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Relaxation and fluctuations of nonlinear macroscopic systems, which are frequently described by
means of Fokker-Planck or Langevin equations, are studied on the basis of a master equation. The
problem of an approximate Fokker-Planck modeling of the dynamics is investigated. A new

Fokker-Planck modeling is presented which is superior to the conventional method based on the
truncated Kramers-Moyal expansion. The new approach is shown to give the correct transition

rates between deterministically stable states, while the conventional method overestimates these
rates. An application to the Schlogl models for first- and second-order nonequilibrium phase transi-

tions is given.

I. INTRODUCTION

Nonlinear macroscopic systems which are displaced
from equilibrium or driven by external forces show a rich
variety of interesting phenomena as, e.g., instabilities and
metastable states. These problems have attracted consid-
erable interest in recent years. ' Most of the analysis has
been based on Fokker-Planck equations or stochastically
equivalent Langevin equations. On the other hand, it has
been pointed out previously, in particular by van Kam-
pen, that the Fokker-Planck approach has no absolute ap-
plicability; rather it represents an approximation whose
form and limits of validity should be investigated in each
situation.

In this paper, we consider the dynamics of bistable sys-
tems described in terms of a master equation and study
the problem of an approximate Fokker-Planck modeling
of the dynamics. The same problem has been investigated,
previously. Van Kampen has introduced the system-size
expansion which reduces the master equation locally to a
diffusion process. This method is systematic but it does
not allow for the determination of global features, as, e.g. ,
the decay rates of metastable states. A global Fokker-
PlaIlck dcscr1pt1on can bc obta1ncd by tl uncatlng thc
Kramer-Moyal expansion of the master equation after
the second term. This is, in fact, the most widely used
method. A third method based on nonlinear transport
theory has very recently been proposed by Grabert,
Hanggi, and Oppenheim. In the present work we relate
some more details to the new Fokker'-Planck modeling
and show that it yields a more faithful representation of
the underlying master equation than the usual Kramers-
Moyal modeling.

The paper is organized as follows. In Sec. II we review
the description of bistable systems in terms of one-step
Markov processes. The transition probabilities are as-

sumed to obey the usual scaling in terms of a size parame-
ter Q. A nonlinear Onsager-type transport law is derived
asymptotically for large 0, and the rates for transitions
between the two deterministically stable states are deter-
mined. Section III discusses various features of the new
Fokker-Planck modeling. Irl particular, we calculate the
transition rates from the Fokker-Planck equation and
show that they coincide with the correct rates for large Q.
On the other hand, the usual Kramers-Moyal modeling is
shown to consistently overestimate these rates.

In Sec. IV we study the Fokker-Planck modeling of the
Schlogl models for first- and second-order nonequilibri-
um phase transitions. In this context, the special case of a
process with an absorbing state is investigated. Finally, in
Sec. V we elaborate on extensions to multistep processes
and higher-dimensional state spaces and discuss limita-
tions of a Fokker-Planck modeling of discrete processes.

II. BISTABLE ONE-STEP PROCESSES

P, (0)= W (1)P,(1)—W+(0)P, (0), (2.1a)

P, (N) = W+(N 1)P,(N 1)+W' —(N+1)P,—(N +1)
—[W+(N)+W (N)]P, (N), N =1,2, . . . .

(2.1b)

%C consider a bistable system with a discrete state
space N=0, 1,2, . . . . The number of molecules of a
chemical species, the number of photons in a lasing mode,
or the number of electrons on a capacitance are examples
for N. It is assumed that the system makes random tran-
sitions where X jumps by + 1 or —1 according to the
transition probabilities W+(N) and W (N). The state
then follows a Markovian process, and the probability
P, (N) of finding the system at time t in the state N
changes accordrng to thc Inastcf' cquat1on
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In the sequel we assume that all transition probabilities
are positive, W+(0) &0; W—+ (N) &0, N =1,2, . . . . More-
over, in terms of a size parameter 0, the transition proba-
bilities shall obey a scaling relation

3 I(x)= ——,P(x)
n=l n. Q"

a
Bx

A„+I(x)P(x) .

