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The axial oscillation frequency of a trapped particle in a Penning trap with hyperbolic electrodes
has proven to be a very important observable for precision experiments. Shifts in this frequency
have been used to measure magnetron frequencies, cyclotron frequencies, and g —2 transitions for
single trapped particles. Detection and damping of the axial oscillation were thought to be well un-

derstood except that a key constant which depends upon trap geometry had not been calculated. A
relaxation calculation has thus been performed to provide a calculated value for this constant and

several others, and to determine their dependence upon trap geometry. A surprising result is a
discrepancy between the calculated value of the key constant and that deduced from measured

values of the width of the axial oscillation frequency in the several cases where it has been mea-

suredd.

I. INTRODUCTION

A single electron was first trapped in a Penning trap ten
years ago. Subsequent progress- led to measurements of
the magnetic moments of both the electron and positron
to accuracies of 5 )& 10 ". The measurement of the
magnetic-moment anomalies are the most stringent tests
of quantum electrodynamics, which has been used to cal-
culate the anomalies to order a (in Ref. 5). Comparison
of the electron and positron magnetic moment provides a
rigorous test of the invariance of the electron-positron sys-
tem under CPT (combined charge-conjugation, parity, and
time-reversal transformations. ). An experiment now
underway, whose ultimate goals include trapping a single
proton, has already produced the most accurate ratio of
the electron and proton masses. Another experiment is
underway with a goal of improving the accuracy of the
measured magnetic moments of the electron to 10 ' or
better. 7 The frequency of the axial oscillation (along mag-
netic field lines) is a crucial observable in all of these ex-
periments. Small shifts in this frequency are used to
detect magnetron frequencies, cyclotron frequencies, and

g —2 transitions.
An earlier paper discussed a relaxation calculation of

the static trapping and compensation potentials in Pen-
ning traps with hyperbolic endcap and ring electrodes.
An orthogonalized configuration of hyperbolic trap elec-
trodes was proposed to make the harmonic-oscillation fre-
quency of a trapped particle to be independent of adjust-
ments in the compensation potential. The compensation
potential is applied to additional electrodes in order to
tune out trap anharmonicities. In this paper, these static
quadrupole trapping potentials are noi discussed. The
focus is instead upon additional potentials superimposed
upon the electrodes because of, and to modify, the axial
motion of a trapped particle. These include static poten-
tials to move the center of the axial oscillation, oscillatory
potentials on the electrodes which drive the axial motion,
and potentials induced on the electrodes by this axial

motion. For a particular configuration of trap electrodes,
all of these are manifestations of only one electrostatic
solution to Laplace s equation, identified as Pz in Sec. II.

Similar techniques are employed to calculate P~ as a
function of electrode geometry as were employed to calcu-
late the static trapping potentials within compensated
Penning traps. These are discussed in Sec. III. The same
transformation of coordinates is used to avoid mismodel-

ing hyperbolic electrodes. A crucial difference is that Pz
is odd under the refIection z~ —z whereas the previously
calculated solutions are even. The resulting incompatibili-

ty of Pz and the intrinsically even coordinates is remedied

by solving for an even function P (by relaxation) with P
defined so that P~

——zX. Details of the relaxation calcula-
tion covered in the earlier paper are not repeated. The
solution P~ turns out to be particularly simple, especially
for asymptotically symmetric traps where two expansion
coefficients suffice to characterize the potential over the
whole possible trapping volume. The calculated value of
the first of these expansion coefficients is substantially
higher than a previous rough estimate.

Finally, the consequences of the relaxation calculation
for particle trapping are briefly discussed (in Sec. IV).
Static potentials which translate the center of the axial os-
cillation seem to be well understood. Translating the
center of the axial oscillation has proven to be useful in

experiments which make use of "magnetic bottles" —to
measure the size of the magnetic bottle, to determine its
precise location with respect to the electric center of the
trap, and finally to shift the electric center to coincide
with the magnetic center. Until this calculation, the ac-
curacy in the measurement of the size of a magnetic bottle
was limited because the value for a key constant, called 8&
here, was not weil known. In response to this work, some
earlier data for a trapped electron has since been interpret-
ed as a measurement of 8& and this single available mea-

surement agrees within the measurement accuracy with
t4e value from the relaxation calculation. This measure-
ment can only be done in a trap with a magnetic bottle
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and requires the observation of the axial frequency shift
which results from a spin flip and, thus, is not a generally
available technique.

