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H and He in a uniform magnetic field: Ground-state wave functions, energies,
and binding energies for fields below 10 G
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Wave functions, energies, and binding energies for the lowest singlet states of H and He in uni-

form magnetic fields 8 & 10 G are calculated using an adiabatic approximation in hyperspherical
coordinates. In computing the angular part of the wave functions, a coupled expansion in one-
electron oblate spheroidal angle functions is used. In addition to contracting the two-electron wave

function radially, the magnetic field is found to distort the angular part of the wave function mainly

by reducing the ss 'S character of the state and replacing it with an sd 'D character. Results for en-'

ergies and binding energies are comparable with those obtained in variational calculations. In order
to compute the binding energies of H and He we have also calculated the binding energies of the
ground states of H and He+ in uniform magnetic fields B &10 6 using the adiabatic oblate-
spheroidal-coordinate method of Starace and Webster.

I. INTRODUCTION

The study of atolnic hydrogen, or of hydrogenlike
atoms, in a high uniform magnetic field has attracted in-
creasing experimental and theoretical interest, as has been
reviewed elsewhere. ' In addition to its applications to as-
trophysics and to solid-state physics, ' such study is of
high theoretical interest in atomic physics because it re-
quires new methods for treating the nonseparability of the
Schrodinger equation for an electron in combined
Coulomb and uniform magnetic fields, ' Two-electron
and heavier atoms in high uniform magnetic fields are
also of interest for their applications. Such atoms, how-
ever, have not been as well studied theoretically because
they require a description of correlated electronic motion
1n combined Coulomb Rnd UI11form magnetic f1clds.

Much of the theoretical work which has been carried
out for nonhydrogenic atoms has been concerned either
exclusively or primarily with magnetic fields 8) 10 6
which strongly influence the orbital motion of even
gmund-state atomic electmns, at least away from the
atomic nucleus, and for which electron correlation effects
are of less importance than magnetic field effects. Thus,
studies have been carried out which have predicted
quite novel atonlic structures for heavy atoms in magnetic
fields of order 10' 6, such as are thought to exist on neu-
tron stars. For two-electron systems in such high magnet-
ic fields, a number of specific calculations ' for the
ground and low-excited states have been done eIDploying
approximations appropriate to such high fields such as
use of cylindrical coordinate wave functions, etc.

Only a few calculations for two-electron systems have
been designed to appropriately treat the region of magnet-
ic field strengths 8 & 10 6 for which electron correlation
effects are dominant or at least comparable to magnetic
interaction effects. Calculations' ' for energy levels and
spectral line strengths of He have been performed which
treat the magnetic interaction terms perturbatively for

fields in the range 10 G &8 & 10 G. Variational calcula-
tions' for H and He energy levels which use spheri-
cal coordinate trial functions have been done for fields in
the range 0 &8 & 10" G. Recently, the 'S and 5 ground-
state energies of the heliumlike systems HeI, S1 XIII, arid
Fexxv have been calculated in this magnetic field region
using both perturbative and Hartree-Fock approaches. '

We present here a detailed study of the effects of uni-
form magnetic fields B ~ 10 G on the two-electron wave
fllllcfloIls, cllcrglcs, Rnd blndlng cIlcl"glcs fol thc 5 ground
states of H and He. In order to describe electron corre-
lation effects as simply and as accurately as possible we
provide here an adiabatic hyperspherical coordinate
description of two-electron systems in uniform magnetic
fields. Such hyperspherical adiabatic approximations
have been shown, in the field-free case, to provide both
qualitative insights and quantitatively accurate predictions
for low-energy two-electron states. Furthermore, for
the lowest states of a given symmetry these adiabatic ap-
proxlmatlons prov1de rigorous upper and lower bounds on
the energies and binding energies.

A key approximation in our approach is that we
represent the hyperspherical angle function as a truncated
expansion in coupled one-dectron oblate spheroidal angle
functions. ' These functions have been shown to pro-
vide an accurate description of one-electron motion in a
uniform magnetic field; each of these functions implicitly
Includes R 1RI'gc RIIlollllt of thc l Illlxlllg wlllcll ls RII 1111-

portant feature of such motion. %C show in this paper
that such one-electron I mixing is the dominant magnetic
field distortion of the angular part of the two-e1ectron
gI'oUnd-stRtc wave funct1ons of H Rnd Hc.

