E
and the nuclear angular momentum quantum number J
increase. We have constructed a systematic procedure in
which for a given energy close-coupling results are used
for small values of J, second-order distorted-wave results
are used for intertnediate values of J, and first-order
distorted-wave results are used for large values of J, each
approximation giving way to the simpler more economical
onc as it bccomcs sufficiently accurate.

Wc cxplorc thc Incthod by varying the coupling
strengths for the reaction

C'+(2s, 'S)+H C'++H+,

for which we have previously reported the cross sections,
and we use it to calculate cross sections for the charge

transfer reaction

0 +(2s 2p, P)+He~0++He+ .

We explore also the influence of the charge transfer chan-
nel on the ion-impact excitation process

He++0+(2s 2p3, D') —+He++0+(2s 2p, I") . (3)

Heil et a/. have given a quasimolecular quantal adia-
batic description of the collision of a heavy ion with a
light atom, involving transitions between states of the
same molecular symmetry. After selecting those adiabatic
states for which the radial coupling is large at some
separation, they transformed to the diabatic basis called
the P-diabatic representation by Delos and Thorson. In
this basis the inelastic and the reactive processes are
driven by the off-diagonal elements of a symmetric
potential-energy matrix V(R), whose diagonal elements
are diabatic potential-energy curves, E, being the nuclear
separation. The scattering equations take the form

f' 2VRI V(R)+EI F(R)=—0,
p

where L(R) is a column matrix of scattering functions
Et(R), E is the energy of relative motion in the entrance
channel, and p is the reduced mass. At large distances,
V(R) tends to a diagonal matrix with elements V;.

After expansion of E(R) in total angular momentum
functions, the radial functions XJ(R) satisfy for each J the
coupled differential equations

I+k' — I Xs+U(R)X~,
dR R
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where k 2 is a diagonal matrix with elements
k; =2IJ(E —V;)/fi, U=2p V/R, and we have taken the
projection of the electronic angular momentum on to the
internuclear axis to be zero. The total cross section o(E)
at an energy E can be written as the weighted sum

o(E)= g w, o;(E),

where o, is the cross section for charge transfer in the
particular molecular symmetry and m, is the statistical
weight (2S+ l)(2 —5x p)/g, ip, .

The cross section in each symmetry is expressed as the
sum

be written

G(R,R')=k 'f p(R()gp(R) ), (12)

X (R)-f (R)—g (R)k ' Kk'

where E is the reactance matrix,

(13)

K= —k ' z I f (R)U(R)XJ(R)dR k '~z (14)

where f p aiid gp are diagonal matrices whose elements
are, respectively, regular and irregular Riccati-Bessel or
Coulomb functions, depending upon the asymptotic
boundary conditions of the scattering channels, and R (
(R ) ) is the lesser (greater) of R and R'. Asymptotically

o,(E)= gg(2J+ ) ~S; —5; (2PE J
(7)

The scattering matrix S is given by

where S;J is the scattering matrix element connecting the
initial state i to a final state j formed by charge transfer or
excitation. The S-matrix elements are obtained from the
asymptotic behavior of the radial functions, which in turn
are determined by solving the coupled radial equations (5).
The form of equations (5) makes them particularly amen-
able to numerical solution by standard techniques at low
energy. With increasing energy the number of partial
waves which contribute to o,(E) rapidly becomes very
large and a more economical procedure is needed. A
semiclassical unitarized distorted-wave approximation has
been developed by Ryufuku and %'atanabe. Because the
distortion potential in the entrance channel is qualitatively
different from the repulsive Coulomb potential which
characterizes the asymptotic behavior of all the exit chan-
nels, and because we wished to obtain a procedure which
extrapolated smoothly from low to intermediate energies,
we chose to avoid the introduction of a classical descrip-
tion of the nuclear motion and we instead developed an al-

gorithm based upon the quantum-mechanical distorted-
wave approximation.

