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Wave functions, energies, and binding energies for the lowest singlet states of H™ and He in uni-
form magnetic fields B < 10° G are calculated using an adiabatic approximation in hyperspherical
coordinates. In computing the angular part of the wave functions, a coupled expansion in one-
electron oblate spheroidal angle functions is used. In addition to contracting the two-electron wave
function radially, the magnetic field is found to distort the angular part of the wave function mainly
by reducing the ss 'S character of the state and replacing it with an sd 'D character. Results for en-’
ergies and binding energies are comparable with those obtained in variational calculations. In order
to compute the binding energies of H~ and He we have also calculated the binding energies of the
ground states of H and He* in uniform magnetic fields B < 10° G using the adiabatic oblate-
spheroidal-coordinate method of Starace and Webster.

I. INTRODUCTION

The study of atomic hydrogen, or of hydrogenlike
atoms, in a high uniform magnetic field has attracted in-
creasing experimental and theoretical interest, as has been
reviewed elsewhere.’? In addition to its applications to as-
trophysics® and to solid-state physics,*> such study is of
high theoretical interest in atomic physics because it re-
quires new methods for treating the nonseparability of the
Schrédinger equation for an electron in combined
Coulomb and uniform magnetic fields."?> Two-electron
and heavier atoms in high uniform magnetic fields are
also of interest for their applications.>> Such atoms, how-
ever, have not been as well studied theoretically because
they require a description of correlated electronic motion
in combined Coulomb and uniform magnetic fields.

Much of the theoretical work which has been carried
out for nonhydrogenic atoms has been concerned either
exclusively or primarily with magnetic fields 32109 G
which strongly influence the orbital motion of even
ground-state atomic electrons, at least away from the
atomic nucleus, and for which electron correlation effects
are of less importance than magnetic field effects. Thus,
studies®~® have been carried out which have predicted
quite novel atomic structures for heavy atoms in magnetic
fields of order 10'2 G, such as are thought to exist on neu-
tron stars. For two-electron systems in such high magnet-
ic fields, a number of specific calculations’®~!* for the
ground and low-excited states have been done employing
approximations appropriate to such high fields such as
use of cylindrical coordinate wave functions, etc.

Only a few calculations for two-electron systems have
been designed to appropriately treat the region of magnet-
ic field strengths B < 10° G for which electron correlation
effects are dominant or at least comparable to magnetic
interaction effects. Calculations!*~!7 for energy levels and
spectral line strengths of He have been performed which
treat the magnetic interaction terms perturbatively for
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fields in the range 10° G <B< 10® G. Variational calcula-
tions!®=2° for H~ and He energy levels which use spheri-
cal coordinate trial functions have been done for fields in
the range 0 < B < 10'! G. Recently, the 'S and 3S ground-
state energies of the heliumlike systems He1l, SiXIII, and
Fexxv have been calculated in this magnetic field region
using both perturbative and Hartree-Fock approaches.?!

We present here a detailed study of the effects of uni-
form magnetic fields B < 10° G on the two-electron wave
functions, energies, and binding energies for the 'S ground
states of H™ and He. In order to describe electron corre-
lation effects as simply and as accurately as possible we
provide here an adiabatic hyperspherical coordinate
description of two-electron systems in uniform magnetic
fields. Such hyperspherical adiabatic approximations
have been shown, in the field-free case, to provide both
qualitative insights and quantitatively accurate predictions
for low-energy two-electron states.’>~2* Furthermore, for
the lowest states of a given symmetry these adiabatic ap-
proximations provide rigorous upper and lower bounds on
the energies and binding energies.”

A key approximation in our approach is that we
represent the hyperspherical angle function as a truncated
expansion in coupled one-electron oblate spheroidal angle
functions.?®?” These functions have been shown?’ to pro-
vide an accurate description of one-electron motion in a
uniform magnetic field; each of these functions implicitly
includes a large amount of the ! mixing which is an im-
portant feature of such motion. We show in this paper
that such one-electron / mixing is the dominant magnetic
field distortion of the angular part of the two-electron
ground-state wave functions of H™ and He.

In Sec. IT we present our hyperspherical coordinate for-
mulation of two-electron systems in a uniform magnetic
field. In Sec. III we describe the approximations used to
solve the equations presented in Sec. II. In Sec. IV we
show the magnetic field-induced changes in the angular
and radial distribution of the two-electron wave functions.
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We also present our results for the energies and the bind-
ing energies of H~ and He. In order to obtain the binding
energies we have had to compute the energies of the one-
electron systems H and He™ in a uniform magnetic field.
We present these one-electron energies here also; they were
obtained using the adiabatic oblate-spheroidal-coordinate
method of Ref. 25. Finally, in Sec. V we present our con-
clusions.