In Scc. II wc pI'cscnt ouI hypersphcrical coord1Ilatc foI'-
IIlUlatlon of two-clcctloIl systcIDs 1n R Uniform IDagnctlc
field. In Sec. III we describe the approximations used to
solve the equations presented in Sec. II. In Sec. IV we
show the magnetic field-induced changes in the angular
and radial distribution of the two-electron wave functions.
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We also present our results for the energies and the bind-

ing energies of H and He. In order to obtain the binding
energies we have had to compute the energies of the one-

clcctron systcnls H and Hc in a uniform nlagnctic field.
We present these one-electron energies here also; they were
obtained using the adiabatic oblate-spheroidal-coordinate
n1ethod of Ref. 25. Finally, in Sec. V wc present ot.r con-
clusions.

II. EXACT PORMUI. ATION

-4(rl, r2)=EV(rl, rl), (1)

where the magnetic field 8 has been oriented along the z
axis, L;, is the z component of the orbital angular momen-
tum operator for the ith electron, and I, is the electron
mass. The operators in Eq. (1) are those for the kinetic
energy, the linear Zeeman shift, the quadratic Zeeman
shift, the nuclear Coulomb interaction, and the electron-
electron Coulomb interaction. We shall use atomic units
henceforth (i.e., m, =e =II =1), introduce the strength pa-
rameter p„

y
—=8/2c =(2. 127 15 && 10 ' a.u. /G)8 (6), (2)

and transform
~
rl

~

and
~

r2
~

to the hyperspherical coor-
dinates R and 0! using

A. Schrodinger equation in hyperspherical coordinates

For singlet states, the Schrodinger equation in spherical
coordinates for a two-electron system in combined
Coulomb and uniform magnetic fields is

r
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and, lastly, E' is the total system energy reduced by the
lIncar Zccman encl gy,

Substituting Eq. (8) in Eq. (4) one finds that the channel
function N„satisfies the following angular equation,

r

(L I+X sin 8l) (L z+I1 sin 8l)
dA cos 0,' s1n a

= Up(R)4&p, (9)

where U&(R) is an eigenvalue and R is treated as a param-
eter. In Eq. (9) we have defined the variables X and 11,
where

X:—yR cos n,
'/=pe sin a, (10b)

«r reasons to be discussed below. Note that Eq. (9) is in-
dcpclldcllt of thc systcnl energy E; @ describes the angu
»«hara««of a channel p of two-electron states whose
individual members differ only in their radial behavior.
The channel functions are orthonormal at each R,

m/2

(4&,@„)=f da f drI f dr&@&(R;a,r„rz)

X@„(R;a,rl, r2)=5

where M ls the z component of the system s orbital angu
lar momentum.

Following Macek, we write the two-electron wave
function as a sum of products of radial and angular func-
tions as follows:

VE(R,a, rI, I2)=(R ~ sinacosa)

)& g FqE (R)4q(R;a, rI, I z) .

Then Eq. (1) becomes

d 5 d A +AC——y R (cos a sin 8l
E. dR g2

+sin a sin 82)+2E' 'Il(R, u, rI, rz)=0 .

(3b)

The radial functions F&~ (R) satisfy the following cou-
pled sct of equations:

U„(R)+—,
'

z + 2
—+2E' F„E(R)

In Eq. (4), A is the generalized angular momentum opera-
tor9

I
sin 0', cos 0'.

sin icos o:

8 4p
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+2 e (12)

2

cos A sin 0!

where L I and L2 are the angular momentum operators for
particles 1 and 2. The operator C in Eq. (4) is the sum of
the nuclear and interelectron Coulomb interactions,

where the coupling matrix elements between different
channels p and p' are angular matrix elements of the radi-
al derivative operators. Differentiation of the orthonor-
mality relation (11) with respect to R shows that the first
derivative matrix elements are antisymmctric,
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value of I. ], respectively, with orbital angular momentum
qllRlltllII1 number vI. Tllc fullctloII e~ ~ (cosOI ) ls s11IlplyV)16]

related to a spherical harmonic:
and, hence, the diagonal elements vanish,

r , (81,$I)=8, , (cosOI)exp(imIp, )/v 2Ir . (20)

For X & 0, on the other hand, g„, , (X;OI) represents an ex-

pRIls1011 111 olbltR1 moIIlcIltllII1 clgcI1stRtcs 81~ (cosO),
Differentiation of Eq. (14) with respect to R shows that

g., (X;8)= g' DI' (X)eI (cosH),
l) fmj

(21)

i.e., the diagonal second derivative elements are negative
definite.