S=(I+iK)(I iK)— (15)

If we decompose U into the sum of U
~

and Uz, Eq. (8)
may be replaced by

X i=f i+Gi«)UzX t (16)

where f i is the regular outgoing solution of (11) with U
replaced by U i and G&(E) is the principal-value Green's
function defined as in Eq. (10) with the Hamiltonian

0 ) ——HpI+U)

replacing Hp. We choose U ~ equal to the diagonal part of
U and U2 equal to the off-diagonal part. Then

X i(R) =f i(R)+ f 6 i(R,R')U z(R')X i(R')dR' . (l8)

The distorted-wave Careen's function is given by

6 i(R,R')=k 'f i(R()g i(R) ), (19)

where g i is the irregular outgoing solution of (11) with U
replaced by U, . The solution of Eq. (18) behaves asymp-
totically as

III. DISTORTED-%PAVE APPROXIMATION

The procedures are standard. The solution X~(R) of Eq.
(5) which satisfies standing-wave boundary conditions
may be written in the Lippmann-Schwinger integral equa-
tion form

X {R)-f (R)—g (R)k ' K k'

where
T

K i= —k 'i' J f i(R)Uz(R)X i(R)dR k

(20)

X'=f,'+ G(E)UX',

where f p is the regular solution of the free-particle radial
Hamiltonian,

To relate E
&

and K, we introduce the phase shift matrix
qJ, whose elements are the elastic scattering phase shifts
corresponding to the diagonal potential matrix U ~. Then,
asymptotically,

(E Hp+ie) '=6(E)+i—~5(E —Hp) . (10)

d J(J+1)
/+2 Q2

and 6 (E) is the principal-value Green s function given by

J J J-f i-f pcosriJ g psinzi J

J J ~ J
g i -f p»nzi J+g pcoszi J

(22)

(23)

In the coordinate representation, Eq. (8) has the form

X (R)=f p(R)+ I G(R,R') U(R')Xi(R')dR', (l l)

where the Green's function 6(R,R') is diagonal. It may

Comparing Eqs. (14) and (21), we obtain

K= (sing J+costi & K
& )(cosriq —sinzl z K i )

' . (24)

If Uz(R) is small, Eqs. (20) and (21) for K i may be use-
fully solved by an iterative process. To first order in U2,
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K "'=—k -' ' J f '(R) U (R)f (R)dR k
(25)

Expression (25) is the first-order distorted-wave approxi-

mation. Because it is a symmetric matrix the resulting S
matrix is unitary.

Iterating again we obtain a second-order distorted-wave
approximation

K' '= —k 'ii f dR f,(R)U2(R) f dR'G i(R,R')U2(R')f i(R') k

The first-order reactance matrix K i" is symmetric, but
the matrix K i

' may not be. To enforce symmetry and
obtain a unitary 5 matrix to second order in U2 we calcu-
lated the matrix element IC 'i '(ij) for any pair of scattering
channels with i &j and took Ep'(ij) =K ', '(ji) for i &j.

IV. RESULTS

The accuracy of the distorted-wave approximations was
tested by comparison with full close-coupled results for
the charge transfer process

C'++ H~C'++ H+ (27)

1.6

I.4—

l. 2

The diagonal diabatic potential-energy curves U i(R) for
three scattering channels of 'X+ molecular symmetry are
reproduced in Fig. 1 and the diabatic coupling matrix ele-
ments U2 in Fig. 2. Channel 3 is the entrance channel
separating to C + and H, channel 2 is the exit channel
separating to C +(2p 'S) and H+, and channel 1 is the
exit channel separating to C +(2p 'D) and H+.

We reduced U2 by multiplication by a factor A, equal
successively to 10, 10, 10 ', and unity. The close-
coupled solutions were obtained by the log-derivative
method of Johnson. The distorted-wave solutions were

obtained using Numerov integration and the quadratures
were carried out with Simpson's composite formula. The
two procedures have overall errors of order h where h is
the interval size and are well matched.