II. EXACT FORMULATION

A. Schrédinger equation in hyperspherical coordinates

For singlet states, the Schrédinger equation in spherical
coordinates for a two-electron system in combined
Coulomb and uniform magnetic fields is®®

i=1 2me 2 e
2 2
e . Ze N
+ 5B 2p25in%0 Y(1,T,)
8m,c ¥
2

——W(T, 1)) =E¥(T,T3), (1)
|T1—T>

where the magnetic field B has been oriented along the z
axis, L;, is the z component of the orbital angular momen-
tum operator for the ith electron, and m, is the electron
mass.”’ The operators in Eq. (1) are those for the kinetic
energy, the linear Zeeman shift, the quadratic Zeeman
shift, the nuclear Coulomb interaction, and the electron-
electron Coulomb interaction. We shall use atomic units
henceforth (i.e., m, =e =h =1), introduce the strength pa-
rameter vy,

y=B/2c=(2.12715x 10" a.u./G)B(G) , )

and transform | T;| and | T,| to the hyperspherical coor-
dinates R and o using

ri=R cosa , (3a)
r,=R sina . (3b)
Then Eq. (1) becomes®®
d> 5 d A*4RC .
—dl-(7 —IE‘ EE - %" —’}/ZR 2( COSZG sm"Bl

+sinasin®,)+2E' | W(R,a,71,7)=0. (4)

In Eq. (4), A? is the generalized angular momentum opera-
tor,

1 d . d
A’=— ————— ——sin"acos’a ——
sina cos’a da da
A ey
Ly L3
2 Ve )
cos’a  sin’a

where 1 and L , are the angular momentum operators for
particles 1 and 2. The operator C in Eq. (4) is the sum of
the nuclear and interelectron Coulomb interactions,

2
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and, lastly, E’ is the total system energy reduced by the
linear Zeeman energy,

E'=E—yM, )

where M is the z component of the system’s orbital angu-
lar momentum.

Following Macek,?? we write the two-electron wave
function as a sum of products of radial and angular func-
tions as follows:

Wi R,a,7,,75)=(R>*sina cosa) !
X ZF;LE'(R)(D#(R ;a,f'\l,r/‘}) . (8)
n

Substituting Eq. (8) in Eq. (4) one finds that the channel
function @, satisfies the following angular equation,

(L3+x%in%0,) (L 3+7nsin%0,)

cos’a
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=U,(R)®,, (9

where U, (R) is an eigenvalue and R is treated as a param-
eter. In Eq. (9) we have defined the variables X and 7,

where
X=yR?cos’a , (10a)
n=yR%in’a , (10b)

for reasons to be discussed below. Note that Eq. (9) is in-
dependent of the system energy E’; ®, describes the angu-
lar character of a channel u of two-electron states whose
individual members differ only in their radial behavior.
The channel functions are orthonormal at each R,

m/2
((I)I”(I)I‘:)E fO dafdf'\l fdf'\zq’;(R ;a’f\lﬁ‘Z)
X(D#'(R ;a,ﬂ,?z):s,m' .
(11)

The radial functions F,z(R) satisfy the following cou-
pled set of equations:*?

d? U, R)++

+2E ’F,,E'(R )

arz t R?
P,
" 3 aRZ 1
od, | OF,
2 |® fd H'E _
+ " 3R 3R 0, (12

where the coupling matrix elements between different
channels u and p’ are angular matrix elements of the radi-
al derivative operators. Differentiation of the orthonor-
mality relation (11) with respect to R shows that the first
derivative matrix elements are antisymmetric,
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o, 20 0%s @, (13)
® 3R 3R’
and, hence, the diagonal elements vanish,
03 0Ds =0 (14)
® AR |

Differentiation of Eq. (14) with respect to R shows that
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3R’ OR

2
PP,
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i.e., the diagonal second derivative elements are negative
definite.

B. Oblate-spheroidal angle function expansion

In the absence of a uniform magnetic field,
y=X=n=0, and the standard procedure for solving Eq.
(9) for the channel function and its eigenvalue at each R is
to make an expansion in the eigenstates of L % and L %, ie.,
in spherical harmonics. Thus, Macek writes>?

OM= 3 Al L (R0 1, im(ProFa) (16)
L,
where
Y15, (FLP2) = 3 Yim, (F) Y, (F2)
mymy
X(l,m112m2|LM) 5 (17)

where the coefficient in Eq. (17) is a Clebsch-Gordon
coefficient, and where the coefficient in Eq. (16) must be
obtained numerically at each R by solving a differential
equation in «.

In the presence of a uniform magnetic field, the
numerators of the cos™2a and sin~?a terms in Eq. (9)
may be considered as operators in 6; and 6,, respectively,
with X and 7 regarded as parameters. These operators
have as eigenstates the oblate-spheroidal angle func-
8vm, (X;0,) and g,,zml(n,ez) where
mi

sin291

sinf, dé

1 d_
sm@l d91

+X2sin261]gvlml()(;el)zVvlml(X)gvlml(X;Hl) (18)

and g,‘,zmz(n,ez) satisfies a similar equatlon Note that
8vm, depends only on | m | since only m 2 appears in Eq.