8. Oblate-spheroidal angle function expansion

In the absence of a uniform magnetic field,
y=g=g=O, and the standard procedure for solving Eq.
(9) for the channel function and its eigenvalue Rt each R is
to make an expansion IB the elgenstates of I ) and I 2, 1.e.9

in. spherical harmonics. Thus, Macek writes

(16)

where the prime on the summation indicates that only
those I having the same parity as v are summed. The
coefficients have the expected limit behavior,

(X) ~&1, .
X—+0

(22)

~s shown in Ref. 25, the oblate-spheroidal angle func-
tions provide a good representation of the angular part of
a low-energy one-electron wave function for magnetic
fields 8 & 10 G because, as in Eq. (21), they implicitly in-
clude a large amount of the I mixing which is a charac-
teristic of the motion of an electron in a uniform magnetic
field. For this reason, we generalize in the case of a uni-
form magnetic field the representation in Eqs. (16) and
(17) for the channel function III& by representing it as an
expansion in coupled oblate-spheroidal angle functions in-
stead of in ordinary spherical harmonics,

)& ( l1m I l2m2 I.M ), where

(R;a)P, „,~, (X,r);r"I,r2),
V] VpA,

(23)

where the coefficient in Eq. (17) is a Clebsch-Gordon
coefficient, and where the coefficient in Eq. (16) must be
obtained numerically at each R by solving a differential
equation in u.

In the presence of a uniform magnetic field, the
numerators of the cos a and sin a terms in Eq. (9}
may be considered as operators in 0] and 02, respectively,
with 7 and g regarded as parameters. These operators
have as eigenstates the oblate-spheroidal angle func-
tions ' "g„~ (X;81) and g, , (I);HI), where

2
] d d Pl j[

slnI9 )
— +

smI9~ do~ d8] sm (9&

+X SIn O~ g.. .(X;81)= V.. . (X)g„, , (X;OI) (18)

and g (Il;82) satisfies a similar equation. Note that
V2ftf p

g~ ~ depends only oI1
~

m I l
slIlcc ollly m1 appeal's 1II Eq.

(18). When X—+0 due either to vanishing magnetic field 8
or to vanishing I ~

——Ecosoc, then the oblate spheroidal an-

gle function and its eigenvalue have the following limit

behaviors 9

g.. .(X;81)~ B, , (cos81),

V„(X)—+ vI(vI+1),
X 0

i.e., g and V ~ become an eigenstate and an eigen-
V)PO ) V)Nl )

g g„(X;OI)[exp(im1$1)/~2m]g„, , (I);82)
Ptl I Pl, 2

&&[exp(im, p, )/v 2Ir](vIm, v,mI
l
AM) . (24)

Note that there is a sum over A, since this is not a con-
served quantum number in the presence of a uniform
magnetic field. Note also that because of its dependence
on X and II (cf. Eq. 10}, 3', „I~ in Eq. (24) depends on R

and o.. This dependence complicates the differential equa-
tion for the coefficients A" ~~ as compared to the field-

free case. This added complication, however, will be com-
pensated in approximate calculations by the better repre-
sentation provided by the oblate-spheroidal angle func-
tions, which permits a straightforward means of truncat-
ing the expansion over v&, vq, and A, , as discussed in Sec.
III.

Using the representation for the channel function @& in

Eq. (23), Eq. (9) may be reduced to a differential equation
in a for the expansj. on coefficients A ~~. One substi-

tutes Eq. (23) in Eq. (9), multiplies from the left by the
complex conjugate of Eq. (24), and integrates over r I and

rz, taking note of Eq. (18) for the oblate-spheroidal angle
functions as well as of their orthonormality, e.g. ,

(g.. .,g, ) =—f, g.. .(X,HI)g„, (X,OI)»nOIdOI

=6 (25)

Th lt
'
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—U„(R) A~„iM(R;a)

y (vim, v,m, ~Xm)
, (X) &, ,(ri)

+ . 2cos a S1Il a
(vimiv2m2

~

k'M } 2",„i M(R;a)

Vl V2

(RC . . .+X . . .)»,
V)VpA, ,V) V2A, V)V2A, V) V2~ V)

A,

In Eq. (26) the first summation on the right contains the
oblate-spheroidal eigenvalues Vv, , and V,~, which

represent, through 7 and g, R- and a-dependent potentials
for one-electron motion in a uniform magnetic field.
%'hen 8~0 the potentials V and V„, become con-

stants independent of m i or m2 and the sum over m i and
m2 may be performed to obtain 5ii . Similarly, when one
of the electrons moves dose to the nucleus so that either
el ——R cosa or r2 ——E. sinn becomes =0, then the corre-
sponding potential becomes a constant and for that term
the sum over m i and m2 may be performed to obtain 5ii .
Othenvise, one sees that the one-electron oblate-spheroidal
potentials, while preserving the oblate-spheroidal quantum
numbers v, and v2, do lead to a certain amount of A, mix-
ing. The operator C has been defined in Eq. (6); the ma-
trices X and 8' arise due to the a dependence of the
oblate-spheroidal angle functions. Expressions for the
matrices C, S, and 8' are given in Appendix A.