(2.14)

W +—(N) =Ay+—(x),
where

(2.2) On inserting (2.11) into (2.14) and passing to the limit
Q~ oo we find

(2.3)

is an intensive variable corresponding to N.
With these assumptions the Kramers-Moyal expansion

of the master equation (2.1) reads I)$0(x)
go(x) = =lny (x)—lny+(x)

Bx
(2.16)

A I(x)= —L(x)XD(x), (2.15)

where we have introduced the generalized thermodynamic
force

a "
» a—p, (x)=arP' „,, ! g -I

where

A„(x)p,(x), (2.4) and where "
00

(x)= Y~ g I
~++2(x)PO(x)l2

( +1)I n+

p, (x) =OP, (N) (2.5)

A„(x)=y+(x)+(—1)"y (x) (2.6)

are the Kramers-Moyal moments. Clearly, in the limit
Q~ oo, (2.4) reduces to

—p, (x)= — A I (x)p, (x)a a
(2.7)

which corresponds to the deterministic evolution

x =3 I(x) =y+(x) —y (x) . (2.8)

The stationary probability P(N) of the master equation
(2.1) satisfies the condition for detailed balancing

W+(N)P(N) = W (N +1)P(N -+1) . (2.9)

This yields

W+ M
P(N) =P(0) g

0 W (M+1)

is the probability density of the intensive variable x, and
the

y+(x) —y (x)
lny+(x) —lny (x)

(2.17)

is a transport coefficient. The second line shows that
L (x) &0 since (a —b)/(ina —lnb) &0 for all a, b &0.
With (2.14) the determimstic law (2.8) takes the form of
an Onsager-type transport law

x = L(x)Xp—(x) . (2.18)

This will be the starting point for the Fokker-Planck
modeling put forward in Sec. III.

In general, the spectral properties of one-step Markov
processes cannot be obtained exactly in the case of multi-
stability. However, because of the strict detailed balanc-
ing, (2.9), the master operator in (2.1) can be symmetrized
and its spectrum can be evaluated asymptotically for large
0 by means of the WKB method. For a bistable system
the deterministic flow has a form as sketched in Fig. l.
There are two stable steady states at x

&
and x2 and an un-

stable steady state at x3. Following Matsuo' one finds
for the spectrum in the limit Q~ oo

W+(m)
=P(0)exp ln

o W (M+1)
(2.10)

By virtue of (2.2) and (2.10), the stationary probability of
x has the asymptotic form

1
p(x) =Z 'exp —0 $0(x)+—PI(x)0 (2.11)

where Z denotes the normalization,

y+(xo)y (xo)
PI(x) = ——,

' ln
y+(x)y (x)

(2.13)

Because of (2.9), the Kramers-Moyal moments are relat-
ed by"

$0(x) = —J dy ln (2.12)
y (y)

is a potential possessing extrema at the steady states of the
deterministic evolution law (2.8), and where'

FIG. 1. Deterministic flow of a bistable system with drift-
dorninated regions (hatched) and diffusion-dominated regions
(dotted).
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m =O, I,2, . . .

Az &
=—nAz, n =0, 1,2, . . .

A, 3 „—— (n—+1)A,3, n =0, 1,2, . . .

(2.19)

For 0—woo these eigenfunctions form a biorthonormal
system

f dx w; »(x)pj (x)=5;i5„~,

where
i,j=1,2, 3, n, m =0, 1,2, . . . . (2.29)

B
i =1,2, 3 . (2.20)

x(t)=x;+0'~y(t), i =1,2, 3 (2.21)

one obtains in the limit Q~ oo a stable Omstein-
Uhlenbeck process y (t) for i = 1,2 and an unstable
Ornstein-Uhlenbeck process for i =3 described by

—II&(y) =+X; ylif(y)+ —,d; II,(y), (2.22)

This result can also be derived by expanding the master
equation in terms of A '. Putting

%'hile the asymptotic spectral properties of the master
operator describe the behavior in the vicinity of the deter-
ministic steady states x; satisfactorily, global properties
require a study of the (exponentially small) coupling be-
tween the three parts, I, =1,2, 3, of the asymptotic spec-
trum (2.19). Here, we shall restrict ourselves to a discus-
sion of the effect of this coupling upon the degenerate
eigenvalues A~ p=k. p p=0. The degeneracy is lifted by a
tunnel-splitting. One eigenvalue will remain zero corre-
sponding to the stationary probability p(x) and the other
one will assume a small negative value kT. This eigen-
value can be expressed in terms of the transition rates
r(x, ~x2)=r+ and r(xz~x, )=r as

where A, r ———(r++r ) . (2.30)

d;=32(x;) . (2.23)

a'
2 dI.