The radio-frequency consequences of the relaxation cal-
culation seem to be less well understood. Section IV con-
tains a brief discussion of the damping of the axial oscilla-
tion which initially parallels the earlier work by Wineland
and Dehmelt. Near the center of the trap, where parti-
cles are trapped, P~ is essentially approximated by its
lowest-order spatially uniform electric field term. A prob-
lem is that such a lowest-order approximation of Pz, with
the coefficient determined by the relaxation calculation,
predicts an axial resonance width which is wider than the
measured widths by more than a factor of 2. This prob-
lem is not resolved by the much better two term expansion
of P~ suggested by the relaxation calculation, unless the
average value of the magnetron radius is much larger than
it has been measured to be. Efforts are now underway to
understand the discrepancy.

II. ELECTROSTATICS

Figure 1 is a scale drawing of a compensated Penning
trap with hyperbolic endcap and ring electrodes. Figure 2
shows the trap model used for numerical computations.
The ring and endcap electrodes he along hyperbolas iden-
tified by po and zo, the minimum radial and axial dis-
tances to these electrodes. Compensation electrodes are
located on the quadrupole asymptote (given by z =p /2)
at distance r, from the center of the trap. They are sym-
metric about the asymptote and have internal angle a. All

I I I I
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field emission point

pensation
ectrode

FIG. 2. Model used for a hyperbolic Penning trap. Relaxa-
tion calculations are carried out for various a and r, as well as
for various ratios of po to zo. The particular example shown is
for an asymptotically symmetric trap with o.=30' and
rc /zo-2. 2.

of the electrodes are invariant under rotations about the z
axis and invariant under reflections across the x-y plane.
Gaps between electrodes are taken to be negligibly small.

The static quadrupole trapping potential and the static
compensation potential, which are calculated and dis-
cussed in the earlier paper, cause a trapped particle to os-
cillate harmonically along the z axis with axial oscillation
frequency m, . Here we ignore these potentials and instead
focus upon the additional potentials which are superim-
posed upon them. Consider first the addition of the small
static potentials V~, /2 to the upper endcap and —V~, /2
to the lower endcap, with no additions to the ring and
compensation electrodes. The offset Vs, could be due to
imperfections in the trap or could be applied dehberately
and produces a potential within the trap given by

V= Vs,pg, (2.1)

is a solution to Laplace s equation which ts an-
tjsymmetric under the reflection z~ —z and which satis-
fies the boundary conditions in Fig. 3. To understand the
consequences of the offset potential Vs, for particle trap-
ping, complete knowledge of Pq is not generally required
because particles are typically trapped near the center of

~
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FIG. 1. Drawing of the most recently constructed compensat-
ed Penning trap. It was designed by the author and is presently
being used in an attempt to measure an electron's magnetic mo-
ment to an accuracy of 10 ' . The drawing is to scale except for
the holes in the endcap and the slit in the ring which are slightly
enlarged to make them visible. The electrodes are axially sym-
metric about the magnetic field vector shown.

$q(-&) = —&f~(&)

FIG. 3. Boundary conditions which umquely define a solu-
tion to Laplace's equation Pq, which is also antisymmetric under
reAections across the x-y plane.
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the trap. In this region [at position (r, g, g) in spherical
coordinates, with r «zp] Pg can be expanded in a fami-
liar way in powers of r/zp multiplied by odd order Legen-
dre polynomials Pk(cos8),

k
QO rg Bk Pk(cos8) . (2.2)

k=1 0
(odd)

Each term in this expansion is a solution to Laplace's
equation and is symmetric under rotations about the z axis
and antisymmetric under reflections across the x-y plane.

Near the center of the trap P~ =B,z/2zp. This is the
potential of a spatially uniform electric field, and Bi is
equal to the constant a used by Wineland and Dehmelt.
For parallel plate endcaps at z=+zo and the ring moved
far back to )pp&~zp, the expansion coefficient Bi ——I and
all other Bk vanish. Hyperbolic endcaps are pulled back
further from the center of the trap than are the imagined
flat endplates. The electric field through the center of the
trap is therefore reduced so that a value of Bi & I is ex-
pected. For large enough pp/zp, the ring will not affect
the electric field near the center of the trap so that the Bk
will approach limiting values which are independent of
this ratio. As pp/zp is reduced, the ring will increasingly
screen the field through the center of the trap so that B& is
further reduced. Wineland and Dehmelt estimated that
Bi ——,

' for asymptotically symmetric traps.
The electrostatic potential Pz is also the key to under-

standing the additional oscillatory potentials superim-
posed upon the electrodes as a consequence of a trapped
particle's axial oscillation at frequency m, and upon those
applied to drive this oscillation. Because co, is typically a
radio frequency, the associated oscillatory fields have
wavelength A, »zo. The interior of the trap is thus in the
"near field" region where the spatial distribution of the
oscillatory fields is that of the electrostatic fields produced
in the trap by the instantaneous potentials on the elec-
trodes.