A. Truncation of the basis set

In the field-free case, we have obtained convergence of
hypcrsphcncal Rdlabatlc encl gy clgcnvalUcs foI' thc S

Both the angular differential equation (26) and the radi-
al differential equation (12) have the form of an infinite
set of coupled differential equations. In seeking suitable
approximations we have been guided on the one hand by
previous work on the hydrogen atom in a uniform mag-
netic field. This work shows that for low-lying bound
states, a single oblate-spheroidal angle function is a good
representation of the angular part of the single electron's
wave function up to fidds of order 8 &10 G. This im-
plies, in other words, that use of the oblate-spheroidal
eigenvalue Vv~ Rlld Its coI'I'cspol1dlIlg clgcnf Unction g v~
are sufficient in this field strength regime and that con-
sideration of the off-diagonal coupling matrix elements in-
volving derivatives of g with respect to the parameters
X and g, such as those that occur implicitly in the defini-
tion of the matrices in Appendix A, is less important. On
the other hand, we have also been guided by previous
work on the separable or adiabatic approximation in
hyperspherical coordinates. This work shows that
both quantitatively and qualitatively the adiabatic approx-
imation lIl hypclsphcricR1 coordinates ls accuI'Rtc fol thc
lowest states of two-electron systems. Based on this previ-
ous experience, wc have thcrcfoIc made thc following
three approximations in solving Eqs. (12) and (26).

V) V2A,

ground states of H and He using the (l&,l2) pairs (0,()),
(1,1), (2,2), and (3,3) in Eq. (16), Since we expect magnetic
field effects near the nucleus to be negligible, we have
chosen to represent the channel function in Eq. (23) in the
presence of a magnetic field in such a way that for either
8~0 or R~0 Eq. (23) reduces exactly to the field-free
channel function in Eq. (16). Thus, we have restricted the
summation in Eq. (23) as follows: We require that
A,'=I. =0 and that the pairs (vi, v2) have the same values,
i.e., (0,0), (1,1), (2,2), and (3,3), as in the field-free case.
With this choice, Eq. (23) does reduce to Eq. (16) as either
R ol 8 becomes small duc to thc oblate-sphcroldal Rnglc
function's becoming the 0 part of a spherical harmonic
under these circumstances [cf. Eqs. (19a), (20), and (24)
with Eq. (17)j.

It is important to note that, in restricting k' to zero, we
are not forcing the total angular momentum of the system
to be zero. Furthermore, in choosing the (vi, vq) pairs to
be (0,0), (1,1), (2,2), and (3,3), we are not restricting the
one-electron orbital angular momenta to these values.
This ls bccausc v~, v2, Rnd k RI'c Plot QIbltal angular mo-
menta: v~ and v2 are oblate-spheroidal quantum numbers
which equal one-electron orbital angular momentum
quantum number only near the nucleus or in zero magnet-
ic field; A, liappens fo be a quantum iiunibei' obtained by
combining vi and v2 as if they were orbital angula~ mo-
menta. In fact, we find that the most significant effect of
the magnetic field on the angular part of the two-electron
wave function is to introduce a component with li ——0,
I2 ——2, and I.=2 which, while not obviously contained in
our basis set (since II.=O and vi and vq are restricted to
pairs with vi ——vz), is nevertheless included due to the I
mixing implicitly accounted for by our use of oblate-
spheroidal angle functions.

B. Perturbatlve treatment
of angular equation matrix elements

Since we have restricted A, =A,
' =0, the three matrices in

Eq. (26) have dements which may be written as C
V)V2i Vl V2

X . . . and W, , As shown in Eq. (Al), the only
VlV2, Vy V2 VlV2, Vl V2

part of C, , which is changed by the magnetic field is
V)V2, Vl V2

the interelectron Coulomb interaction; thc nuclear
Coulomb interaction is unaffected. But the electron-
electron interaction is only large near the nucleus, where
magnetic field effects are small. For this reason a pertur-
bative treatment of the magnetic field effects on this ma-
trix element is appropriate.
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DI ——5I +~( (27)

We then calculate the matrices in Appendix A only to
first order in the b. coefficients. The results for these ma-

trices are given in Appendix B.
From Eq. (27) we see that a perturbative approximation

will work provided AI ((1. Our calculations show that
(0.1 for the fields and states considered in this paper.

