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Channel-coupling theory of molecular structure. Finite-element method solution for H2+
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The problems encountered in the channel-coupling array (CCA) calculations of the preceding pa-
per, viz. , the failure to achieve convergence and the persistence of unphysical potential-energy
curves, are resolved herein with the use of the H& ion as a test case. Convergence is obtained by
the use of local interpolates and the finite-element method in place of the globally defined, LCAO-

type (linear combination of atomic orbitals) functions previously used. Physically correct, ungerade
potential-energy curves result from calculations in which the ungerade CCA channel component
wave functions are each required to vanish on the midplane normal to the symmetry axis, just like
the solution to the Schrodinger equation. A proof of the foregoing property plus detailed discus-
sions of the finite-element method and its CCA and Schrodinger-equation solutions, of spurious
solutions, of convergence, and of implications of the calculations are presented.

I. INTRODUCTION

This is the fourth in a series of articles devoted to
molecular structure calculations using the equations of the
channel-coupling array (CCA) theory of many-body
scattering. ' In the first (hereafter I), general aspects of
the theory considered as a bound-state method were dis-
cussed and the results of a simple calculation for the H2+
ion were presented. In the second (hereafter II), the same
kind of approximation employed for H2+ was applied to
the H2 molecule. The numerical results of I and II may be
summarized as follows: The approximate CCA theory
was found to yield H2+ gerade and H2 singlet potential-
energy curves that were quite accurate given the crudity of
the approximations, while the corresponding H&+

anger@de and H2 triplet potential-energy curves were un-

physical, since as the internucleon separation R ap-
proached zero, these latter two curves each approached

0

The approximations used in I and II involved a one-
term basis expansion, the single expansion function being
the hydrogenic ground state. This function is global in
character, i.e., it is defined over all of configuration or
momentum space. In the preceding paper (hereafter III),
we presented additional results for H2+ and H2 obtained
by using multiterm expansions of globally defined func-
tions, while HeH+ was used to study the effect of channel
truncation (defined in I and III). Two bases were used in
the H2+ calculations of III; neither led to converged re-
sults nor gave an indication that enlarging the basis would
lead rapidly to convergence. Furthermore, each of the
multiterm H2+ and H2 calculations yielded the same kind
of unphysical potential energy curves described in papers I
and II.

These problems of nonconvergence and unphysical re-
sults are nontrivial. They raise questions concerning the

basic many-body scattering formalism, as noted in III.
Nevertheless, they are surmountable, as we demonstrate in
the present paper for the case of the Hz+ ion. Conver-
gence is achieved by changing from an expansion basis
which is global to onc which ls local, I.c., wc usc local in-
terpolates to solve both the Schrodinger and the arrange-
ment channel quantum mechanic " (ACQM) equations.
The nonphysical (ungerade) results are eliminated by im-
posing on the wave-function components of the CCA
theory a symmetry condition that in previous calculations
only the full solution to the Schrodinger equation was re-
quired to obey. As remarked on in a preliminary account
of this work, this serves to remove any lingering doubts
concerning the validity and internal consistency of the
CCA procedure as applied to bound states. It also helps
to confirm the power and efficiency of local interpolation
methods in general and the finite dement method in par-
ticular.

The organization of this paper is as follows. In the next
section, we introduce notation and the dynamical equa-
tions, discuss the symmetry of the Schrodinger solution,
and then prove that the CCA cha~nel components vanish
on the midplane normal to the interproton axis. The next
section reviews the Galerkin-Petrov approach and the
finite element method as we have applied it to the H2+
problem. In Sec. IV, we present the main results of our
calculations, and the paper concludes with a brief sum-
mary and discussion in Scc. V.