By 2d 2

' y'+ (2.25)

This gives the eigenvalues (2.19) and the eigenfunctions
' 1/2

1 —z,.y'/2d, . ~I
I N 2g (

Pk
(2.26)

where the H„are Hermite polynomials.
This way the asymptotic right eigenfunctions p;»(x)

and left eigenfunctions w; „(x) of the master operator in
(2.4) are found to be

' 1/2
1 +~i —(QA.;/d;)(x —x; )2

p;„(x)= e
2"yg 'f m'd;

Here and in the following the upper sign holds for i = 1,2
and the lower sign for i =3.

To find the right eigenfunctions we make the ansatz

+A, y2/2d-
11,(y) =e~'e ' 'g(y) (2.24)

leading to the Schrodinger eigenvalue problem

The rates r—+ themselves are related to mean first passage
times. We will consider this relationship for I+ only,
since analogous arguments apply for r

The site X3 ——Qx3 corresponds to the deterministically
unstable steady state. For a process starting at a site X
left of N3 (N (N3) we introduce the time T(N) which the
process needs on the average to reach for the first time the
site N3. For large II and for all starting points N (except
those near N3) the process will first follow the determinis-
tic trajectory with a probability very close to I. Then it
will stay near the stable point X~ ——Qx~ for a very long
time (much longer than the time in which Nl was ap-
proached) before an occasional fluctuation drives the sys-
tem to N3. From there the system goes with equal proba-
bility to N~ or X2. The time needed for this last step is
negligibly short compared with the sojourn time at N&.
Hence, the mean first passage time T(N) is independent
of N for most .V and its constant part T determines the
rate

(2.31)

For one-step processes T(N) has been evaluated in closed
form'3'4:

(2.32)
M=N K=0

'nx,
p3 „(x)= H„

2"pg! md3 d3
(x —x3),(2.27) (2.33)

On the intensive scale we find in leading order for large Q

T(x)=II f dy[y (y)p(y)] ' f dzp(z) .

and

wi «(x) =H»
Qkg

d
(x —x;), i =1,2

In view of (2.11), T(x) becomes independent of x for
x3 —x )0(II '

), and its constant part T can further be
simplified with the use of the method of steepest descent
to yield

—(QA, 3/d3)(x —x3)2
M'3 „~X)=8 n

AX3

d3
(x —x3)

I

(2.28) X~ Qf $0(x3 ) —P (x ) j0 1 (2.34)
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where Pp' denotes the second-order derivative, and where
(2.11) and (2.13) and y+(x

& ) =y (x&) and y+(x3)
=y (x3) have been used. Analogously, the rate r is
found to be

-y'(x2)[ko'(x2)
I
4o'(x3)

I

]'"
2m'

Q[$0(Z3 ) po(Z2 )]Xe (2.35)

The small eigenvalue A, r, (2.30), dominates the long-
time behavior of bistable systems. Since this eigenvalue is
well separated from the rest of the spectrum it is often re-
lated to macroscopically observable phenomena, e.g., the
switching of tunnel diodes.

III. FGKKER-PLANCK MODE]LING

1 8
p, (x)= g, (x)p, (x)+—,A, (x)p, (x) .

Bx
' 2& Bx'

For large Q one expects that the discrete nature of a
Markov one-step process becomes unimportant and that
the process can be approximated quite accurately by a
continuous Markov process described by a Fokker-Planck
equation. Since for nonlinear systems the Fokker-Planck
equation is generally much more tractable than the master
equation, the Fokker-Planck description enjoys great
popularity. Hence, the question arises whether the
Fokker-Planck equation gives results approaching those
obtained from the master equation for large A.