Specifically, for H in a field of 10 G, b, i (0.1 for radi-

al coordinate values R (12; for He in a field of 10 G,
&0.1 for radial coordinate values R &4. For lower

magnetic field strengths this condition on AI would be
satisfied for larger R values. Note that, for R values

larger than those indicated, the H and He wave func-

tions are exponentially decaying and so values AI &0. 1

occur only in regions of coordinate space where the proba-

bility of finding an electron is small.

As shown in Eqs. (A2) and (A3),
V]Vz VI "2

are dependent on first- and second-derivative
VIV2, VI V2

coupling matrix elements of the oblate-spheroidal har-

monics. These latter coupling matrix elements, however,

are small unless the parameters X and r) in Eq. (10) be-

come significantly greater than unity. This occurs, for the
field strengths considered for H and He here, only in the

tail of the two-electron wave function. Hence, the mag-

netic field effects may also be treated perturbatively here.

For these reasons we have made the following perturba-

tive approximaton: We write the oblate-spheroidal expan-

sion coefficients DI' (X) and DI (rI) [cf. Eqs. (21) and

(22)] as

a rigorous lower bound on the true energy.
Note that EU is to be compared with the results of vari-

ational calculations. Furthermore, EU is generally to be
preferred to EL since one may show that the diagonal cou-
pling term in Eq. (28) is necessary in order that F&~ (R)
has the proper asymptotic form. The pair of values EU
and EL provide not only bounds on the true energy but
also an indication of the possible effect of the neglected
off-diagonal coupling matrix elements.

IV. RESULTS AND DISCUSSION

X@&(R;a, ri, rq), (30)

where p identifies the channel of two-electron states under
consideration and E' gives the reduced energy of a partic-
ular state in that channel. The superscript M on the chan-
nel function simply makes explicit the fact that the z com-
ponent of orbital angular momentum is a conserved quan-
tum number. For the H and He ground states con-
sidered here, M=0. We discuss, in turn, the effects of a
uniform magnetic field on the channel function @&, the
radial function F&z, and the energy E' as well as the
binding energy. Although we present wave function re-
sults only for H, our results for He are similar.

A. Angular distortion of the two-electron wave function

In the adiabatic approximation discussed in Sec. IIIC,
the two-electron wave function is represented as [cf. Eq.
(8)]

%L (R,a, ri, rp)=(R sinacosa) 'F„~ (R)

C. Adiabatic approximations to the radial equation (12)

U&(R)+ ~+
dR R

Q 2$)
+ @@, — +2EU F~~(R)=0.

In the adiabatic or separable approximation to the radi-
al Eq. (12), one drops all off-diagonal coupling matrix ele-
ments:

The channel function 4@ in Eq. (30) is represented by
Eqs. (23) and (24). Its expansion coefficients are obtained
by solving the eigenvalue equation (26) using the approxi-
mations discussed in Secs. III A and III 8 above. In order
to display the effect of the magnetic field clearly we have
projected the channel function @„onto the following set
of orbital angular momentum basis states:

+'I ILO +I I +I ILO( I ~2)

i +II +l~ —I.+( 1) +I I Lo(rl r2)

(28) (31a)

The subscript U on the energy eigenvalue indicates that
for the lowest energy state of a given. symmetry, EU is a
rigorous upper bound on the true energy. ' If one drops
the diagonal coupling matrix element, Eq. (28) becomes

where

KI, I
——2 '6I, I +2 ' (1—5I I ), (31b)

and the coupled spherical harmonics appearing in Eq.
(31a) are defined in Eq. (17). The index i takes the values
0 and 1 for symmetric and antisymmetric combinations of
the coupled spherical harmonics. For II ——l2, of course,

the symmetric combination is nonzero.
e result of this projection is

U~(R)+ —,
'

dR R2 + 2 +2EL FPE (R)=0 . (29)

Here the subscript I on the energy eigenvalue indicates only
that for the lowest energy state of a given symmetry, EI is Th

I=-
Ig2

VI

I l I.
X g [Di,

' '(X)DI,' '(g)+( —1)'DI,' '(X)DI,' '(g)]~ () ~(
—1)

ill i

(32)
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FIG. 2. Same as Fig. 1 for 8 =9 & 10 G.
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FIG. 3. Difference of corresponding probabilities in Figs jI and 2.