II. THEORY AND SYMMETRY PROPERTIES

Our calculations have been carried out in the frame-
work of the Born-Oppenheimer (BO) approximation. Us-
ing the same notation as in III, the CCA equations for the
wave-function components gi and gz are (in a.u. )
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V' H2

or equivalently

HQ=EQ,

(2.2)

(2.3)

where H; ( V') is the Hamiltonian (interaction) in channel

i, exactly as in III.
Exact solutions of (2.1) or (2.2) yield either the exact

Schrodinger wave function qI via 4'=pi+ $2 and the cor-
responding eigenvalue E, or else an easily identified spuri-
ous solution given by g&+$2 ——0. Approximate solutions
of (2.1) similarly yield an approximation to 4 and E or
else a spurious solution again identifiable by the fact that
the sum of the approximate wave-function components
vanish. '

The Schrodinger wave function 4 obeys

H% =E%, (2.4)

where, in the BO approximation, the Hamiltonian is (in

a.u. )

—V /2 rg' R ' —r„'
R r—s —V /2 r~— $2

=E, (2.1)

where rz (rii) is the position coordinate of the electron
relative to proton A (8), R =

~

r~ —rs ~, and —V /2 is
the electron kinetic energy operator. Arrangement chan-
nel (1) denotes an asymptotic configuration consisting of
the hydrogen atoin (A, e) and the bare (noninteracting)
proton 8. Channel (2) is obtained from channel (1) by in-

terchanging protons A and B.
In matrix form (2.1) reads

i.e., that have zero as the component of angular momen-
tum along the molecular symmetry axis. In this case,

+(x-,y, P)«P +(x-,y) and g;(x,y, P)«g ;(x-,y), i =1,2.
From (2.6) we then have

P%+(x,y-) =4+(x, —-y) =+4+-(x,y), (2 9)

so that for the ungerade states, ' %(x,O)=0. Similarly,
from (2.8) we find PQ&(x,y) =Qj(x, —y) =++&(x,y).
These properties have the effect of reducing the doinain
over which 'Il+—,gi-, and P2 need be determined from the
normal range of x and y to the strip x & 1, 0 &y & 1.

In previous work, ' the vanishing of 4 (x,O) was en-
sured in the CCA approach by the relation Pz —— Pg, —,
Eq. (2.8). For example, by using the simple ansatz
+=a+-exp( r„), +2—=+a-+exp( r~), it —automatically
follows from (2.7) that 4 =0 at the midplane. Unfor-
tunately such an ansatz leads to an unphysical CCA
potential-energy curve. We know now that the source of
this difficulty has been the failure to recognize that, just
as 4 (x,O)=0, so also must f, (x,O)=0, a relation we
shall soon establish. The requirement that P, (x,O)=0
means that while fi may be approximated by
a exp( rz), th—e ansatz P~ ——a exp( rq)—is inadmiss
able. Indeed, any approximation to P,. must be such that

g, (x,O)=0. Hence none of the previous CCA ungerade
Hq+ calculations are meaningful because of their failure
to employ approximate P, satisfying this condition.

To prove that P, (x,O)&0 underlies the unphysical ener-

gies E (R), i.e., that we must impose P; (x,O) =0, we use
(2.8) in the form Pz (x,y) =P~ (x, —y) in the first of Eqs.
(2.2), which becomes

E (R)P, (x,y)=H, Q, (x,y) Vg~ (x, —y—)
T

H = —V /2 rg —rs +R—2 —1 —1 (2.5)
2E—

R(x+y)

where + ( —) indicates gerade (ungerade) states. Solu-
tions of (2.4) can thus be labeled g +—

, in an obvious nota-
tion.

The labeling of 4-+by the superscripts + plus the gen-
eral relation 4=/&+ gq means that P; «Q:

0'-=&i+We . (2.7)

As discussed in III and proved in Ref. 1, we also require
that

We=+PA . (2 8)

It was shown many years ago by Burrau that an analyt-
ic solution for (2.4) can be obtained in prolate spheroidal
coordinates. ' '" Our calculations are carried out using
these coordinates, our notation for which is

x =(rz+rz)/R, y =(r„r~)/R, —

where P is the usual azimuthal angle and the normal
ranges of x andy are x) 1 and —1&y &1. We seek solu-
tions of (2.4) and thus of (2.1) that are axially symmetric,