(18). When X —0 due either to vanishing magnetic field B
or to vanishing r; =Rcosa, then the oblate spheroidal an-
gle function and its eigenvalue have the following limit
behaviors,

gvlml(X;Ol)xjoevlml(cosel) , (19a)

Vom0 = vilvi+ 1), (19b)

ie, gym, and Vym become an eigenstate and an eigen-

value of [ 2, respectively, with orbital angular momentum
quantum number v,. The function ©,,,, (cos,) is simply

related to a spherical harmonic:
leml(91,¢1):6V1m1(cosel)exp(im1¢1)/v 27 . (20)

For X >0, on the other hand, g, », (X;60;) represents an ex-
pansion in orbital momentum eigenstates O, (cosf),

gm(X;0)= 3" D™(X)Opy(cosh) , 2D

I>|m|

where the prime on the summation indicates that only
those / having the same parity as v are summed. The
coefficients have the expected limit behavior,

Dy™(X) — &y, . (22)
X—0

As shown in Ref. 25, the oblate-spheroidal angle func-
tions provide a good representation of the angular part of
a low-energy one-electron wave function for magnetic
fields B < 10° G because, as in Eq. (21), they implicitly in-
clude a large amount of the / mixing which is a charac-
teristic of the motion of an electron in a uniform magnetic
field. For this reason, we generalize in the case of a uni-
form magnetic field the representation in Egs. (16) and
(17) for the channel function @, by representing it as an
expansion in coupled oblate-spheroidal angle functions in-
stead of in ordinary spherical harmonics,

= 3 AY v .AM(R a)¥ y ,AM(X 7,72 , (23)
Vl"z}‘
where

@vlvsz(Xrn;’/'\la?Z):
> 8vym,(X;01)[explim 161)/V 27]181,m, (1;62)

mym,

X[exp(ingbz)/\/f'l_r](v]mlvzmz | W) . (24)

Note that there is a sum over A since this is not a con-
served quantum number in the presence of a uniform
magnetic field. Note also that because of its dependence
on X and 7 (cf. Eq. 10), %, , a» in Eq. (24) depends on R

and a. This dependence complicates the differential equa-
tion for the coefficients Aﬁ,‘le;bM as compared to the field-

free case. This added complication, however, will be com-
pensated in approximate calculations by the better repre-
sentation provided by the oblate-spheroidal angle func-
tions, which permits a straightforward means of truncat-
ing the expansion over v, v, and A, as discussed in Sec.
II1.

Using the representation for the channel function <I)f:{ in
Eq. (23), Eq. (9) may be reduced to a differential equation
in a for the expansion coefficients 4%, 2». One substi-
tutes Eq. (23) in Eq. (9), multiplies from the left by the
complex conjugate of Eq. (24), and integrates over 7y and
7>, taking note of Eq. (18) for the oblate-spheroidal angle
functions as well as of their orthonormality, e.g.,

m
@vmy o8y )= [ Bvym, (0118, (X,01)5in0,d0,
- (25)
. i
The result is
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2
{ ddaz — Uu(R) |4 am (R ;)

Vim, 00

Vo,m, (1)

2 <’V1m1‘V2mz l }\,M>

2 )
mym, cos“a sin“a

K3

u ca)—
- 2 (Rcvlvzk,v; v&k' +levzl,v'1 vék' )4 v;v,ZA'M(R ’a) 2

vivpA

In Eq. (26) the first summation on the right contains the
oblate-spheroidal eigenvalues V., and V, ., which

represent, through X and 7, R- and a-dependent potentials
for one-electron motion in a uniform magnetic field.

When B—0 the potentials V,, ,, and V,, ,,, become con-

stants independent of m; or m, and the sum over m; and
m, may be performed to obtain §,, . Similarly, when one
of the electrons moves close to the nucleus so that either
ri=R cosa or r,=R sina becomes ~0, then the corre-
sponding potential becomes a constant and for that term
the sum over m and m, may be performed to obtain 8.
Otherwise, one sees that the one-electron oblate-spheroidal
potentials, while preserving the oblate-spheroidal quantum
numbers v; and v,, do lead to a certain amount of A mix-
ing. The operator C has been defined in Eq. (6); the ma-
trices X and W arise due to the a dependence of the
oblate-spheroidal angle functions. Expressions for the
matrices C, S, and W are given in Appendix A.