Equation (32) indicates that 4& has no component with
odd L. This follows from three facts: /& and /2 must have
the same parity for the ground states considered here; the
Df coefficients depend only on

~

m ~; if I. is odd, the 3j
coefficient is zero for m =0 and the sum of the two coeffi-
cients with values m =+

~

m is zero. [A similar analysis
of each term in Eq. (26) shows that the k=M =0 state
couples only to states with even A,

' values. ] The square of
the absolute value of Eq. (32) represents at each R the
probability, per unit length in n, of the channel p's having
the angular momentum character of a symmetric (i=0) or
antisymmetric (i =1) (l&lzLM=O) state. This follows
from the normalization of the channel functions + in Eq.P
(11). When X=g=0, use of Eq. (22) allows the summa-
tion over m ~ to be performed analytically to obtain

t, t,l.o l
~'I

=
&

. ~I', r, oo(»a)&E, I,or.o& o. (33)

In Fig. 1 we consider the 8=0 case first, showing the
absolute square of Eq. (33) in R and a space for the four
largest angular momentum components of the lowest 'S
channel function N& of H . In interpreting this and sub-
sequent figures, recall Eq. (3): The region near a=a/4 is
where I"

~
-r2 while the region near a =0 is where r

&
-R,

r 2
—0. (The symmetric region vr/4 & a & ~/2 is not

shown. ) The striking feature of Fig. 1 is that, whereas
near a=a./4 the /l 'S components with i~0 make some
contribution, they do not contribute significantly near

a=0; for large R, in particular, the state has predom-
inantly ss S character focused on an increasingly smaller1

region near n =0.
In Fig. 2 we show the same channel function N of HP

in a magnetic field 8 =9)&10 G. This time we plot the
absolute square of Eq. (32) showing again the ll 'S com-
ponents with /=0„1, 2, and 3. The only significant
change from the field-free case in Fig. 1 is in the ss 'S
component, which is markedly decreased at large R. This
loss of probability is even clearer in Fig. 3, in which we
have plotted the difference in the probabilities in Figs. 1

and 2.
Figure 4 shows that the missing probability in Fig. 3(a)

does not appear in states of the form // L. We have plot-
ted all such states for /=0, 1, 2, and 3 and L= even.
These states have probabilities less than 10 per unit
length in a. Notice that what probability there is in these
channels appears only for large R.

Figure 5 shows exactly where all of the missing proba-
bility has gone. Here, for the first time, we show the
probabilities that C&„has components with l»l2. Since i&

and /2 must have the same parity, the three cases shown
are the only ones permitted for /i, /2 & 3. We see that Fig.
5(a) for the symmetric (i =0) sd D probability is identical
in shape to Fig. 3(a) for the missing ss 'S probability and
has exactly one-half the probability. Not shown, because
they are identical to Fig. 5, are the antisymmetric (i= 1)
probabilities for the same /&/2 'L states. The sum of the
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symmetric and antisymmetric sd 'D probabilities exactly
equals the missing ss 'S probability. This implies that for
the ground states of H (shown) and He (not shown) the
main angular distortion of the wave function by an exter-
nal uniform magnetic field is essentially a one-electron
transition s~d of one of the electrons when it is far from
the nucleus and the other electron is left behind (i.e.,
r, =R &&rz-O).

B. Radial distortion of the two-electron wave function

Our results for the He and H ground-state radial wave
functions FzE (R) obtained by solving the hyperspherical
adiabatic equation (28) are shown in Fig. 6. For H this
wave function is computed for B =9& 10 G while that

for He is computed for 8 =3)&10 G. One sees that the
magnetic field compresses the radial wave function slight-
ly to lower R values due to the quadratic Zeeman interac-
tion. Specifically, as the parameters 7 and q increase at
large R [cf. Eq. (10)], the oblate-spheroidal eigenvalues in-
crease [cf. Eq. (18)]. These, in turn, lead to an increase in
—U„(R) [cf. Eq. (26)] at large R, which means that the
effective potential seen by F&(R) increases [cf. Eq. (28)]
causing the observed compression to lower values of R.

C. Ground-state energies and binding energies

We have calculated rigorous upper (lower) bounds on
the lowest singlet state energies for H and He by solving
Eq. (28) [Eq. (29)]. The binding energies I(H ) and I(He)
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for the singlet state are obtained from the following equa-
tions:

CV
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H- (B= g x 10 6)

''&I '''i''ll''m

I'
B "j'ply 7.5

0 R
0.2

(c)

.0

E(H )+I(H )=E(H)+y,
E(He) +I(He) =E(He+ ) +y .