Denoting by P the proton interchange operator, it follows
from (2.5) that PHP =H, and hence that '

(2.6)

E (R)= ——+F(R),1

R
(2.12)

where F(R)=[Kg~ (x,y)]» 0/g& (x,O) is well behaved as
R —+0. Hence on examining the small R (R«0) depen-
dence of (2.13), we find E (R «0)« —R ', which is just
the unphysical behavior encountered in previous H2+
ungerade calculations. This —R ' behavior has occurred
because we have assumed Pi (x,O)&0. The only procedure

1 2
P) (x, —y) . (2.10)

R R(x+y)

Next, we assume that the P,
+—belong to the same continui-

ty class as the 4—+. Then on taking the y —+0 limit in
(2.10) we find

E (R)Q) (x,O) = lim[EQ, (x,y)] ——f, (x,O) .1

y~o
' R

(2.11)
Now P~ (x,y) is a bound-state wave function and so

must be well behaved for all x, y, and R. A similar com-
ment holds for Kg~ because of the structure of (2.10).
Let us suppose that P~ (x,O) is nonzero except at a finite
number of points x, and let us choose x&x . Then we
can divide both sides of (2.11) by P~ (x,O), which leads to
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left open to us for eliminating this behavior is to require
that g) (x,O)=0 for all x. But if g~ (x,O)=0, we cannot
divide Eq. (2.11) by it, and hence we now avoid the neces-
sary conclusion that E (R ~0)~—R '. Use of
1t) (x,O) =0 and, by Eq. (2.8), pz (x,O) =0, imposes a new
boundary condition on the ungerade channel components.
We therefore expect that this will produce E (R) which
are physically well behaved. This expectation, as we show
below, is verified numerically. We note in passing that if
the preceding argument is applied to gerade states
g+)(x,O), the same assumption that 1t)) (x,O)&0 leads now
to E+(R~O)~R ', the physically correct behavior
found in all the gerade calculations.

III. THE FINITE-ELEMENT METHOD

Unlike the Schrodinger equation, (2.1) cannot be solved
analytically and one must resort to numerical methods.
The numerical procedure we employ is based on the
Galerkin-Petrov approximation procedure, ' which we
now briefly review. First, a complete set of orthonormal
functions I u„I is introduced and an Mth-order approxi-
mation to 1t is defined via

M

q
(M) y (M)~

n=1
(3.1)

The a„' ' and approximate eigenvalues E' ' are deter-
mined by solving the secular equation

g (u
I
(H —E' 'I)

I

u„)a„' '=0, (3.2)
1f =1

where
I
u„) is a column vector whose ith element is the

ket Itt„,; ) and (u~
I

is a row vector whose jth element is
the b«( u J I, while the symbol ( u

I
u„) denotes

gi (tt~,j I &„,z), gz running over the set of channels.
Since there are two channels, then there will be 2M eigen-
values E~ ', a= 1, . . . , 2M. Properties of this method are
reviewed in III (see also Ref. 12).

The problems associated with choosing the u„ to be
globally defined basis functions are detailed in III and
summarized in Sec. I above. Among these problems is the
very slow convergence one generally expects (and was real-
ized in the calculating of III) when the global functions
are Coulombic. This occurs because one needs a very
large number of such functions to represent accurately the
wave functions 4' or P; in that region of configuration
space where the particles are strongly interacting, in con-
trast to the asymptotic region of configuration space. The
obvious need for accurate wave functions where rz or rz
is small suggests using some kind of local basis rather
than a globally defined one. Our calculations have there-
fore been carried out using local interpolates as basis func-
tions.

There are a variety of local interpolation schemes for
approximating the solution of differential or integral
equations. We chose to work with the finite element
method (FEM). Both (2.1) and (2.4) were solved with this
method.