To identify the boundary conditions which correspond
to the instantaneous potentials consider the detection con-
figuration of Fig. 4(a).' The endcaps are connected with a
resistor R and the other electrodes are grounded. The in-
stantaneous sum of the potential VI induced across R by a
trapped particle's axial motion and the Nyquist thermal
noise V„ from R are detected with a differential
amplifier-detector with infinite impedance. In practice, of
course, an inductor is placed in parallel with R in order to
tune out the capacitance of the trap and the input im-
pedance of the amplifier contributes to R. The potential
within the trap at this instant is therefore equal to

tz

V„)

(b) tz

q (';)
D

+ ( VI + V + VD )( — P + Pp) (2.4)

The first term is antisymmetric under z~ —z and has the
spatial distribution of Pq. The second term is symmetric
under z —+ —z and the solutions to Laplace's equation, P,

Z i)

$o( z)=$ (z)

(o)

Z I

FIG. 4. Electric circuits used to detect and damp the axial
resonance. The axial motion induces the potential Vl on the
endcaps. The resistor R damps the axial motion and thermal
noise from R produces the noise drive V„. An external genera-
tor produces VD. All of these potentials are oscillatory poten-
tials.

the instantaneous potential of the other endcap. Within
the trap, the potential is given by

V=( VI + V. —VD)4~

V=(VI+ V. )A, (2.3)

where P~ is again the solution to Laplace's equation with
boundary conditions in Fig. 3.

The related detection configuration in Fig. 4(b) allows
the additional application of an oscillatory drive potential
VD. The ring and compensation electrodes are again
grounded (for radio frequencies) and VD is applied be-
tween one endcap and ground. The resistor R is connect-
ed between the other endcap and ground so that Vl+ V„ is

$~ (-z ) = $c (z)

(b)
FIG. 5. Boundary conditions which uniquely define the solu-

tions to Laplace's equation, $0 and P„which are even under re-
flections across the x-y plane. These solutions were studied in
Ref. 8.



and Pp, are uniquely determined by their boundary condi-
tions in Fig. 5. These solutions mere calculated and dis-
cussed in Ref. 8 because of their importance for the static
trapping Rnd coQlpcnsatlon potcQtials. For a good trap,
P, is very small and Pp is nearly a quadrupole potential so
that for our purpose here

2 & 2Z —P
I NP

—40.=
12 Zo+ 2po

»

+COnst .

A complete accounting of the oscillatory potentials in-
volved in Fig. 4 thus requires only the additional calcula-
tloil Of Pg.

A relaxation calculation is used to calculate P~ and
hence the expansion coefficients Bk. It is basically similar
to that used to calculate P, and Pp in Ref. 8 but differs in
onc crucial I'cspcct. LRplacc s cquatlon ls agafQ solved Us-

ing the coordinates

(3.2)

so that a square mesh in (s, t) space produces mesh points
exactly on thc hyperbolic electrodes as shown in Fig. 6.
Thcsc coordinates, however, Rfc intrinsically cvcn Under
the reflection z~ —z and are thus incompatible with the
odd symmetry of P&. To remedy this problem we intro-
duce a function X defined such that

(3.3)

More precisely, X is defined to be equal to 1/2z on the
UppcI' cndcap, to vanish on thc rIng and compensation
electrodes, and to be invariant under both rotations about
the z axis and the reflection z~ —z. In addition, X is de-
fined to be a solution to the differential equation

0
O'X a'X 1 aX 2 BX+
I)p ()z p Bp z Bz

This equation is identical to Laplace s equation in cyHndre»

ical coordinates (which P~ must satisfy) except for the ad-
dition of the last term. Equation (3.4) is transformed to
the coordinates s and I; and solved by relaxation.