Calculations were carried out at an energy E of 10
eV/amu in the entrance channel. For A, =10 and 10
the first-order distorted-wave approximation to the
squared modulus of the off-diagonal matrix elements

l SJ l
of the scattering matrix defined in Eq. (15) was

identical for all J to the exact values. For A, =10
differences occurred between the first-order distorted
wave and exact values which became serious for J~60.
Figure 3 illustrates the values of

~
Siq

~

as a function of
J. The second-order distorted-wave approximation is a
substantial improvement over the first-order approxima-
tion and agrees closely with the close-coupled results for J
greater than about 15. The behavior of

~
Si3 l

and
I Sz3

I

is similar.
For the actual coupling case A, = 1, the first- and

second-order distorted-wave approximations fail com-
pletely and it is probable that the distorted-wave series
does not converge except at uninterestingly large values of
J. However, the distorted-wave methods become more ac-
curate with increasing energy as A, U z/E decreases. Figure
4 presents the results for A, = 1 at an incident energy of 1

keV/amu. The first-order distorted-wave approximation
is adequate for J greater than 1400. The second-order ap-
proximation tracks the exact values well down to J equal
to 400, sometimes overestimating and sometimes underes-
timating

~
S23

~

. To obtain a reliable cross section,
close-coupled solutions are required only for J& 400.
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FIG. 1. CH + diabatic potential-energy curves of 'X+ sym-
metry. Dissociation limits are, with increasing energy,
C +(2p 'D}+H+, C +(2p 'S) + H+, and ground state
C'++ H.

—O. I 0
2 5

R (a, )

FIG. 2. CH + diabatic coupling matrix elements between the
states given in Fig. 1.
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2 as a function of partial-wave quantum number J at E= 10 eV/amu using close-coupling (CC) and first- and
second-order distorted-wave approximations with a coupling strength of A, =0.1.

In practice, we use close-coupled results at low J which
give way to the second-order distorted-wave approxima-
tion and then to the first-order distorted-wave approxima-
tion as each becomes sufficiently accurate. The procedure

permits the calculation of heavy-particle collision cross
sections at energies up to 10 kev/amu. Further economies
are possible and extension to higher energies could be
achieved by the use of the Jeffreys-Wentzel-Kramers-
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FICl. 4. Close-coupled (CC) and first- and second-order distorted-wave values of
~
S,3 ~

vs J at E= l keV/amu and a coupling
strength A, =1.0.
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FIG. 5. Total charge transfer cross section and individual

sections for the population of metastable P' and D' levels of
6+ in the reaction 0 + + He~0+ + He+.

Brillouin (JWKB) approximation to the functions f,(R)
and g &(R).

V. CHAR&K TRANSFER QF 0 + IN He

Charge transfer cross sections of 0 + ions in helium
have been calculated at thermal energies. Three H
molecular states appear to be significant. The diabatic
potential-energy curves and coupling elements have been
reported by Butler et al. ' %'e use them here in conjunc-
tion with the distorted-wave approximation to extend the
calculations to energies of 5 keV. Throughout most of the
energy range, charge transfer preferentially populates the
0+(2P P') state but near 5 keV capture into the
0+(2P D') state becomes of comparable importance.
The calculated cross sections are shown in Fig. 5. The to-
tal charge transfer rate coefficient has been measured at
400 K (Ref. 11) to be (3.5+1.5) X 10 " cm s ' in agree-
ment with the theoretical value of 2&(10 cm s but

Two state

4.4( —7)
6.6( —5)
3.5( —2)
1.11
1.94
2.87
3.38
6.32
6.41
8.51
6.91

10.3

Three state

5.3( —7)
5.6( —5)
2.4( —2)
0.642
0.984
1.59
2.06
4.34
4.40
5.34
4.60
7.34

7.35
8.16

13.6
32.2
57.2
82.2

132.2
257.2
507.2

1007.2
2007.2
5007.2

TABLE I. Cross sections in units of 10 ' cm for the pro-
cess He++ G+( D') —+He++0+( P') in the H channel of
QHe + as a function of the energy E in eV of relative motion in
the initial channel. [We use the notation 4.4( —7)—:4.4X10 . ]