The FEM is known to provide a convenient and reliable

numerical method with which to solve partial differential
equations, although it has only recently been applied to
quantum-mechanical problems. We refer to the litera-
ture for the details of the method and present below
merely a summary relevant to our calculation (see also
Ref. 13). First, the infinite solution domain must be trun-
cated to a finite volume in space. We chose this volume
to be an ellipsoid centered at the origin, which in prolate
spheroidal coordinates becomes

1&x &x „, 0&y &1 . (3.3)

The solutions were required to vanish along x =x „in
order to satisfy bound-state boundary conditions (BC).
Hence x,„must be chosen sufficiently large that the con-
tribution of the wave-function tail extending beyond the
cutoff leads to an inconsequential correction to the total
energy. Since x,„ is dependent on R, a value of x „too
large will waste computational effort. A rough guide used
for our calculations was

5 10 15
(1,1) "

(X MAX I]
"N

& N-I

& N-3

(1,0) ~-
I 6 II

'
N —4

(X MAX, O)

FICs. 1. Segmentation of the solution domain into elements
with associated node placement.

x,„)2t (ln10)R

for t digits of precision. Ultimately x „was adjusted
about this value to approximately minimize the computed
energy. An alternative approach, not employed herein,
would be to fit the slope of the channel components to the
exponential characteristics of the bound state. This
method might reduce the solution domain further and in-
crease the accuracy of the results for the same level of ap-
proximation.

Equations (2.1) and (2.4) were next transformed to a
matrix element form analogous to that of (3.2) and then
discretized using the Galerkin-Petrov method. A partial
integration of the kinetic energy terms was also made.
The ensuing surface term was dropped due to the bound
state leaving a matrix element involving only first-order
derivatives and interaction terms.

The FEM is based on partitioning the domain D [de-
fined in (3.3)] into a set of M contiguous, nonoverlapping
subdomains d„chosen here to be triangles. The solution
is interpolated between a set of N points called nodes (or
knots), distributed over D. The value at each node of 4 or
of the P;, together with the eigenvalues E, is the output of
the calculation. The placement of the N nodes and the I
subdomain is schematically represented in Fig. 1.

Triangular subdomains d, were chosen because all re-
quired integrals can be evaluated by transforming to tri-
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and

y y I gl +y242+y3 03

(3.4)

where /~+$2+$3 ——1 is imposed, making (3.4) truly a
bivariate transformation. The (x;,y;), i=1,2,3, are the
coordinates of the vertices of the triangle. A typical ele-
ment d, is presented in Fig. 2, with I' representing an arbi-
trary point (x,y) and the six nodes being labeled by their
triangular coordinates. If3, is the area of d„ then

1 1 —g

f& dxdyg(»y)=~ f dgt f 'dg2g(gi g2 g3) (3 5)

indicates how integrals transform, with g denoting g as ex-
pressed in triangular coordinates. Ultimately, integrals
over low-order powers of the I g; I must be evaluated; this
can be done most rapidly using the result

1 1 —g(
dg( f df2(",g2 gp n!m!p!/(n +——m +p +2)! .

(3.6)

In our calculations the P; or 4 were approximated on
each element as a linear combination of six quadratic in-
terpolates U;. On a single element d„%(x,y) for example,
was expressed via

6

%(x,y)= g 4;U~(x,y), (3.7)

where in triangular coordinates the interpolates are

U; =g;(2(; —1), i = 1,2, 3

U4 ——4/42, Us =4424 U6 =443(1 '

the g; were treated in a similar fashion.
Since the interpolates share the property

U;( xyji)=5,J, i,j =1,2, . . . , 6

(3.8)

(3.9)

with (xj,yj. ) denoting the nodal coordinates, the set of 4;
in (3.7) must equal the local values of 4'(x,y) at the six
nodes on d, . The task of assembling the global solution
%(x,y) defined over the entire domain is accomplished by

(Q, O, I)

I(-, ,0,

4 2
(i,0,03 (-' -' 0) (0, I,o)

Pl P 7

FIG. 2. Standard triangle used to define nodes and compute
integrals.

angular coordinates I gt, $2, (3 I (see especially, Askar, Cak-
mak, and Rabitz ):

x =x &g&+x2$2+x3$3

keeping track of how the local node labeling corresponds
to the global labeling.