Frequently, the Fokker-Planck modeling of nonlinear
systems is based on the truncated Kramers-Moyal expan-
sion (2.4) of the master equation. Retaining only the first
two terms one finds

Hence, at the steady states x; of the deterministic motion
both potentials are at extremes and their curvatures coin-
cide:

Pp'(x;)=Vp'(x;), i =1,2, 3 . (3.6)

rKM y+(x i )[+p(x i )
I
+p(x3 )

I

]'
277

—Q['PO(Z3 ) —4'0(Z ) )]Xe (3.8)

and, correspondingly,

y+(x2)[Po'(x2)
I

q'o'(x3)
I

]'"
2m.

Xe
—Q[e,(Z3) —e,(Z, )]

(3.9)

Comparison with (2.34) and (2.35) reveals that this result
differs from the correct rates r +by a fact—or

e (3.10)

Furthermore, applying the method of Sec. II, it is easily
seen that for 0—moo the spectrum (2.19) and the eigen-
functions (2.27) and (2.28) are recovered from the
Fokker-Planck equation (3.1).

The splitting of the degenerate eigenvalues A,
& o and A2 o

can again be calculated via mean first passage times.
From (3.1) the time T(x) which a process starting from
x &x3 needs to reach for the first time the instability
point x3 is obtained as

T(x)=Q f dy[ —,p(y)A2(y)] ' f dzp(z) . (3.7)

Using (3.3) and A2(x3)=2y+(x3)=2y (x3), we obtain
from (3.7) for large A the rate

Since (2.6) gives

A &(x) =y+(x) —y (x), A2(x) =y+(x)+y (x),

(3.1)
where

(3.2)

1 "3
d y+(y) —y (y)
GP

) 21 +1 "i 2 y+(y)+y (y)
)0.

the stationary probability of the Fokker-Planck equation
(3.1) is found to be

p(x) = [ZA2(x)] 'exp[ —0+p(x)], (3.3)

4 (x)= —f dy2~
y+(y)+y (y)

(3.4)

Note that the potential +p(x) differs from the correct po-
tential Po(x), (2.12). This difference does not vanish in the
limit 0—+ Oo.

On the other hand, using a well-known expansion of the
logarithm, we find

Bgp(x)
Xp(x) =

Bx
2l+1

1. y+(x) —y (x)—2
Bx I ) 2l+ 1 y+(x)+y (x)

(3.11)

In deriving this result we have taken advantage of (3.5)
and (3.6). Thus, the Kramers-Moyal Fokker-Planck
modeling overestiinates the rates in leading order.

The shortcomings of the Kramers-Moyal Fokker-
Planck modeling are due to the fact that the correct po-
tential Pp(x), (2.12), is not recovered. An alternative
Fokker-Planck modeling, essentially overcoming this dif-
ficulty, has recently been put forward by Grabert, Hanggi,
and Oppenheim. Nonlinear transport theory gives the
connection between a deterministic description in terms of
Onsager-type transport laws and a stochastic description
in terins of a Fokker-Planck process. Based on this
theory, the transport law (2.18) can be associated with the
Fokker-Planck equation

—p, (x)= L (x) Xp(x)+ —X~(x)+— p, (x),1 1 ()
=ax ' n ' @ax
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Bgo(x) BP1(x)
Xo(x)=, X)(x)=

Bx Bx

Clearly, the stationary probability reads

p(x) =Z 'exp —Q po(x)+ —$1(x)
Q

(3.13)

T(x)=Q f dy[p(y)L (y)] ' f dz p(z) (3.21)

which by virtue of (3.14) yields for large Q the rate

L (xl )
[4o'{xI }

/

4o'{x3}
I

]'"
—IP)(x3)—P)(x] )] —Qtgo(x3) —4o(x) )]

Xe e

which coincides with the asymptotic stationary probabili-
ty, (2.11), of the master equation. Furthermore, in the
limit Q~ao the stochastic process (3.12) reduces to a
deterministic process described by (2.18). Because of
(2.15) and (2.17), the new Fokker-Planck equation (3.12)
may also be written

I} 8 1 8
p, (x)= — -XI(x)p,(x)+ Kz(x)p, (x}, (3.15)

With the use of (2.13) this may be written

2' y+(xl )

—0[$0(x3 )—$0(x] )]Xe (3.23)

where

&I(x)= —L(x) Xo(x)+—X~(x) +—1 1 BL(x)
Q Q Bx

=A )(x)+- aL(x)
Q Bx

—L (x)XI(x) (3.16)

Ez{x)=2L (x)
OC

=Az(x)+ g A„+z(x)[Xo(x)]" .n+1! (3.17)

Bgo(x)
EI(x)= ——,'EI(x) +O(1/Q) .