Z (ev)

0
0.0

I
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log E (eV /amu}

FIG. 6. Cross sections for the transition 0+( D0)—+0+( P')
induced by He+ impact. The curve labeled H is the result for
the 'H channel which interacts with the charge transfer channel.
The curve labeled ('X++ X++'ll) is an estimate of the contri-
butions from the other molecular symmetries. The sum over all

channels is shown by the curve labeled "Total."
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there are no data at higher energies.
Cross sections for transitions between the metastable

0+( P') and 0+( D') states induced by the impact of
He+ ions in the H molecular symmetry can also be calcu-
lated with our procedures. The transition may occur by a
direct impact excitation through the quadrupole com-
ponent of the interaction, ' and indirectly by crossings
into and out of the charge transfer channel. We present in
Table I the cross sections for the process (3) calculated in
the two-state approximation which ignores the charge
transfer channel and in the three-state approximation
which includes it. Except at very low impact energies, the
inclusion of the charge transfer channel extracts flux from
the direct excitation channel and diminishes the excitation
cross sections. Below 8 eV, the additional path for excita-
tion provided by crossings into and out of the charge
transfer state augments the excitation cross section.

The process (3) also takes place in the 'X, X, and 'll
molecular symmetry states. For them, the potential-
energy curves and coupling matrix elements are not avail-
able. However, unlike the H states they do not undergo
avoided crossings with any charge transfer state and at
low energies the transition is driven by the interaction be-
tween the He+ ion and the quadrupole moment of the tar-
get. Thus the cross sections are not much different from
those obtained for the H state in the two-state approxi-
mation when charge transfer is ignored. Our estimates for
the total cross section, summed over all channels, for the
excitation of 0+( D') to 0+( P') by helium-ion impact
are presented in Fig. 6 as a function of energy. For tem-
peratures in excess of about 10 K, helium-ion impacts are
more effective than electron impacts' in exciting the
D'- I"metastable transition.



508 S. BIENSTGCK, T. G. HEIL, AND A. DALGARNO

T. G. Heil, S. E. Butler, and A. Dalgarno, Phys. Rev. A 23,
1100 (1981).

2J. B. Delos and W. R. Thorson, Phys. Rev. A 18, 117 (1978);
18, 135 (1978);J. Chem. Phys. 70, 1774 (1979).

3H. Ryufuku and T. Watanabe, Phys. Rev. A 18, 2005 (1978);
19, 1538 (1979).

4Handbook of Mathematical Functions, U.S. Natl Bur. Stand.
(Appl. Math. Ser. No. 55), edited by M. Abramowitz and I. A.
Stegun (U.S. GPG, Washington, D.C., 1970).

~S. Bienstock, T. G. Heil, C. Bottcher, and A. Dalgarno, Phys.
Rev. A 25, 2850 (1982).

B. R. Johnson, J. Comput. Phys. 13, 445 (1973).

7A. C. Allison, Comput. Phys. Commun. 1, 21 (1969).
~D. M. Young and R. T. Gregory, A Survey of numerical

Mathematics (Addison-Wesley, Reading, Mass. , 1972), Vol. 1.
A. Dalgarno, S. E. Butler, and T. G. Heil, J. Geophys. Res. 85,

6047 (1980).
IOS. E. Butler, T. G. Heil, and A. Dalgarno, J. Chem. Phys. (to

be published).
~~R. Johnsen and M. A. Biondi, J. Chem. Phys. 74, 305 (1981).
~ D. A. Landman, Sol. Phys. 30, 371 (1973); 31, 81 (1973); As-

trophys. J. 220, 366 (1978).
R. J. W. Henry, Phys. Rep. 68, 1 (1981).