We note in passing that our desire to interpolate %(x,y)
to quadratic order forced the use of six nodes and six in-
terpolates in order to uniquely specify the solution on each
element. The interaction terms were also approximated to
quadratic order, following Askar et al. , using an expres-
sion similar to (3.7). This does not reduce the precision of
the calculation but simplifies the method considerably
since (3.6) can then be used to evaluate all integrals.
Hence the task of constructing matrix representations of
(2.1) and (2.4) reduced to a matter of simple algebra and
bookkeeping.

The FEM and the linear combination of atomic orbitals
(LCAO) method of quantum chemistry ' used in papers
I—III are similar in that they each represent truncated
Hilbert space expansion techniques. In the FEM the basis
is formed by combining interpolates from neighboring ele-
ments; each FEM basis vector is necessarily of limited ex-
tent. In contrast, in the LCAO method, the orbitals ex-
tend globally over the entire solution domain. Further-
more, the FEM basis is nonorthogonal, as opposed to the
LCAO basis. As terms are added to the LCAO calcula-
tion the requirement of orthogonality somewhat limits the
choice of additional basis functions while their global defi-
nition tends to obscure the physical meaning of the subse-
quent calculation. In contrast, terms are added in a FEM
calculation by defining new elements and nodes in the
solution domain; this can be freely done to emphasize the
physically important regions without the constraint of
global orthogonality. Since the FEM basis is spatially
compact, additional terms do not directly induce large
long-range alterations in the global solution. These latter
characteristics are of relatively little significance for Her-
mitian problems for which the Hylleraas-Undheim
theorem is applicable, ' but are of great importance for
the non-Hermitian CCA-type theories, whose lack of a
minimum principle may cause the approach to conver-
gence to be uncertain when globally defined bases are
used.

Convergence is obtained in the FEM by increasing the
number of nodes X, and therefore the number of sub-
domains. In our calculations, at most 16S nodes were
needed to adequately represent the channel components
and wave functions in the x-y plane (%=165 is a number
much smaller than is customarily found in typical en-
gineering finite element calculations7; this is probably due
to the localized exponential aspect of the quantal bound-
state wave function). The nodal points can be assigned so
as to emphasize the physically important regions of D at
the expense of the more inconsequential ones. As indicat-
ed in Fig. 1 we concentrated the nodes near the nuclei
where the potential terms are greatest and the most sig-
nificant charge density is anticipated. The formation of
the entire Inatrix representation, including the overlap
term, took just a few seconds of CPU (central processing
unit) on Brown University's IBM-370/158 VM/CMS
computer.

The bulk of computation time was spent determining
the eigenvalues of Eqs. (2.1) and (2.4). The matrix repre-
sentation of (2.1} is rank 2N, whereas it is X for the
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Schrodinger equation. However, due to the local nature of
the interpolates, the matrices are extremely sparse and
may be stored as banded matrices which grow in size
linearly with X rather than as X . For N not exceeding
sixty-five the full generalized eigenvalue problem (the
overlap matrix was not taken as diagonal) was solved for
both eigenvalues and eigenvectors using standard routines.
For larger X an algorithm was developed by refining one
suggested by Malik et al. ' to search for the lowest-energy
states. This alternative approach was warranted since
only the lowest-energy solutions were desired; in addition,
for the range of N used, the higher-lying states were not
accurately computed: Quadratic interpolates are not suffi-
ciently accurate for states in which the kinetic energy is
large (i.e., in which there is much oscillation).

The output of the calculation was the set of energy
eigenvalues and either the channel components or the
wave function of the Schrodinger equation, evaluated at
each nodal point in the plane. Between nodes the eigen-
vectors were interpolated to quadratic order using (3.7)
and (3.8), leading to a piecewise continuous but not a
smooth representation, since quadratic interpolates are
merely dense in the space of smooth functions. That is,
since only the first derivative enters into the energy func-
tion, smoothness is not required by the mathematical for-
mulation and as a consequence the derived Galerkin se-
quence of solutions produces a smooth wave function only
in the large-X limit. If, however, a smooth approximation
is required the FEM may easily be formulated to satisfy
this additional constraint.

