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In thermal-energy collisions between sodium atoms in ns or np states (32~ n ~ 52) and xenon atoms,
depopulation of the Rydberg states is observed to occur predominantly through state-changing reactions of
the type Na(ns or np)+Xe Na(n —1, 1~2)+Xe. For the present range of n, the measured cross sec-
tions increase with n and lie between 1500 and 2600 A~ for ns states and between 2000 and 4200 A2 for np

states. Implications of the data are discussed.

In recent years a number of studies of state changing in
thermal-energy collisions between alkali atoms in high Ryd-
berg states and the rare gases have been reported. ' ' In the
case of sodium much of this work was focused on collisions
involving d or f states. However, collisional depopulation
of Na(ns) states by helium, argon, and xenon has been in-
vestigated by Gallagher and Cooke" for states with principal
quantum numbers n in the range 6 to 11. In the present
work we have investigated depopulation of s and p states in
collisions with xenon for values of ~ in the range 32 to 52.

The experimen. tal technique and apparatus have been
described in detail elsewhere. ' Sodium atoms in a thermal
beam are excited, in the presence of xenon, to high Ryd-
berg states by pulsed-laser-induced photoexcitation. The p
states are produced by direct excitation from the ground
state, and the s states by two-step excitation via the inter-
mediate 3 P~y2 state. Following excitation the atoms are al-
lowed to interact with the target gas for a selected time t,
within the range 0-7 p, sec, after which the remaining parent
and product Rydberg atoms are ionized in a time-dependent
electric field. Since Rydberg atoms in differen. t quantum
states ionize at different fieM strengths, measurement of the
field dependence of the ionization signal permits identifica-
tion of the excited atoms present in the interaction region.
This technique, referred to as selective field ionization
(SFI), has been widely used to analyze excited-state distri-
butions. ' The SFL data obtained here show that state
changing occurs predominantly through reactions of the type

Na(ns or np ) + Xe Na(n —I, I ~ 2) + Xe

and that collisions populate states having a range of values
of I and ImtI. In addition, no significant collisional ioniza-
tion is detected.

Absolute rate constants for state changing are obtained by
measuring, using SFI, the time dependence of the parent
state population N(t) and the state-changed population,
viewed as a reservoir of population R (t). The time depen-
dence of R (t) is given by
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where v„1 iS the average relative collisiOn velOCity.
The measured cross sections are shown in Fig. l together

with the earlier results of Gallagher and Cooke who suggest
that, at low n, collisional depopulation proceeds via an in-
teraction, of the Na+ core with the target atom, which in-
duces a transient dipole on the xenon atom that causes tran-
sitions to sodium states of different n. However, for the
present range of n, the cross sections are very much larger,
thereby suggesting that state-changing results from an in-
teraction between the Rydberg electron and the target atom.
In this event the amount of energy that can be transferred
to or from a Rydberg atom by a collision with a xenon atom
can be determined by considering the kinematics of an elas-
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determined by fitting the integral form of Eq. (2) to the
data. Cross sections are obtain. ed using the relation

= pkN(t) —bR (t),
dt

(2)
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where p is the xenon density, k the rate constant for state-
changing collisions, and b the reservoir decay rate. k is

FIG. 1. Cross sections for state changing in Na -Xe collisions.
Present data, Na(np) $, Na(ns) $; Gallagher and Cooke (Ref. 4),
Na(ns) $.
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FIG. 2. State-changing cross sections as a function of the energy
separation bet&veen the state of interest and the nearest manifold.
Present data, Na(np) $, Na(ns) $; Kaehru, Gallagher, Gounand,
Safinya, and Sandner (Ref. 9), Na(nd) g; Chapelet, Boulrner„
Gauthler, and Delpech (Ref. 10), Na(nd) $; Higgs, Smith, Dun"
ning, and Stebbings (Ref. 6), Xe(nf) g; Hugon, Gounand, Four-
nier, and Berlande (Ref. 11), Rb(nf) $; Hugon, Sayer, Fournier,
and Gounand (Ref. 12), Rb(nd) g, Rb(ns) I.

tic collision between the Rydberg electron and the target
atom. Such considerations show that small energy transfers
arc favol'cd ' ' Rnd that, ln consequence, tlansltlons to thc
nclghbol'lng n 1 manifold should predolTllnatc, Rs ls ob"
scl vcd.

In Fig. 2 are shown the available data for state changing
in collisions between various Rydberg atoms and xenon
plotted as a function of the energy separation between each
particular Rydbcrg state and the nearest manifold. '9 ' Of
interest is the fact that these data fall into three distinct
groups. The uppermost group pertains to quasihydrogenic d
and f states for which state-changing collisions leave n un-
changed. " The lowest group comprises data for Na(ns),
Na(np), and Rb(nd) states which are not quasihydrogenic
and which mix to the adjacent n —1 Inanifold, The data for
Rb(ns) states, which mix to the n —3 manifold, form the
third group. This grouping according to the change in n that
occurs during state chRnglng ls cntlI'cly conslstcnt with
thcorctlcal conclusions that thc dcgl'cc of spatial overlap
between the initial- and final-state wave functions is an im-
portant factor ln dc tcl'mlnlng thc slzc of state-changing
cross sections.
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