III. APPROXIMATIONS EMPLOYED

Both the angular differential equation (26) and the radi-
al differential equation (12) have the form of an infinite
set of coupled differential equations. In seeking suitable
approximations we have been guided on the one hand by
previous work on the hydrogen atom in a uniform mag-
netic field.”> This work shows that for low-lying bound
states, a single oblate-spheroidal angle function is a good
representation of the angular part of the single electron’s
wave function up to fields of order B <10° G. This im-
plies, in other words, that use of the oblate-spheroidal
eigenvalue V,,, and its corresponding eigenfunction g,,,
are sufficient in this field strength regime and that con-
sideration of the off-diagonal coupling matrix elements in-
volving derivatives of g,,, with respect to the parameters
X and 7, such as those that occur implicitly in the defini-
tion of the matrices in Appendix A, is less important. On
the other hand, we have also been guided by previous
work on the separable or adiabatic approximation in
hyperspherical coordinates.”>~2* This work shows that
both quantitatively and qualitatively the adiabatic approx-
imation in hyperspherical coordinates is accurate for the
lowest states of two-electron systems. Based on this previ-
ous experience, we have therefore made the following
three approximations in solving Egs. (12) and (26).

A. Truncation of the basis set

In the field-free case, we have obtained convergence of
hyperspherical adiabatic energy eigenvalues for the 'S

(vimyvamy |NM) |45, au(R;0)

0

Pt~
A YA g

' Al o (R3Q) 26)

voA!

'ground states of H™ and He using the (/{,l,) pairs (0,0),
(1,1), (2,2), and (3,3) in Eq. (16). Since we expect magnetic
field effects near the nucleus to be negligible, we have
chosen to represent the channel function in Eq. (23) in the
presence of a magnetic field in such a way that for either
B—0 or R—0 Eq. (23) reduces exactly to the field-free
channel function in Eq. (16). Thus, we have restricted the
summation in Eq. (23) as follows: We require that
A'=L =0 and that the pairs (v;,v,) have the same values,
ie., (0,0), (1,1), (2,2), and (3,3), as in the field-free case.
With this choice, Eq. (23) does reduce to Eq. (16) as either
R or B becomes small due to the oblate-spheroidal angle
function’s becoming the 0 part of a spherical harmonic
under these circumstances [cf. Egs. (19a), (20), and (24)
with Eq. (17)].

It is important to note that, in restricting A’ to zero, we
are not forcing the total angular momentum of the system
to be zero. Furthermore, in choosing the (v,v,) pairs to
be (0,0), (1,1), (2,2), and (3,3), we are not restricting the
one-electron orbital angular momenta to these values.
This is because v;, v,, and A are not orbital angular mo-
menta: v, and v, are oblate-spheroidal quantum numbers
which equal one-electron orbital angular momentum
quantum number only near the nucleus or in zero magnet-
ic field; A happens to be a quantum number obtained by
combining v, and v, as if they were orbital angular mo-
menta. In fact, we find that the most significant effect of
the magnetic field on the angular part of the two-electron
wave function is to introduce a component with [, =0,
1, =2, and L=2 which, while not obviously contained in
our basis set (since A=0 and v, and v, are restricted to
pairs with v;=v,), is nevertheless included due to the /
mixing implicitly accounted for by our use of oblate-
spheroidal angle functions.

B. Perturbative treatment
of angular equation matrix elements

Since we have restricted A=A'=0, the three matrices in
Eq. (26) have elements which may be written as C

, yand W

V¥, v'1 vy

part of C - which is changed by the magnetic field is

vivpviyy’

,. As shown in Eq. (A1), the only

v

the interelectron Coulomb interaction; the nuclear
Coulomb interaction is unaffected. But the electron-
electron interaction is only large near the nucleus, where
magnetic field effects are small. For this reason a pertur-
bative treatment of the magnetic field effects on this ma-
trix element is appropriate.
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(A2) and (A3), X , , and

vivav1iva

, , are dependent on first- and second-derivative
VIV, V1 V)

coupling matrix elements of the oblate-spheroidal har-
monics. These latter coupling matrix elements, however,
are small unless the parameters X and 7 in Eq. (10) be-
come significantly greater than unity. This occurs, for the
field strengths considered for H~ and He here, only in the
tail of the two-electron wave function. Hence, the mag-
netic field effects may also be treated perturbatively here.

For these reasons we have made the following perturba-
tive approximaton: We write the oblate-spheroidal expan-
sion coefficients D}™(X) and D;™(n) [cf. Egs. (21) and
(22)] as

D™ =8, +A™ . 27)

We then calculate the matrices in Appendix A only to
first order in the A coefficients. The results for these ma-
trices are given in Appendix B.

From Eq. (27) we see that a perturbative approximation
will work provided A}™ << 1. Our calculations show that
A7™ <0.1 for the flelds and states considered in this paper.
Spec1ﬁcally, for H™ in a field of 10® G, A}™ <0.1 for radi-
al coordinate values R <12; for He 1n a field of 10° G,
A7™<0.1 for radial coordinate values R <4. For lower
magnetlc field strengths this condition on 1 AY™ would be
satisfied for larger R values. Note that, for R values
larger than those indicated, the H™ and He wave func-
tions are exponentlally decaying and so values A" >0.1
occur only in regions of coordinate space where the proba-
bility of finding an electron is small.