IV. RESULTS

The FEM has been applied to both the ACQM equa-
tions and the Schrodinger equation for the hydrogen
molecular ion Hz+. We find that to within the accuracy
of our algorithm, the two equations gave essentially iden-
tical results for both the energy and the wave function 4
( =pi+ gz in the CCA calculation) for N in the range
45&%&165. In Table I we list the total electronic
ground-state energy at the determined equilibrium inter-
nuclear separation R, =2.0 Bohr radii (ao) as a function
of the number of nodes used in the calculation. The con-

TABLE I. Convergence of the FEM calculation at R =2ao.

vergence is rapid with relative error of only 5&&10 for
the 165-node case as compared to the value of Wind, '

who computed the H2+ Born-Oppenheimer energy curve
beginning with the analytic solution to the Schrodinger
equation. We stress that the same algorithm was applied
to both the Schrodinger and ACQM equations in our cal-
culation as a check of the validity of the method and that
the results were indistinguishable from each other (see fur-
ther comments below). Furthermore, the energy conver-
gence of the ACQM calculation was monotonic from
aboue to the exact value. These observations can be con-
trasted to the results of III in which the energy conver-
gence of the LCAO calculation was very slow and began
below the exact result.

In Table II the Born-Oppenheimer potential-energy
curve is tabulated for the N=165 ACQM calculation to-
gether with Wind's results. ' Since the node placement
was fixed for the R =2ao case and no attempt was made
to optimize this placement as R varied, the FEM ACQM
calculation is necessarily most accurate near R =2ao.
Nevertheless the agreement with Wind's results is excep-
tion for all R investigated. Note also that the ACQM re-
sult lies above the exact values for all values of R. Closer
agreement with exact values could be attained by increas-
ing the number of nodes or by optimizing their locations
using a computer calculation rather than setting them by
hand.

In order to demonstrate graphically both the rate of
convergence and the R dependence of the ground-state en-
ergy for various N, we display in Fig. 3 the gerade results
for N =25, 65, and 115. On the scale of this figure, the
iV=115 result cannot be distinguished from either the
%=165 result or from Wind's potential curve.

In Fig. 4 we present the computed wave-function and
channel components plotted along the symmetry axis for
three choices of internuclear separation. In Fig. 4(a), the
channel components at R =3ao appear somewhat like 1s
functions but have a node on the axis toward the distant
nucleus. Considering only channel (1), since channel (2) is
symmetry related, the node appears at approximately
rz =3.7ao and rz ——0.7ao. This shape persists as the nu-
clei are pushed toward their equilibrium separation of
R =2.0ao. Channel (1) represents a situation where pro-
ton A is highly screened from proton 8 by the charge den-
sity of the electron localized on A. This component falls
off rapidly and passes through zero near the second pro-
ton causing proton 8 to be poorly screened. The interac-

'Reference 16.

45
55
65
75
85
95

105
125
135
145
165

Exact'

—0.601 31
—0.601 78
—0.602 18
—0.602 25
—0.620 27
—0.60245
—0.602 52
—0.602 55
—0.602 56
—0.602 57
—0.602 58
—0.602 63

O.S
1.5
2.0
2.S
3.5
4.S
6.0
8.0

10.0

EFEM

0.293
—0.582 29
—0.602 58
—0.593 74
—0.560 65
—0.533 52
—0.5109
—0.499 7
—0.495

Ewind

0.265
—0.582 32
—0.602 63
—0.593 82
—0.560 86
—O.S33 94
—0.512 0
—0.501 7
—0.501

TABLE II. 165-node FEM result for gerade energy curve.
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FIG. 5. Comparison of Hz+ lowest ungerade potential-energy
curves: 1s LCAO unphysical result of Ref. 2 (dotted) and the
N= 165 FEM result obtained by imposing f, (x,0)=0.

