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Stochasticity and reconnection in Hamiltonian systems
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A- general class of Hamiltonian systems is studied in which neighboring phase-space islands are shifted in

phase. This leads to reconnection of Kolmogorov-Arnold-Moser level curves and necessitates a reexam-
ination of the island overlap criterion for the breakdown of adiabatic barriers between island chains. An

analytic reconnection threshold is derived from an averaged Hamiltonian and found to agree closely with

numerical surfaces of section for a model mapping. Numerous applications to physical problems are indi-

cated.

In general, reconnection might be defined as a topological
rearrangement of level curves in which critical points do not
change their type (in contrast to bifurcations, in which crit-
ical points may be created or destroyed, or change type. )
Reconnection plays an important role in a variety of physical
problems, including rf acceleration in particle accelerators, '

motion of magnetic field lines, ' particle motion in two-
dimensional potentials, 3 wave-particle interactions, 4' laser-
plasma coupling, and possibly the free-electron laser. ' In
many of these cases involving nonintegrable systems one is
concerned with the extent to which the motion is stochastic
or regular. For example, in ion or electron cyclotron reso-
nance heating, regular phase-space curves, called Kolmo-

,, gorov-Arnold-Moser (KAM) curves, can present barriers to
stochastic heating. Stochasticity of magnetic field lines can
lead to rapid particle and energy loss in fusion devices. In
this paper we show that there is an intimate relationship
between stochasticity and reconnection, with the result that
reconnection can effectively destroy an adiabatic barrier.
The reconnection threshold is derived for a general class of
Hamiltonian systems and found to agree closely with nu-
merically computed KAM barriers for a model mapping.

Many dynamical systems of current interest are particular
cases of the radial twist mapping

centers are either aligned or shifted by m", similar re-
strictions apply approximately to higher-order islands.

When aligned counter-rotating islands merge, a two-
dimensional vortex is formed. When staggered islands
merge, their separatrices form a chain of loops, as depicted
in Fig. 1. The latter mode of reconnection is the only possi-
ble one for period-one islands, since TrL —2= —Itf'cosH
changes sign with f' This scena.rio was first observed by
Symon and Sessler' in calculating beam stacking in particle
accelerators; their mapping can in fact be put in the form
(1). Mappings of this form also occur in our studies of
multifrequency electron-cyclotron-resonance heating" where
they arise in calculating resonance overlap in a four-
dimensional phase space.

Examination of a number of occurences of reconnection
in two-dimensional potentials V, = V(x,y;o. ;) suggests that
this always involves the merging of two separatrices. Thus,

(a)
Q+ Qr

x'=x —K sin&,

8 =8+f(x')
where IC is a constant and f (x) is analytic in some domain.
For example, f (x) = x gives the Taylor-Chirikov map, 8

while f(x) = I/x yields the Fermi map. 9 The general case
f (x) =x" has also been studied. 'o Now consider functions
f (x) whose inverse is multivalued, so that f (x) —2vrn =0
has multiple roots, corresponding to families of island
chains. If f (x;n) depends continuously on the parameter n
such that f'=Of/Bx at fixed x changes sign as a is varied,
then pairs of island chains merge whenever f'=0. From
the tangent map

1 —K cos0
f' 1 —I f'cos8 (2)

it may be shown that the rotational sense of islands of any
order is —sgn(f'). The merging of such counter-rotating
islands is necessarily accompanied by the reconnection of
their separatrices, which can happen in one of two ways.
Since the period-one islands lie only at 0= 0 or m, the island

FIG. 1. Reconnection scenario for logistic twist map (two periods
are shown for clarity).
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H(x 8) = !I [f(()—2rrn]dg —A cos8
JXI (3)

which yields a continuous approximation to the mapping in
the vicinity of a fixed point. Reconnection occurs when the
upper and lower separatrices have the same value of H.
With no loss of generality, suppose that the upper island
chain in Fig. 1 has x points at + vr, so that the lower separa-
trix passes through x points at 8=0 and 2m. . From Eq. (3)

a necessary condition for reconnection is that VI ——V~. For
example, it may be shown that the Henon-Heiles potential"
is a reconnection point of the more general Hall-McNamara
potential. ' In the case of the radial twist map (I) a recon-
nection threshold may be derived using the averaged Hamil-
tonian

the lower and upper separatrices are given by H], = +K and

pXp
H„,= —2mn d —K

XI

Equating H„,= H], then gives the reconnection threshold
X~(a)

E (n) = I/2 J [f(g;n) —27m ] d(

(4)

As we shall see, this simple formula often gives a useful es-
timate for the breakdown of an adiabatic barrier.

We have chosen for detailed study the "logistic twist
map, " for which

f(x) =x —nx', (6)

where o. ) 0. The behavior of this mapping is representa-
tive of the general class (1) and may be regarded as a para-
digm reconnecting system. The period-one fixed points are
located at

1000
—X+

x, = — (I + dl —87rnu)+ 1

20!

For positive n both roots are positive real for 0 ~ 8mno. ~ 1,
coalescing when u ' = (87r n ) ' at x„'= 47m Th. e x„
reduce to the standard mapping island centers as o. 0; the
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FIG. 2. Surfaces of section for logistic twist map for K =1.5 (a)
before reconnection (n = 0.036) and (b) after reconnection
(o. =0.038). Both x and 0 are in degrees.