As shown in Egs.

C. Adiabatic approximations to the radial equation (12)

In the adiabatic or separable approximation to the radi-
al Eq. (12), one drops all off-diagonal coupling matrix ele-
ments:??

9*D,
w aRZ

d? N U#(RH-%
dR? R?

+2Ey |Fop(R)=

(28)

The subscript U on the energy eigenvalue indicates that
for the lowest energy state of a given symmetry, E; is a
rigorous upper bound on the true energy.?’ If one drops
the diagonal coupling matrix element, Eq. (28) becomes

d? N Uu(R)+':'
dR*? R?

Here the subscript L on the energy eigenvalue indicates
that for the lowest energy state of a given symmetry, E;, isI

+2E; |Fup(R)=0. (29)

2L +1

M=0y _ .
(Zu,L0l Py =)= 3 A%, 0(R;a) vt

1

I
><§‘,[D,11 0D () +(— 1D ™ 00D;! 1(17)](

a rigorous lower bound on the true energy.?’

Note that Ey; is to be compared with the results of vari-
ational calculations. Furthermore, Ey; is generally to be
preferred to E; since one may show that the diagonal cou-
pling term in Eq. (28) is necessary in order that F,z (R)
has the proper asymptotic form.?? The pair of values Ey
and E; provide not only bounds on the true energy but
also an indication of the possible effect of the neglected
off-diagonal coupling matrix elements.

IV. RESULTS AND DISCUSSION

In the adiabatic approximation discussed in Sec. IIIC,
the two-electron wave function is represented as [cf. Eq.

(8]

¥i(R,a,7,7;) ~(R>*sina cosa) ~'F,p/(R)

X @Y (R;a,71,72) , (30)

where u identifies the channel of two-electron states under
consideration and E’ gives the reduced energy of a partic-
ular state in that channel. The superscript M on the chan-
nel function simply makes explicit the fact that the z com-
ponent of orbital angular momentum is a conserved quan-
tum number. For the H™ and He ground states con-
sidered here, M=0. We discuss, in turn, the effects of a
uniform magnetic field on the channel function ®,, the
radial function F,z, and the energy E’ as well as the
binding energy. Although we present wave function re-
sults only for H™, our results for He are similar.

A. Angular distortion of the two-electron wave function

The channel function 4),1:{ in Eq. (30) is represented by
Egs. (23) and (24). Its expansion coefficients are obtained
by solving the eigenvalue equation (26) using the approxi-
mations discussed in Secs. III A and III B above. In order
to display the effect of the magnetlc field clearly we have
projected the channel function <I> onto the following set
of orbital angular momentum bas1s states:

A 2
Y, ,o=Nu1, |Z1,1,L0(F1,F2)

i+l +1,—L

+(=1) @IZIILO(?I”"\Z)

(31a)

where

Ny, =27"8,+272(1-8,1,) , (31b)
and the coupled spherical harmonics appearing in Eq.
(31a) are defined in Eq. (17). The index i takes the values
0 and 1 for symmetric and antisymmetric combinations of
the coupled spherical harmonics. For /,=I[,, of course,
only the symmetric combination is nonzero.

The result of this projection is

(— 1)VlNlllz

I, L
my
“m, o) =D (32)
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Equation (32) indicates that cpﬁ’ has no component with
odd L. This follows from three facts: /; and /, must have
the same parity for the ground states considered here; the
D}™ coefficients depend only on |m |; if L is odd, the 3j
coefficient is zero for m=0 and the sum of the two coeffi-
cients with values m ==+ |m | is zero. [A similar analysis
of each term in Eq. (26) shows that the A=M =0 state
couples only to states with even A’ values.] The square of
the absolute value of Eq. (32) represents at each R the
probability, per unit length in @, of the channel ¢’s having
the angular momentum character of a symmetric (i=0) or
antisymmetric (i =1) (/,/,LM=0) state. This follows
from the normalization of the channel functions ®, in Eq.
(11). When X =7=0, use of Eq. (22) allows the summa-
tion over m, to be performed analytically to obtain

(Y 1,00 | Py =°>x,17_i Abi100(R,)81,1,810810 - (33)

In Fig. 1 we consider the B=0 case first, showing the
absolute square of Eq. (33) in R and a space for the four
largest angular momentum components of the lowest s
channel function ®, of H™. In interpreting this and sub-
sequent figures, recall Eq. (3): The region near a=mw/4 is
where r| ~r, while the region near a=0 is where r; =R,
r,~0. (The symmetric region w/4<a<w/2 is not
shown.) The striking feature of Fig. 1 is that, whereas
near a=/4 the Il 'S components with />0 make some
contribution, they do not contribute significantly near

a=0; for large R, in particular, the state has predom-
inantly ss 'S character focused on an increasingly smaller
region near a=0.