The relaxation calculation of 7 and the least-squares fit-
ting to zX to ascertain the Bk aI'e siroilar enough to that
for P, and Pp in Ref. 8 that only differences are men-
tioned here. The relaxation formulas are slightly different
because the differential equation for X is slightly different.
Convergence of X occurs more quickly than for P, and Pp
bccausc thc potcQtial Rt tlM center of thc trap docs not
nccd to pcIMtratc through thc scvcrcly sclccIMd asyIHptot»t

ic region. For similar reasons 7 varies only slightly over
the interior of the trap compared to the orders-of-
magnitude variation which typically occur for P, and bp
so that a coarser mesh suffices. Figure 7 shows the cal-
culated values of 81, BI, and Bs for an asymptotically
symmetric trap (defined by pp

——2zp), with a=180' and
p&/zp=2. 5, as a function of mesh intervals in zp. Notice
that 81 ls converged within 0.2% already for ten mesh m-
tervals, the mesh density shown in Fig. 6. Typically R

mesh density of 40 intervals in zp was used.
The endcap and ring electrodes of the traps used for the

high prcclslon electron~ pos1tron, Rnd proton cxpcrIIYlcnts
previously mentioned all lie on hyperbolas specified by
po

——2zo. Thcsc hyperbolas arc sylT1IIlctric about thc qUad-
rupole asymptote (z =p /2) for large p and z. Figure 8
shows BI through 87 for such asymptotically symmetric
traps plotted as a function of the location of the compen-
sation electrode (r, /zp in Fig. 2) for variously shaped
compensation electrodes (u in Fig. 2). The coefficients
converge to values that are independent of both a and
TI /zp fol I'1/Zp & 2.2. This 1S the I'Cgloll wllCIC plCciS1011
traps have been built. Notice that the calculated value of
81 ls abollt 60% lllghcr than thc pl'cvlollsly estimated
value which is represented by the dashed line. This
means that (BI) (which is proportional to the width of
the axial resonance) is about 2.5 times greater than previ-
ously estimated. This is discussed further in. Scc. IV.

Thc 8k in Fig. 8 Rrc surprisingly simple. For
r, /zII )2.5

(3.5)
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FIG. 6. Model hyperbolic trap of Fig. 2 with a square mesh
in (5, t) space snpefimposed.

FKJ. 7. Dependence of $)~ 83» and B5 Upon the nUQlber of
mesh intervals in zo for an asymptotica11y symmetric trap with
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For lllcreaslllg r&/zo lt 1s not surprlslIlg that the Bk ap-
proach limiting values that are independent of a and

r, /zo, because the potential in the asymptotic region is
severely screened from the center of the trap by the end-

cap and ring electrodes. %'hat is a pleasant surprise is
that 8~+83 =1.00 and that 85 and 87 are significantly
smaller. This means that Pq is described very well over
the entire trapping volume P &Po (not just for r/zo «1)
by just the first two terms of expansion (2.2).

The solid lines of Fig. 9 show the 8k for a wide range
of po/zo. The compensation electrodes pertaining to this
figure are flat (a=180) and are located at r, /d =2.5,
where d, given by

Iso'

1 2d =T(zo+Tpo» (3.7)
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FIG. 8. Bk coefficients for asymptotically symmetric traps as
a function of the location of the compensation electrode r, /zo
for various u. The experimental value (Ref. 11) is for a trap
with r, /zo ——2.2 and a=30'.

is the characteristic trap dimension used in Ref. 8. These
choices insure that the calculated Bk are essentially in-
dependent of both a and r, /zo for each po/zo. The
asymptotically symmetric configuration (po ——2zo) and the
orthogonalized configuration proposed in Ref. 8 (with
po-1. 16zo) are both indicated by arrows. A much wider
range of po/2zo is plotted in Fig. 9 than is immediately
useful for trap construction to display the limiting values
of the 8~. To further clarify the qualitative features, the
Bk for flat plate endcaps at z =+zo and a cylindrical ring
at p=po (see Fig. 10) are plotted as dashed lines. A series
solution for these coefficients is readily available using
standard electrostatic techniques. '