FIG. 3. Surfaces of section for E =4, sho~ing vortex formation.
(a) n = 0.0260; (b) o. = 0.026 35.
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x„+ islands are born at x=~, descending and merging
sequentially with the rising x„as u is increased (with the
exception of the n = 0 island, which is unperturbed).
Identifying x~ = x„and x2= x„and evaluating the integral
in (7) gives the reconnection threshold

~ ( ) (1—8mnu)'~'
12n

Equation (8) has been verified by visual inspection of nu-
merical surfaces of section for the case n =1 and K ~ 2.5;
above this value the stochastic layers surrounding the is-
lands obscure the reconnection process. Figure 2 shows
typical phase plots in the vicinity of the n =1 islands before
and after reconnection. Notice the band of KAM curves
separating the upper and lower islands in Fig. 2(a), which
form a "type-I" barrier to orbits initialized in the stochastic
region near x =0. After reconnection a second "type-II"
barrier exists, with the upper island now topologically below
the previously lower island.

While there is at present no theoretical method for
predicting the existence or destruction of KAM barriers
between staggered islands, some insight may be gained
through study of the heteroclinic orbits joining the x points
of the upper and lower island chains. Figure 1(b) is an in-

tegrable approximation to the map when the heteroclinic or-
bits are dense and form a separatrix. When the island
chains are separated by KAM curves they cannot be joined
by heteroclinic orbits and when they are joined by hetero-
clinic orbits they cannot be separated by KAM curves. It
remains to be proven whether in all cases there are either
KAM surfaces or heteroclinic orbits.

The second mode of reconnection, vortex formation, is
shown in Fig. 3 for the period-two aligned islands. The
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upper and lower elliptic fixed points are located at

x —= (1 + 41 —4mm n)+ 1
(9)

where m is an odd integer. As n is increased, the x points
move together nearly vertically, joining at the reconnection
point, after which they move apart horizontally. As n is in-
creased further, each vortex shrinks as a unit, vanishing
when o, '= (4vrm) ', an apparently previously unobserved
kind of "multifurcation. " Although a reconnection thresh-
old may be obtained by deriving an averaged Hamiltonian

FIG. 4. Computed adiabatic barriers between n =1 islands com-
pared with reconnection threshold K, (o.).
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FIG. 5. Surface of section near barrier breakdown for o. = 0.035 and K = 2.82. Note the very thick stochastic layer.
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for the period-two islands, it is easier in this case to work
directly with the period-two mapping equations. Requiring
that the x points merge then gives

K,(n ) =—41 —47r m a1 (10)

This result has been verified visually to more than five
significant figures. We have also observed reconnection of
higher-order islands up to period six, similar to those seen
by Fukuyama. In general, even-order islands form vortices
and odd-order islands make loops.

Extensive numerical calculations of the type-I barrier
have been carried out for the n =1 islands by fixing ot. and
following single orbits for increasing K until a breakthrough
was observed. The results are shown in Fig. 4 for
0.020~a ~0.040, along with the reconnection threshold
(8). The dashed line is the bifurcation threshold
Kbr=4(1 —8mnn) . '~ (found by setting TrL = —2), above
which the notion of reconnection becomes meaningless.
The most striking feature of this figure is the convergence
of the barrier data to the reconnection curve for o. ~0.031

(the island chains merge when n = 1/8m = 0.03979). While
one would expect approximate agreement as the stochastic
layers diminish with decreasing K, the convergence is rapid,
even in the presence of a thick stochastic layer. For exam-
ple, at o. =0.035, where Fig. 5 reveals a very thick stochastic
layer near the barrier (K = 2.82), the agreement with K, is
better than one part in 10; at o. = 0.0365 the relative differ-
ence is only 3 x 10 ! The sharp minima in the barrier data
at o, = 0.0235 and 0.0290 are due to reconnection of
period-three islands, while the dip near o. = 0.0255 is a
consequence of the period-two vortices depicted in Fig. 3.
It may be shown that the barrier data also lie near the
reconnection thresholds in these regions. The close agree-
ment between Kb and K, is surprising both because K, was
calculated from an approximate Hamiltonian and because of
the apparent lack of influence of the stochastic layers.
These and other questions leave considerable scope for fu-
ture work.

We ~ould like to thank A. J. Lichtenberg and M. A.
Lieberman for helpful discussions. This work was support-
ed by the Office of Naval Research Contract No. N00014-
79-C-0674.

Present address: TRW Energy Development Group, 1 Space Park,
Redondo Beach, CA 90278.

K. R. Symon and A. M. Sessler, in Proceedings of the International
Conference on High-Energy Accelerators and Instrumentation (CERN,
Geneva, 1956), p. 44.

2J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).
L. S. Hall and B. McNamara (unpublished).

4A. Fukuyama, in Intrinsic Stochasticity in Plasmas, edited by G. La-
val and D. Gresilon (Les Editions de Physiques, Courtaboeuf, Or-
say, France, 1979), p. 207.

5C. F. F. Karney, Phys. Fluids 21, 1584 (1978).
A. B. Langdon and B. F. Lasinsky, Phys. Rev. Lett. 34, 934

(1975).

N. M. Kroll, P. L. Morton, and M. N. Rosenbluth, in Free Electron
Generators of' Coherent Radiation, edited by S. F. Jacobs et al.
(Addison-%'esley, Reading, MA 1980).

B. V. Chirikov, Phys, Rep. 52, 265 (1979).
9M. A. Lieberman and A. J. Lichtenberg, Phys, Rev. A 5, 1852

(1972).
' A. J. Lichtenberg, M. A. Lieberman, and R. H. Cohen, Physica D

1, 291 (1980).
"J

~ E. Howard, A. J. Lichtenberg, M. A. Lieberman, and R. H.
Cohen (unpublished).

' M. Henon and C. Heiles, Astron. J. 69, 73 (1964).
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic
Motion (Springer Verlag, New York, 1983).