In Fig. 2 we show the same channel function ®, of H™
in a magnetic field B =910’ G. This time we plot the
absolute square of Eq. (32) showing again the // 'S com-
ponents with /=0, 1, 2, and 3. The only significant
change from the field-free case in Fig. 1 is in the ss S
component, which is markedly decreased at large R. This
loss of probability is even clearer in Fig. 3, in which we
have plotted the difference in the probabilities in Figs. 1
and 2.

Figure 4 shows that the missing probability in Fig. 3(a)
does not appear in states of the form // !L. We have plot-
ted all such states for /=0, 1, 2, and 3 and L = even.
These states have probabilities less than 10~7 per unit
length in a. Notice that what probability there is in these
channels appears only for large R.

Figure 5 shows exactly where all of the missing proba-
bility has gone. Here, for the first time, we show the
probabilities that @, has components with /,£[,. Since [,
and /, must have the same parity, the three cases shown
are the only ones permitted for /;,/, <3. We see that Fig.
5(a) for the symmetric (i=0) sd 'D probability is identical
in shape to Fig. 3(a) for the missing ss 1S probability and
has exactly one-half the probability. Not shown, because
they are identical to Fig. 5, are the antisymmetric (i=1)
probabilities for the same [, 'L states. The sum of the
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symmetric and antisymmetric sd 'D probabilities exactly
equals the missing ss 1S probability. This implies that for
the ground states of H™ (shown) and He (not shown) the
main angular distortion of the wave function by an exter-
nal uniform magnetic field is essentially a one-electron
transition s —d of one of the electrons when it is far from
the nucleus and the other electron is left behind (i.e.,
ri=R >>r,=0).

B. Radial distortion of the two-electron wave function

Our results for the He and H™ ground-state radial wave
functions F,z(R) obtained by solving the hyperspherical
adiabatic equation (28) are shown in Fig. 6. For H™ this

wave function is computed for B =9x 10" G while that

for He is computed for B =3 10® G. One sees that the
magnetic field compresses the radial wave function slight-
ly to lower R values due to the quadratic Zeeman interac-
tion. Specifically, as the parameters X and 7 increase at
large R [cf. Eq. (10)], the oblate-spheroidal eigenvalues in-
crease [cf. Eq. (18)]. These, in turn, lead to an increase in
—UL(R) [cf. Eq. (26)] at large R, which means that the
effective potential seen by F,(R) increases [cf. Eq. (28)]
causing the observed compression to lower values of R.

C. Ground-state energies and binding energies

We have calculated rigorous upper (lower) bounds on
the lowest singlet state energies for H~ and He by solving
Eq. (28) [Eq. (29)]. The binding energies I(H™) and I(He)
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FIG. 6. Hyperspherical adiabatic radial wave functions for
the singlet ground states of He (B=3Xx10® G) and H~
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for the singlet state are obtained from the following equa-
tions:

EMH)+IH)=EMH)+v,
E(He)+I(He)=E(Het)+7y .

(34a)
(34b)

These equations mean that when we just ionize the two-
electron system we obtain the energy of the one-electron
system in the same magnetic field plus an electron infin-
itely far away in the lowest Landau level®! having energy
y [cf. Eq. (2)]. Now for the one-electron system,

EH)=—IH)+vy,
E(Het)=—I(He")+7v .
Further, if we follow the practice of Refs. 18—20 of refer-

(35a)
(35b)

FIG. 5. Same as Fig. 4 for symmetric /,/, 11, states: (a) I;=0,
L,=2,L=2;b)],=1,1,=3,L=2;(c) ,=1,1,=3, L=4.

ring the singlet state binding energy to the triplet state
threshold, which is an energy —2y lower due to the fact

TABLE I. Ground-state energy of H~, E(H ™), binding energy of H, I(H), and binding energy of H~, I(H~), in a uniform magnet-

ic field.
EMH™) (a.u.) IH) (a.u.) IH™) (a.u.)
Present adiabatic Present adiabatic Present adiabatic
2 B results results results Variational