As expected, the Bk approach limiting values, for large
po/2zo, which are independent of po/zo. For the cylindri-
cal trap in Fig. 10, the Bk all approach zero except for 8&
which appI'oachcs 1. Thcsc arc t4c cxpcctcd limiting
values for an infinite parallel plate capacitor. For the hy-
perbolic trap, 8~ approaches a slightly lower limiting
value and 83 approaches a limiting value somewhat
greater than zero to compensate. A crude estimate for the
limiting value of 8& can be deduced from a conformal
mapping solution for hyperbolic endcap electrodes (and no
ring electrode) in two dimensions. ' The electric field on
the axis is reduced by 6.2% compared to the flat plate
case bccausc thc two-dimensional cndcap 1s pulled back.
If we assume that the field for hyperbolic endcaps in three
dimensions is approximately reduced by twice this
aInount, we estimate that t4e limiting value is 8& -0.88
which is very close to the calculated liInit and is indicated
by the arrow on the right of Fig. 9. The experimental

FICx. 9. S~ coefficients for hyperbolic and cylindIical Pen-
ning traps as a function of po/2zo. The hyperbolic trap has
+= 180 and r, /d =2.5. AST and OHT designate asymptotical-
ly symmetric trap and orthogonalized hyperbolic trap, respec-
tively. The previous estimate of 8i —

~
is from Ref. 9. The ar-

iow aIld experimental point on thc right aIc a conformal map-
ping estimate and an electrolytic tank measurement (discussed in
the text) which apply to the case of hyperbolic endcap electrodes
and the ring moved to infinity. The additional vertical scale in-
serted in the upper right of the figure makes it possible to inter-
pret the curve for 8i directly as the effective inductance of an
electron in the trap shown in Fig. 1.

FICJ. 10. Boundary conditioils used 1Ii Rcf. 13 to obtain thc
dashed curves in Fig. 9.
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point on the right of Fig. 9 is a crude measurement made
in an electrolytic tank for the same limit.

As po/2zo ls decreased, mole Rlld Biol'c clcctrlc field
lines from the endcap terminate on the ring instead of
penetrating through the center of the trap Rnd terminating
on the other endcap. Thus, 8~ decreases and both 83 and
85 1Ilcrcasc in magnitude to CGIQpcnsatc. Thcsc chRngcs
are much less severe for the hyperbolic trap because the
hyperbolic riIlg scIccIls less scvcIcly thaIl docs the cylin-
drical ring. In the limit of po/2ZO~0 the 8k are more
difficult to evaluate for the hyperbolic electrodes and are
not included in Fig. 9. The 8k for the cylindrical trap of
Fig. 10, however, clearly show the onset of exponential
screening in that 83 and S5 turn around and drop rapidly
to zcIG.

For small r/zo, the axial motion of a trapped particle
(of charge q and mass m) is described by the familiar dif-
ferential equation of a damped harmonic oscillator:

z+I,z+m, z =I' /m . (4.1)

The harmonic-oscillation frequency ro, is related to the
static trapping potentials, of course. The damping con-
stant I; is easily recognized from Eq. (4.1) to be the full
width at half maximum of the angular frequency spec-
trum of the average power dissipated (ml, z ). The
source of the damping will be discussed presently. Static
and oscillatory axial forces together comprise F,.

A small static offset potential Vd, as in Eq. {2.1),
whether it is due to trap imperfections or is applied de-
liberately, shifts the center of the axial oscillation from
z =0 to the equilibrium value z =z, given by

Zo

4 Vd.

10 Vo
(4.3)

Consider, for example, a potential Vd, ——1 volt apphcd to
the asymptotically symmetric trap of Fig. 1 while an elec-
tron is trapped within it. Typically the trapping potentia1
Vo-10 volt so that z, /zo-4X 10

Translating the center of the axial oscillation has prov-
cIl to bc Useful ln cxpcriIQcIlts which make Usc of magnet-
ic bottles (most notably in the recent proton experi-
ments ) to measure the size of the magnetic bottle, to
determine its precise location with respect to the electric
center of the trap, and finally to shift the electric center to
coincide with the magnetic centex'. Until this calculation,
thc accuracy 1I1 thc mcasurcmcnt of thc size of a magQctic