Bx
(3.18)

Since the deterministic law is recovered only if

Kl (x)= L(x )Xo(x)+O—(1/Q) (3.19)

This makes the difference with (3.1}more apparent. Note
that the difference of the diffusion coefficients is not of
order 1/Q, but proportional to the deviation from steady
states as measured by the thermodynamic force Xo.

Before proceeding we note that, for any Fokker-Planck
equation of the form (3.15) having the correct asymptotic
stationary probability (2.11), the drift and diffusion coeffi-
cients are related by

where y+(x;)=y (x;) has been used. Since the latter re-
lation gives

KI(x;)=2L(x;)=Az(x;)=2y+(x;)=2y (x,. ) (3.24)

we see that (3.23) is identical with (2.34). The rate r can
be determined correspondingly. Thus, the new Fokker-
Planck equation yields the correct splitting of the lowest
eigenvalue.

The diffusion coefficient of the Fokker-Planck equation
(3.12) coincides with the second Kramers-Moyal moment
in the vicinity of the steady states only. However, since
the system rapidly leaves the drift-dominated regions (Fig.
1) between the steady states, the diffusion has a consider-
able effect on the dynamics in the diffusion-dominated re-

gions only where it coincides with the diffusion obtained
by means of Van Kampen's linearization scheme. 4 Conse-
quently, the long-time behavior of the system can be
recovered from the new Fokker-Planck modeling intro-
duced in (3.12).

IV. SCHI.OGI. MODEI.S

Schlogl has introduced two models of chemical reac-
tions describing a first- and second-order nonequilibrium
phase transition, respectively. The Fokker-Planck
description of these models will be studied by means of
the approach put forward in Sec III. .

Tllc first Sclllogl Illodcl cxlllblts blstablllty Rlld ls
characterized by the autocatalytic trirnolecular reaction
scheme

KI(x)=2L (x)+0{1/Q) . (3.20)

ki
A +2X 3X,

k2
(4.1R)

Hence, apart from terms of higher order in 1/Q, the dif-
fusion coefficient (3.17) is fixed by the stationary probabil-
ity and the deterministic law. In particular, the postulate
of a constant diffusion coefficient' is not valid, in gen-
eral.

By means of the expansion (2.21) one readily shows that
for Q~ ~ the spectrum of the new Fokker-Planck equa-
tloll (3.12) ls Rgalll glvcfl by (2.19) wltll tllc RsyIIlptotlc
eigenfunctions (2.27) and (2.28). Furthermore, the mean
first passage time T (x ) from an initial state x «x I to the
instability point x3 now reads

k3

A~~& .
k4

(4.1b)

(4.2)

where Q is the volume, the master equation for the proba-

Let x and a denote the concentrations of the species Iand
A, respectively. The concentration a is held fixed, while x
is the stochastic variable. Choosing the unit of time and
the concentration a such that
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bility P, (N) to find N molecules of species X takes the
form (2.1) with the transition probabilities

W+(N) =k 3A +3N(N I)/—0
=Q[y+(x)+y(+(x)/II],

W (N) =k4N+N(N —1)(N —2)/0

(4.3a)

=II[y (x)+yi (x)/0+O(1/Q3)], (4.3b)

and

y+(x) =k3a +3x

y (x)=k4x+x',

yi+(x) = —3x,

y( (x) = —3x' .

(4.4a)

(4.4b)

(4.5a)

(4.5b)

The deterministic rate law (2.8) takes the form

x =3x —x —k4x +k 3a (4.6)

where an irrelevant additive constant has been omitted.
The stationary probability (3.14) is now found to read

Depending on the parameters, there exist one or three
steady states. Bistability with three steady states
xi &x3 &x2 (Fig 1) o. ccurs for k4&3 and sufficiently
small k3a.