(a.u.) (10" G) Upper Lower Upper Lower Upper Lower HOSCR®
0.0 0.0 —0.52592°¢ —0.53679°¢ 0.5 0.5 0.03679 0.02592 0.026 85°
0.00021 0.1 —0.52592 —0.53679 0.50020 0.50020 0.036 59 0.02572
0.0005 0.235 —0.52592 —0.53679 0.50049 0.50049 0.036 30 0.02543 0.026 35
0.0010 0.470 —0.52591 —0.53679 0.50099 0.50099 0.03580 0.02492 0.025 85
0.002 13 1.0 —0.52588 —0.53676 0.50211 0.502 11 0.034 65 0.02377
0.0025 1.17 —0.52587 —0.53675 0.502 47 0.502 47 0.03428 0.02340 0.0243
0.005 2.35 —0.52572 —0.53661 0.504 96 0.50496 0.03165 0.02076 0.0217
0.01 4.7 —0.52510 —0.53606 0.509 89 0.509 89 0.02617 0.01521 0.0162
0.014 89 7.0 —0.52413 —0.53520 0.514 66 0.514 65 0.020 54 0.00948
0.01914 9.0 —0.52302 —0.53423 0.51877 0.51876 0.01546 0.004 26
0.023 40 11.0 —0.52167 —0.53306 0.522 84 0.52283 0.01022 —0.001 16
0.027 65 13.0 —0.52012 —0.53171 0.526 88 0.526 87 0.004 83 —0.00675

2y =(2.127 15% 10~ '° a.u./G) B(G).
'R. J. W. Henry, R. F. O’Connell, Ed. R. Smith, G. Chanmugam, and A. K. Rajagopal, Ref. 18.
°Exact results for B=0 of C. L. Pekeris, Ref. 32, are E(H™)= —0.527751 a.u., I[(H~)=0.027 751 a.u.



SHO
88

Variational
0.

I(He)®
Lower
0.89517¢
0.89301

Present adiabatic
Results

Upper
0.929 67°
0.92751

Lower

2.0
2.00215

Results

I(He")
Present adiabatic

Upper

2.0
2.00215

L
—2.90145

Variational

Coulomb
Perturbation
GLMO
—2.75000

Hartree
ock
THRSW

F
—2.86170

EHe) (a.u.)

Magnetic
Perturbation
THRSW
—2.90325

Lower
—2.92967°
—2.929 66
—2.92957
—2.92930
—2.928 84
—2.92837
—2.92765
—2.923 85
—2.92116
—2.91190

Present adiabatic
Results

Upper
—2.89517°
—2.89516
—2.89507
—2.894 80
—2.89435
—2.893 89
—2.89317
—2.88935
—2.88711
—2.87689

0
(2.12715x10"° a.u./G) B
PLetter key to results of other authors: THRSW, Thurner, Herold, Ruder, Schlicht, and Wunner, Ref. 21; GLMO, Gadiyak, Lozovik, Mashchenko, and Obrecht, Ref. 12; L, Larsen,
0.90372 a.u

TABLE II. Ground-state energy of He, E(He), binding energy of He*, I(He"), and binding energy of He, I(He), in a uniform magnetic field.
Ref. 11; SHO, Surmelian, Henry, and O’Connell, Refs. 19 and 20.

0.1

(10® G)
0.0

(a.u.)
0.0

0.002 13
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that the two electron spins are antialigned with the mag-
netic field, we finally obtain the following expressions for
the binding energies of the singlet ground states with
respect to the triplet state threshold:'3—2°

0.86
0.825
0.77

IH)=—I(H)—EH7), (36a)

I(He)= —I(He*)—E(He) . (36b)

0.884 48
0.873 66
0.86272
0.854 31
0.84383
0.806 10
0.799 65
0.73263

In order to compute the binding energies for H™ and
for He according to Eq. (36) we have had to compute the
binding energies for the one-electron systems H and He™.
We computed these latter binding energies according to
the method of Ref. 25. We obtained rigorous upper and
lower bounds on the exact binding energies.

Our upper and lower bound results for E(H™), I(H), and
I(H™) are given in Table I. Our upper and lower bound
results for E(He), I(He™"), and I(He) are given in Table II.
For B=0, our upper and lower bound results for E(H™),
I(H™), E(He), and I(He) sandwich the exact results of Pek-
eris*? with the upper bounds on the energies and the lower
bounds on the binding energies on closer agreement, as ex-
pected. For B>0, our upper and lower bounds on the
one-electron system binding energies I(H) and I(He™) are
essentially identical indicating that these are exactly deter-
mined. The differences between the upper and lower
bounds on the two-electron system energies E(H™) and
E(He) are thus the sole origin of the difference between
the lower and upper bounds on the corresponding binding
energies I(H™) and I(He).

The relatively few results of other authors for I(H™),
E(He), and I(He) for the magnetic field strengths con-
sidered in this paper are also given in Tables I and II. In
particular, Table II gives magnetic perturbation,?!
Hartree-Fock,?! Coulomb perturbation,'? and variational'!
results for E(He). Only the magnetic perturbation?! and
variational!! results lie between our lower and upper
bound results. Both of these upper bound results are
better than our upper bound result because of the use of
more accurate wave functions to describe the correlations
existing in the absence of the magnetic field. As may be
verified from Table II for ¥ =0.1, however the change in
E(He) brought about by the magnetic field is the same in
all three calculations: 0.0081 a.u. (this paper), 0.0080 a.u.
(Ref. 21), and 0.0079 a.u. (Ref. 11). Variational re-
sults'®~20 for I(H™) and I(He) compare most closely with
our rigorous lower bounds for these binding energies, as
shown clearly in Figs. 7 and 8. Our lower bound results
for I(H™) are not quite as good as those of Ref. 18, while
our lower bound results for I(He) are slightly better than
those of Refs. 19 and 20.