Zo

which is obtained by setting the derivatives equal to zero
in the differential equation and approximating E, by its
leading term. This expression can be simplified for an
asymptotically symmetric trap with hyperbolic electrodes
since ln this case d =zo Rnd PEA)gd Q'Vo, w1th Vo being
the difference between the endcap and ring potentials in
the absence of an offset potential. In this special case,
8i ——0.80 from Eq. (3.5) so that

bottle was limited because the value for 8i was not well
known. Thus, the version of Eq. (4.3) contained in Ref.
11 yields z, /zo which differs by 25'//o because 8l was ap-
proximated by 1. In response to this work, m.y colleague
Van Dyck has interpreted some earlier data for a trapped
electron as a measurement of 8, for an asymptotically
symmetric trap with hyperbolic electrodes. " The size of
the magnetic bottle was measured by observing the axial
frequency shift brought about by a spin flip. Static offset
potentials were then applied to the endcaps to move the
center of the axial oscillation. A shift in the cyclotron fre-
quency was observed as the electron was repositioned in
the inhomogeneous field of the magnetic bottle. The re-
sulting experimental value for 8, agrees with the value
from the relaxation calculation in Eq. (3.5) and is plotted
with its uncertainty in Fig. 8. Despite the large error bars,
this test of the calculated value is important because the
measured values of 8 i deduced by a radio-frequency tech-
nique (discussed in the following paragraphs) differ sub-
stantially from the calculated values. In so far as the
above mcasurcIIlcnt caI1 bc doIlc only 1Q a trap with a
111Rgllcflc bottle Rnd 1'cqllll'cs thc observation of tllc axial
frequency shift which results from a spin flip, it is not a
generally available technique.

In the remaining paragraphs of this section we focus
upon the oscillatory potentials on the electrodes that are
relevant to the axial motion of a trapped particle. To
lowest order in r/zo, Pz is approximated as 8,z/2zo so
that the oscillatory drive potential VD and the oscillatory
noise potential V„produce an axial force (in addition to
the static force discussed above) given by

( VD —V„)
+z =9'

Zo
(4.4)

VI-- Rz .
2ZO

(4.5)

The amphflers (in Fig. 4) are sensitive to VI+ V„with VI
the desired signal and V„a major part of the undesirable
noise. Since V„~R, the 1.Rtlo of thc powcls Vy/V„o-R so
that R is typically made as large as possible.

The damping width I, is also px'oportional to R. The
induced potential VI produces a repulsive force on the
trapped particle, —qVIBQ&/Bz. In the limit of small
1'/zo, Eq. (4.5) can be used to write this dissipative force

on a trapped particle of charge q and mass m. To discuss
the damping constant I, to first order in r/zo, however,
we take advantage of the fact that the differential equa-
tion (4.1) is linear and we thus consider the special case of
V„=VD ——0. We thus assume that I; is independent of
both of these drives and our discussion initially parallels
the earlier discussion of Wineland and Dehmelt. 9 The
damping of the axial oscillation is due to the power
( VI /R) dissipated in the resistor R as originally discussed
by Dehmelt and Walls. ' This dissipated power is also
what is detected. Radiative damping also occurs but is
negligibly small because co, is a radio frequency. Equat-
ing the rate that the particle does work on the induced
flclds wltlllll thc tlap {glvcil by qVIzBfg /Bz) to tllc powcl'
dissipated in the resistor in the limit of small r/zo yields
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in the conventional way as —II,~ with

I,=—— R.
apl Zzp

(4.6)

Small changes in 8 ~ thus prod. uce bigger changes in I,.
Fol' collvclllcIlt R11Rlysls of detection clcctI'onlcs, Wlllc"

land and Dehmelt showed that the above discussion can
be formulated in terms of an equivalent series Ic circuit
which represents the trapped particle and is connected be-
tween the endcaps as indicated by dashed symbols in Fig.
4. The Ic circuit is resonant at co, (so that co, = I/lc) and
I =R/I;. This model emphasizes that on resonance a
trapped particle acts like a short circuit so that
VI + V„=VD. Part of the induced potential VI cancels the
thermal noise potential V„exactly on resonance. In prac-
tice, hopes for extremely high enhancements of the signal
to Qolsc rat10 on resonance have Qot yct been fcallzcd
pr1marlly because trap anharmon1c1t1es and trappmg po-
tential fluctuations introduce an effective spread in the
IcsollRllcc fI'cqucIlcy coz.