From (4.4), we find for the potential (2.12)

(i)0(x) =x(lnx —1)+x ln[(x +k4)/(3x +k3a)]

+2k,'"arctan(xk, '")
—2(k3a/3)'~ arctan[x(k3a/3) '~ ] . (4.7)

The correction term of order I/O follows from (2.13),
(4.4), (4.5), and the expression given in Ref. 10 as

pi(x) =ln[(x +k3a/3)/(x +k4)]+ —,'ln(x/a), (4.8)

[()'(—ax i )
I
)'3 ax 31] -n(y, (,)-y,(,))

2 3 2 3 1/2

2 2
0 3 0 1

2mx3(x i+k4)

k+
X+A~2X,

k

k'

X+B~C .

(4.13a)

(4.13b)

Let x, a, and b denote the concentrations of the species X,
A, and 8, respectively. Choosing the unit of time and the
concentration a such that

k =1, A+a =1, (4.14)

the master equation for the probability P, (N) to find N
molecules of species X takes the form (2.1) with

W (N+) =N,

W (N) =rlN+—N N —1

0,

(4.15a)

(4.15b)

(4.16)

Since W+(0) =0, the state N =0 is an absorbing state, and
the stationary probability reads

(4.12)

where y; =y+(x;) =y (x;) and a=6k4 —2k3a. For large
0, (4.12) coincides precisely with the activation rate of the
master equation as determined from (2.33) and (4.9). The
result in (4.12) remains true for the activation rate r
The equation is only subjected to the trivial replacement
xi~xq. The same method can be applied to a variety of
other discontinuous transitions, e.g., optical bistabilities
and bistable tunnel diodes. '

In his second model, Schlogl has introduced a simple
autocatalytic reaction scheme describing a continuous
nonequilibrium phase transition

x +k4
in exp[ —A/0(x)] .Zx'~ (x +k3a/3)

Introducing the thermodynamic force (2.16)

Xo(x) =ln[x (x +k4)/(3x +k,a)]

and the transport coefficient (2.17)

(4.9)

(4.10)

P(N) =5)v () (4.17)

The Schlogl model has an absorbing state only because the
backward reaction of (4.13b) is disregarded. However, the
same problem may occur without making approximations,
as, for instance, in most problems of population dynam-
1cs.

The transition probabilities (4.15) satisfy the scaling
(2.2) with'

x —3x +k4x —k3a3 2

L(x)=
ln[(x +kqx)/(3x +k3a)]

y+(x)=x, y (x)=qx+x', y) (x)= —x .

Hence, the deterministic law (2.8) reads

x =(1—q)x —x

(4.18)

(4.19)
the deterministic law (4.6) may be written in the form
(2.18) of a transport equation. Finally, with the use of
(3.13) and (4.8), the I/O correction to the thermodynamic
force is readily evaluated, which in connection with (4.10)
and (4.11) determines the Fokker-Planck equation (3.12).

In the bistable region, the rate r+ for transitions from
xi to x2 can now be determined from (3.22). After some
algebra one obtains

For g ) 1 there is one steady state x I ——0 which is stable,
while for 0 & g & 1 there are two steady states x1 ——0 and
x2 ——1 —q, the first being unstable and the latter being
stable. Since (4.17) is the unique stationary distribution of
the master equation, the stochastic theory has only one
steady state, x1 ——0, for all g ~0, and there seems to be a
contradiction with the above findings for 0 & g & 1.
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Po(x) = (x +g )ln(x +g) —x

and for the potential (2.13), utilizing Ref. 10

P &
(x ) = lnx ——,

' ln(x +g ),

(4.20)

(4.21)

yielding for the stationary probability p(x) defined on the
interval 1/Q (x & m

p(x)=(Zx) '(x+q)'~ exp[ —Ago(x)] .

Now, in terms of the thermodynamic force (2.16)

(4.22)

Xp(x) = ay,
=ln(x +g) (4.23)

and the transport coefficient (2.17)

L (x)=x (g+x —1)/ln(x +g) )0 (4.24)

the deterministic flow (4.19) may be written in the form of
a transport law

Restricting the state space to l(N& oo by making
N =1 a reflecting state, the process possesses a normal-
izable stationary probability of the form (2.11). By use of
(4.18) we find for the potential (2.12)

hP() pl ng——+1—g) 0. (4.31)

The prefactors do not coincide, however, because around
x = I /0 a relation corresponding to (3.24) does not hold.