Ungerade states have also been computed using the
FEM. Previous LCAO calculations for the lowest-lying
ungerade state using ACQM have proceeded by construct-
ing an ungerade wave function 4' from channel com-
ponents f& for which f, (x,O)&0 These and analogous
FEM attempts produced infinitely attractive energy
curves at zero internuclear separations. This is now not
surprising given the discussion in Sec. II. As anticipated
in Sec. II, when the additional boundary condition
f,. (x,O)=0 was imposed, all the FEM ACQM ungerade
results were both physically well behaved and in extremely
close agreement with the FEM solutions to the
Schrodinger equation; each agreed well with the analytic
results of Bates et al. ' for the wave functions and energy
curves. In particular, the lowest ACQM ungerade energy
curve has the correct asymptotic dissociation energy as
well as being highly repulsive for small R. This latter
behavior is demonstrated graphically in Fig. 5, where we

compare the Is ungerade result of I with the successful
%=165 FEM ungerade calculation.

We display the channel components and wave function
for the lowest-lying ungerade state at R =2ao in Fig. 6
where it is evident, as in the gerade case, that the individu-
al channel components display considerably more varia-
tion than does the composite wave function. The channel
components exhibit a long-range oscillatory nature and do
not vanish smoothly at the imposed boundary. However,
when added together to form the wave function the sum
f~ +gz does vanish smoothly, thus satisfying the ap-
propriate BC numerically. For larger values of R (not
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FIG. 6. Lowest Hz+ CCA ungerade channel components and
the Schrodinger wave function, plotted along the symmetry axis
for R =2ao labeled as in Fig. 4.

shown) the oscillations of the P, diminish and Is-like
components are reobtained. Thus the qualitative con-
clusion can be drawn that although the oscillations present
in each channel are long range in character for small R,
they sum to zero in the far field; furthermore, the extent
of the oscillations is directly dependent on the strength of
the interchannel interaction. This state, the 2po.„one, be-
ing unbound, ' corresponds to a scattering state. The in-
dividual channel components reflect this fact with a high
degree of charge delocalization and reduced nuclear
screening as the protons are forced together.

The preceding discussion focused on the lowest gerade
and ungerade states. However, an X-node FEM calcula-
tion produces X states when applied to the Schrodinger
equation and 2X states when applied to the 2X2 ACQM
matrix equation (2.1). Detailed comparison between the
corresponding Schrodinger and ACQM FEM results were
made for the various X up to N=65. It was found, for
both the gerade and the ungerade cases, that exactly half,
i.e., K, of the ACQM solutions were spurious. That is, %
of the g-;(x,y) were such that f~ +gz ——0 for all x and y.
(Their associated potential energy curves are meaningless. )

The other X ACQM states were physical, i.e., their
potential-energy curves displayed the proper gerade or
ungerade behavior for small R. The existence of N spuri-
ous solutions is not unexpected, since only A' of the 2X
CCA solutions could possibly agree with the N
Schrodinger solutions. Much to our surprise, however, for
X&45 both the gerade and the ungerade, nonspurious,
CCA results agreed with those from the same FEM
Schrodinger calculation to ten decimal places. This is
clear and convincing numerical evidence that the spec-
trum of the Schrodinger equation is embedded in that of
the CCA equations, as required and expected theoretical-
ly.""It is also evidence that a small-X FEM calcula-
tion can produce physically meaningful results even
though they need not be extremely accurate. In general,
for a given X, the lower-lying states we calculated were
more accurate than were the higher-lying states. This is a
result, noted already, of the inability of quadratic interpo-
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lates to represent accurately the oscillatory character of
the higher-lying states, a phenomenon due to the increased
kinetic energy of these states. Improvements in the ener-
gies and the Q of the higher-lying states could occur
through use of (I) much smaller subdomains d, and con-
sequently many more nodes N; (2) interpolates which
themselves have more curvature, e.g., cubics; (3) an ex-
tended cutoff x,„. Each of these latter two possibilities
have been verified in test calculations on the H atom. '

Two forrnal properties of the CCA theory were also in-
vestigated. The first dealt with the theoretical result that
the exact, left-hand eigenstates of H, i.e., the eigenstates of
H T