The above discussion for small r/zo can also be extend-
ed to the center-of-mass motion of a cloud of X trapped
particles which acts much like the motion of a particle of
charge Xq and mass Xm. Both co, and I', /m are indepen-
dent of X since they are functions of only the charge-to-
mass ratio. The effective damping width for the center-
of-mass motion of X particles, however, is given by

(4.7)

s1ncc thc damping constant goes as the chRrgc squared
over the mass. Differential equation (4.1) thus applies to
the center-of-mass motion of a cloud of N charged parti-
cles when I, is replaced by I z. Measurements of the axi-
al linewidth I ~ have thus been used to determine X, most
recently in the experiment to measure the ratio of the elec-
tron and proton Inasses, since a single proton has not yet
been trapped. A series lc circuit model also applies for X
partlclcs wltll l~ =I /X alld l~c~ I'csonRIlt Rt Rlg.

The analysis of axial detection and damping for small

r/z~ requires the numerical value of only the constant 81.
Dehrnelt and %'alls' estimated that Ijl I -0.9, whereas
%ineland and Dehmelt estimated that 8~ ——,'. Although

these estimates werc never taken very seriously for their
own sakes, a measured value of 8, = —,

' for electrons and

positrons in the asymptotically symmetric trap of Fig. 1

and scvcI'al others was taken much morc scnously.
After a single particle was unambiguously trapped, and
the anharmonicity tuned out of the trap, the value of
(BI ) was deduced from the measured value of I, using

Eq. (4.6). The present relaxation calculation was then un-

dertaken to check for departures from the measured value
of 81 for different po/zo, r, /zo, and a. Instead, the calcu-
lated value of I,/R unexpectedly turned out to be larger
than the measured value by more than a factor of 2. For a
given R, the measured axial widths are thus narrower than
predicted by the relaxation calculation value of 8& and

Eq. (4.6) by this factor.
One possible source of the discrepancy is higher-order

terms in the expansion of the potential. These can be

readily examined because the relaxation calculation pro-
duces 83. Terms through the 83 term can be accounted
for in the formulas of this section if 81 is replaced by

2z/zo

1+po/2zo zo
(4.8)

The second term comes from the quadrupole potential in

Eq. (2.4) and thus is only present for the detection config-
uration of Fig. 4(b) and not for that of Fig. 4(a). Includ-

ing these terms provides a Inuch improved approximation
because the relaxation calculation shows that higher-order
Bk are negligible for p &po, especially for asymptotically
symInetric traps.

The substitution (4.8) should properly be used to derive
a more complicated differential equation to replace Eq.
(4.1). We take instead a more qualitative approach. Re-
call that I, ~ (8, ) in Eq. (4.6) and thus note that only the
—p /2 term in the substitution (4.8) is capable of reducing

If wc focus on this term and neglect the others we
find that I, gets replaced by I,' which depends upon p

681 pl 1

I
2Zp

(4.9)

I am thankful to Lowell Brown, Hans Dehmclt, Paul
Schwinberg, and Phil EkstroIQ for helpful conversations

This approximation is not as arbitrary as it may first
seem. The terms neglected all go as some power of z/zo.
There is every reason to believe that these terms are rela-

tively small because the axial motion is naturally damped
Rs described Rbovc. Tllc nlagnctI'oil Illot1011 of R tlappcd
particle, however, is essentially decoupled from its envi-

ronment so that rather large values of p are possible. For
an asymptotically syInrnetric trap p /2zp is equal to
(p/po) and a realizable magnetron radius of p/p0-0. 6, in
fact„would make I",' approximately equal to the axial
width observed in asymptotically symmetric traps. The
probleIn with this scenano is that electrons are typically
loaded near the z axis where p/po~10 and sideband
cooling has been carefully used to reduce p below this
value, to p/po=3X10 according to Ref. 3. Higher-
order terms are thus net able to explain the d1screpancy
between the measured and calculated values of I",.

A more likely source for the disagreement between mea-
sured and calculated I,/8 is difficulties in measuring R
and/or I,. A consistent mismeasurement of R by more
than a factor of 2 is difficult to inlagine, however. The
mcasurcmcnt of I ~ 1s generally open to some misinterpre-
tation because of electrostatic anharmomcity, but anhar-
monicity can only broaden (not narrow) the observed reso-
nance width. Electrical feedback from the output of the
amplifier to the drive endcap [the lower endcap in Fig.
4(b)] could effectively reduce R in the desired manner. It
seems unlikely, however, that such feedback should be so
uruformly present in different experimental arrange-
ments. Indeliberate attempts to produce such feedback re-

vealed that it was not easily estabhshed. ' No convincing
explanation of the discrepancy has thus yet emerged.
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