(34a)

(34b)

E(H) = I(H)+y, —
E(He+ ) = —I(He+ ) +y .

(35a)

(35b)

These equations mean that when we just ionize the two-

electron system we obtain the energy of the one-electron

system in the same magnetic field plus an electron infin-

itely far away in the lowest Landau level ' having energy

y [cf. Eq. (2)]. Now for the one-electron system, 5

FIG. 5. Same as Fig. 4 for symmetric l&l2 'L states: (a) l& ——0,
lp 2y L:2 (b) l& = 1, l2 ——3, L=2; (c) l) ——1, l2 ——3, L=4.

Further, if we follow the practice of Refs. 18—20 of refer-
ring the singlet state binding energy to the triplet state
threshold, which is an energy —2y lower due to the fact

TABLE I. Ground-state energy of H, E(H ), binding energy of H, I(H), and binding energy of H, I(H ), in a uniform magnet-
ic field.

y'
(a.u. )

B
(10 G) LowerUpper

E(H ) (a.u. )

Present adiabatic
results

Upper Lower

I(H) (a.u. )

Present adiabatic
results

LowerUpper

I(H ) (a.u. )

Present adiabatic
results Variational

HOSCR'

0.0
0.000 21
0.000 5
0.001 0
0.002 13
0.002 5
0.005
0.01
0.014 89
0.019 14
0.023 40
0.027 65

0.0
0.1

0.235
0.470
1.0
1.17
2.35
4.7
7.0
9.0

11.0
13.0

—0.525 92'
—0.525 92
—0.525 92
—0.525 91
—0.525 88
—0.525 87
—0.525 72
—0.525 10
—0.524 13
—0.523 02
—0.521 67
—0.520 12

—0.536 79'
—0.536 79
—0.536 79
—0.536 79
—0.536 76
—0.536 75
—0.536 61
—0.536 06
—0.535 20
—0.534 23
—0.533 06
—0.531 71

0.5
0.500 20
0.50049
0.500 99
0.502 11
0.502 47
0.504 96
0.509 89
0.514 66
0.518 77
0.522 84
0.526 88

0.5
0.500 20
0.50049
0.500 99
0.502 11
0.502 47
0.504 96
0.509 89
0.514 65
0.518 76
0.522 83
0.526 87

0.036 79
0.036 59
0.036 30
0.035 80
0.034 65
0.034 28
0.031 65
0.026 17
0.020 54
0.015 46
0.01022
0.004 83

0.025 92
0.025 72
0.025 43
0.024 92
0.023 77
0.023 40
0.020 76
0.015 21
0.009 48
0.004 26

—0.001 16
—0.006 75

0.026 85'

0.026 35
0.025 85

0.024 3
0.021 7
0.0162

'y=(2. 12715&10 ' a.u./G) B(G).
"R.J. W. Henry, R. F. O' Connell, Ed. R. Smith, G. Chanmugam, and A. K. Rajagopal, Ref. 18.
'Exact results for B=O of C. L. Pekeris, Ref. 32, are E(H ) = —0.527751 a.u. , I(H ) =0.027751 a.u.
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that the two electron spins are antialigned with the mag-
netic field, we finally obtain the following expressions for
the binding energies of the singlet ground states with
respect to the trip/et state threshold

I(H ) = —I(H) —E(H ),
I(He) = —I(He+) —E(He) .

(36a)

V. CONCLUSIONS

Our results indicate that for magnetic field strengths
B &10 G such that the magnetic interactions may be
treated perturbatively an adiabatic approximation in
hyperspherical coordinates provides two-electron system
energies and binding energies comparable to those ob-
tained from variational calculations. Our use of oblate-

In order to compute the binding energies for H and
for He according to Eq. (36) we have had to compute the
binding energies for the one-electron systems H and He+.
We computed these latter binding energies according to
the method of Ref. 25. We obtained rigorous upper and
lower bounds on the exact binding energies.

Our upper and lower bound results for E(H ), I(H), and
I(H ) are given in Table I. Our upper and lower bound
results for E(He), I(He+), and I(He) are given in Table II.
For 8=0, our upper and lower bound results for E(H ),
I(H ), E(He), and I(He) sandwich the exact results of Pek-
eris with the upper bounds on the energies and the lower
bounds on the binding energies on closer agreement, as ex-
pected. For 8&0, our upper and lower bounds on the
one-electron system binding energies I(H) and I(He+) are
essentially identical indicating that these are exactly deter-
mined. The differences between the upper and lower
bounds on the two-electron system energies E(H ) and
E(He) are thus the sole origin of the difference between
the lower and upper bounds on the corresponding binding
energies I(H ) and I(He).