0.91898
0.908 16
0.89721
0.88879
0.878 31
0.84059
0.823 68
0.767 54

2.01059
2.02114
2.03163
2.03958
2.049 34
2.08375
2.097 46
2.14426

2.01059
2.021 14
2.03163
2.03958
2.049 34
2.08326
2.09748
2.144 36

—2.89355

—2.74305

—2.86040
—2.85385

—2.90195
—2.89525

(G).

0 of C. L. Pekeris, Ref. 32, are E(He)= —2.903 72 a.u., I(He)

V. CONCLUSIONS

1.0
1.5
1.88
35
4.0
7.05

Our results indicate that for magnetic field strengths
B <10° G such that the magnetic interactions may be
treated perturbatively an adiabatic approximation in
hyperspherical coordinates provides two-electron system
energies and binding energies comparable to those ob-
tained from variational calculations. Our use of oblate-

0.5
4.7

°Exact results for B

0.01064
0.02127
0.03191
0.04
0.05
0.08509
0.1

0.15

y
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FIG. 7. Binding energy (a.u.) for the singlet ground state of
H~ vs magnetic field strength. Solid line: present lower bound
results. Dashed line: present upper bound results. Crosses:
variational results of Henry et al. (Ref. 18).

spheroidal angle functions has permitted the representa-
tion of the hyperspherical channel function ®, by only a
few terms and allowed the bulk of the magnetic field in-
duced ! mixing to be represented implicitly. Worth noting
is our finding that the overwhelmingly most important
angular distortion of the ground-state two-electron wave
function by a magnetic field is the one-electron s —d tran-
sition leading to a reduction in the ss 'S component and a
corresponding increase in the sd 'D component.
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FIG. 8. Binding energy (a.u.) for the singlet ground state of
He vs magnetic field strength. Solid line: present lower bound
results. Dashed line: present upper bound results. Crosses:
variational results of Surmelian et al. (Refs. 19 and 20).
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APPENDIX A: MATRIX ELEMENTS APPEARING IN EQ. (26)

The matrix element of the Coulomb interaction operator C in Eq. (6) between states of the form in Eq. (24), integrated

~ ~
over 7 and 7, is

ol

C vivAM, vi v; MM

_ —1 o1 )
=2Z(cos”'a+sin” '« )Bvlv; 8"2"'2 S
+1

tan'e 3 3 ¥ 3

COSA | _om=—1

S D OOD ) vimvymy | AM)

'”1'"2m'1m'2112|”‘1| 1221m2[1'12|m; | 15> |mj |

xD,”,l""‘(X)D,”,;"‘%n)(v'lm',v;m; | M)
] 11 1 1 I
><(——1)m"+m2 I 1 2 2
—my m m; J\—-my; m m,
X (L 05 L0 D2
IR AVIAN A

where the D}™ coefficients are defined in Eq. (21). Note that the bracket in Eq. (A1) denotes [x]=2x +1.
The W and X matrices occur because of the a dependence [cf. Eq. (10)] of the oblate-spheroidal angle functions in Eq.
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(24). Expressions for them are

agv'lm, ag"émz , ’ ’
Vl"z}w"'l"%”:zmzm {(vimv,m, | AM) 8V2v§ Evmir 3 +8V1"'1 8vmy ag (vimvom, [ MM ), (A2)
172
d%g %,
_ vim, vhm,
Vlely"I]V%N_ mlzm <V1m1V2m2 'A-M) 8V2V5 gv‘m" aaz +8vlv; gv2m2’ 3 2
2
5 agv;ml agv;m2 , , ,
T2 (8vmi g | |8 T, (vimvhm, | A'M) . (A3)

APPENDIX B: FIRST-ORDER APPROXIMATIONS

The matrices in Appendix A simplify significantly in the approximation that A=A’=M =0 and that only terms that
are first order in the A]™ [cf. Eq. (27)] are kept. The results are

. o 28,8, s
viv00.vpyo0 =22 (cos"la+sin~la)8, 8,8, — o+ D22y +1)172
) (—1 )I . vy 1 Vll - — —_— -
X Eo —Dhan'al o o o JIH+ELO+E@+E300+E 2], (B1)
vv,0,% %0 =0, (B2)
FA ) A N n)

— 1 "1

viv0,v %50 8"1"281/'1 v’28v1 v 4Xn ax2 + anz (B3)
In the above equations we have introduced the following notation:
AV— 1 g Avm

YT 2wl m=2_v v (B4)
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