( T stands for transpose), are independent of the chan-
nel label j and are each equal to %', the Schrodinger solu-
tion at the relevant energy. This result evidently can hold
only for the physical, nonspurious CCA eigenvalues. Its
validity was verified in all cases for which our FEM
values of E and 4 were sufficiently accurate, as compared,
for example, to the results of Bates et al. '

The other formal aspect we studied numerically con-
cerned the nature of the spurious solutions. We have al-
ready commented that for N(65, the FEM CCA solu-
tions were equally divided between N physical and N
spurious states, for both the gerade and the ungerade sym-
metries. This is consistent with Evan's result' that the
spurious plus physical states span the space of eigenstates
of H. Furthermore, in all the cases studied, the spurious
eigenvalues, for all R, were larger than the asymptotic en-
ergy —0.5 a.u. , so they correspond to excited and continu-
um states. Finally, if P," is a spurious eigenstate of H
with eigenvalue E„ then for each E„ the solution P" of
HTP'~=E, P" was doubly degenerate: P'~' P2', with n——o
PI being an eigenfunction of H.

V. SUMMARY AND DISCUSSION

We have established a number of results in this article.
First, we have shown numerically, via the finite element
method, that the physical solutions to the CCA equations
for H2+ converge to the solutions of the Schrodinger
equation. In doing so, we have also shown that the FEM
is an efficient and accurate means for determining numer-
ically the ground and excited states of a one-particle, two-
center Schrodinger equation; we expect that the FEM will
work as well for more complicated systems. Second, we
have proved analytically that the channel components g,.
for the H2+ ungerade states must vanish along the rnid-
plane normal to the symmetry axis, i.e., g, (x,O) =0. Im-
position of this condition resulted in all the FEM
ungerade potential-energy curves E (R) being physically
well behaved. This therefore clears up the problem of the
unphysical ungerade curves obtained in previous calcula-
tions ' for which g, (x,O)=0 was not imposed [indeed,
when g, (x,O) =0 was not imposed in our FEM ungerade
calculations, the E (R) were again unphysical, i.e., their

behavior was E (R ~ oo )~—co]. We also believe that
the unphysical H2 triplet results of III can be accounted
for in the same way. Current work on use of the FEM for
H2 will test this expectation; results will be reported in a
future publication.

These are our two main results. They imply others.
For example, the failure of our LCAO calculations to con-
verge coupled with the success of the FEM computations
means that due to the non-Hermiticity of the ACQM
operator H, the choice of basis expansion functions is
more important than the number of terms used in the ex-
pansion. This is in contrast to the Schrodinger equation
for which the Hylleraas-Undheim theorem forces a mono-
tonic improvement regardless of the basis chosen. In this
regard, it is extremely interesting that all our FEM calcu-
lations using both the CCA equations and the Schrodinger
equation yielded results that converged monotonically, in
contrast to the LCAO calculations of III. Given the na-
ture of the FEM, we are not surprised at this behavior,
and speculate that it will hold true for ACQM calcula-
tions in general.

The comments of the preceding paragraph notwith-
standing, however, the accuracy and simplicity of the
LCAO calculations of papers I—III should not be down-
graded, particularly in view of our current understanding
of the unphysical H2+ ungerade and Hq triplet results.
The ACQM equations have so far provided an excellent
method for producing approximate results that are easy to
obtain, relatively accurate and physically meaningful, and
which, therefore, can be used to give a physical picture of
the chemical bond. Because the channel structure of H
yields a partitioning into asymptotically identifiable atom-
ic or molecular fragments, ACQM is a possible basis for
introducing, at a relatively high level of accuracy, an
atoms-in-molecule or molecule-in-molecule description of
molecular structure. This point has been remarked on be-
fore, ' but takes on an added significance now that the
CCA results have been shown to converge and the un-
physical energy curves of I—III have been accounted for.
Obviously, more (successful) approximate CCA calcula-
tions are needed in order to verify the generality of these
statements. Some work along this line is in progress and
will be reported on in the future.
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