The relatively few results of other authors for I(H ),
E(He), and I(He) for the magnetic field strengths con-
sidered in this paper are also given in Tables I and II. In
particular, Table II gives magnetic perturbation, '

Hartree-Fock, ' Coulomb perturbation, ' and variational"
results for E(He). Only the magnetic perturbation ' and
variational" results lie between our lower and upper
bound results. Both of these upper bound results are
better than our upper bound result because of the use of
more accurate wave functions to describe the correlations
existing in the absence of the magnetic field. As may be
verified from Table II for y=0.1, however the change in
E(He) brought about by the magnetic field is the same in
all three calculations: 0.0081 a.u. (this paper), 0.0080 a.u.
(Ref. 21), and 0.0079 a.u. (Ref. 11). Variational re-
sults' for I(H ) and I(He) compare most closely with
our rigorous lower bounds for these binding energies, as
shown clearly in Figs. 7 and 8. (Our lower bound results
for I(H ) are not quite as good as those of Ref. 18, while
our lower bound results for I(He) are slightly better than
those of Refs. IL9 and 20.
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FIG. 7. Binding energy (a.u. ) for the singlet ground state of
H vs magnetic field strength. Solid line: present lower bound
results. Bashed line: present upper bound results. Crosses:
variational results of Henry et al. (Ref. 18).
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FIG. 8. Binding energy (a.u. ) for the singlet ground state of
He vs magnetic field strength. Solid line: present lower bound
results. Bashed line: present upper bound results. Crosses:
variational results of Surmelian et al. (Refs. jI9 and 20).

spheroidal angle functions has permitted the representa-
tion of the hyperspherical channel function @& by only a
few terms and allowed the bulk of the magnetic field in-
duced / mixing to be represented implicitly. Worth noting
is our finding that the overwhelmingly most important
angular distortion of the ground-state two-electron wave
function by a magnetic field is the one-electron s ~d tran-
sition leading to a reduction in the ss S component and a
corresponding increase in the sd D component.
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APPENDIX A: MATRIX ELEMENTS APPEARING IN EQ. (26)

The matrix element of the Coulomb interaction operator C in Eq. (6) between states of the form in Eq. (24), integrated
over /'i and r2 Is

C I I p

Viv2A, M, V] v2A, 'M

=2Z (cos 'a+ sin 'a )5,5,5~q
V) V) V2vp

DI' '(X)ai' '(g)(vimivqmp
i
AM)

mym2m'm' ~] & Imp I Ip& Im2I I' & Im'
I

1' & Im'
I

I I

XD,",' '(y)D, ,
' '(g)(vim&v2m2 ~~'~&

2

I, 't) (I,
x( —1) ' —m][ m m) —m2 m m2

x([I ][I' ][I ][I' ])'"

l, I I', I I I

~~non) ooo (A 1)

where the DI' coefficients are defined in Eq. (21). Note that the bracket in Eq. (Al) denotes [x]=2x + 1.
The lI »d & matrices occur because of the a dependence [cf. Eq. (10)] of the oblate-spheroidal angle functions in Eq.
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(24). Expressions for them are

Nl
1 Nl2

r

(vlmlv2m2
i

lt.M) 5, g„
Nl 1Nl2

2i2gv'm
5 2 2+ v vt gv2PPf2 011 BA

(vlm 1v2ml i
){,M ) (A2)

+2 Rvm
BA

t

gv2m2 ~ (vlmlv2m2
i
x'M) . (A3)

Thc matrices 111 Appclldlx A slmpllfy slgnlflcantly ln the approximation that g=g'=M —O Rnd that oniy terms that
RI'c fill'st ol'dcl' 111 thc kt [cf. Eq. (27)] al'c kept. Thc resorts Rre

25„, ,5, ,

C„„~ „~——2Z(cos a+sin a)5,5„„5,, —— (2vl+ $ )'~2(2v& + $ )1~2
vlv200, v1 v2 00 vlvl 1 2 vlv2 COSA

8', , =0,
vlv20, v1 v20 (82)

C)'~,'(X) &'& „,'(ll )

In thc above cqllatlolls wc have IntrodUccd thc following no'tRtlon:

+v
g V—,, g +Vllf

2~+l m= —v
(84)
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