In summary, we conclude that the newly proposed
Fokker-Planck modeling yields asymptotically correct es-
cape times for bistable systems and even gives the correct
leading order term of the absorption time in systems dying
out, although the latter are not precisely in the range of
application of our method.

T(x)=O f dy[y(y+vp)p(y)] ' f dzp(z) . (4.29)

This expression is well defined because y (y +g)p(y) is fi-
nite at y =0. From the Fokker-Planck equation (4.26) we
obtain for the mean absorption time without further ap-
proximation

TFp(x) =0 f dy f dzp(z) . (4.30)
y (1+g —y)p (y)

For 0 & g & 1, the two expressions T(x) and TFp(x) are ex-
ponentially large in 0, with the same Arrhenius factor
exp(Ohgo) where

x = —L(x)XO(x) . (4.25) V. GENERALIZATIONS AND LIMITATIONS

Following the reasoning in Sec. III, we again introduce
a Fokker-Planck equation of the form (3.12) which for the
present problem reads

a a x(x+q —1)
Bt Bx ln(x +g)

-p, (x)=

&& ln(x +g)+—1 x+2' 1+— p, (x) .n 2x(x+q) n ax

(4.26)

The probability distribution (4.22) is the unique stationary
distribution of (4.26) normalizable in the interval
I/O &x & 00. This distribution is not normalizable in the
full interval 0(x & 00, however, indicating the existence
of the absorbing state x =0. The truncated Kramers-
Moyal expansion also leads to a stationary distribution
which is not normalizable in the full interval, ' but with a
different potential in the exponent.

For a process starting at the state N, the mean absorp-
tion time T(N) which elapses on the average before the
system is absorbed at N =0 is given by [cf. (2.32)]

In the foregoing sections, we have discussed one-
dimensional one-step processes only. In this case, the pro-
cess automatically satisfies strict detailed balance, i.e., the
transformation

[P(M)] '~ W(M~N)[P(N)]'~

explicitly symmetrizes the master operator implying real
eigenvalues. In the presence of strict detailed balance, a
Fokker-Planck modeling of multidimensional Markov
processes, eventually with multistep transitions, can be ob-
tained by a straightforward extension of the method

presented in Sec. III. On the intensive scale x =N/0 the
stationary probability of the master equation may be writ-
ten

p(x)=Z 'exp. —0 $0(x)+ —Pi(x)+01 1

(5.1)

The thermodynamic forces X;(x) are again defined as
derivatives of the potential Po( x ) by

T(N)= y [W (half)P(M)] ' y P(K),
M=l

(4.27) X;(x)= Po(x) .
a

(5.2)

where P(N) is defined by (2.10), i.e.,

N —1

P(N) =P(1) (4.28)
) rt(M + 1 ) +half (ilf + 1 ) /0

Further, in terms of the Kramers-Moyal moments
A; . . . ; (x), an Onsager-type transport matrix can be de-

fined by"

Note that the master equation has the unique stationary
solution (4.17), while P(N) is a quasistationary solution,
the logarithm of which coincides with lnp(x) in (4.22) up
to order 1/Q. On the intensive scale, we obtain for the
mean absorption time for large Q in leading order

L;,(x)= —,
' AJ(x)+ g A;,; . . . ; (x)

, („+1)) '~'i ''''n

XX, ,
(x) X, (x) (5.3)
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where A; . . . ; (x) denotes the limit for Q~ae of the
n

Kramers-Moyal moments. The limiting deterministic law
for Q~ oo may then be written

x;= —QLtj(x)Xi~(x) . (5.4)
J

Again, the transport matrix determines the diffusion ma-
trix of the Fokker-Planck equation, which now takes the
orm

p, (x)= g LJ(x) XJ(x)+—+J'(x)
dt ~ ~ Bxt

1
+Q aQ Bxl

This equation has (5.1) as a stationary solution and
reduces to the deterministic law (5.4) for Q —+ oo.

The situation is more complicated if detailed balance
does not hold in the strict sense. We have been able to ex-
tend our method to particular models vnthout detailed
balance but a general scheme has not been found. We
hope to return to this problem in a future publication.
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