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A consistent description of the spin-glass transition and the spin-glass phase is possible within the
context of equilibrium statistical mechanic. This conclusion is based on two arguments. First,
every equilibrium state may be decomposed uniquely into its ergodic components, which represent
the pure thermodynamic phases. Second, all the ergodic components have the same free energy. A
detailed analysis of the ensuing conceptual structure is given and its agreement with experiments on
field-cooled spin-glasses is pointed out.

I. INTRODUCTION

A spin-glass is a disordered, magnetic system with a
well-defined freezing temperature Tf such that for T & Tf
the magnetic moments are frozen in random orientations
without a conventional long-range order. The spin-glass
problem is the question of whether the freezing of the
spins is a dynamical, nonequilibrium phenomenon or a
new thermodynamic phase with an equilibrium phase
transition at T =Tf. ' In this paper we address the spin-
glass problem, with particular emphasis on metallic spin-
glasses, such as A@pe and CuMn.

Since there has been some debate about the interpre-
tation of equilibrium statistical mechanics, we will first
give an overview (Sec. II) of the thermodynamic formal-
ism as it evolves from the notation of broken ergodicity:
Below Tf the canonical equilibrium state is not ergodic
with respect to the dynamics but may be decomposed into
several ergodic components. We present, in Sec. III, a de-
tailed analysis of the ensuing conceptual structure and ap-
ply the equilibrium formalism to the spin-glass case. One
needs to bear in mind constantly the real object of our
study: a spin-glass in thermodynamic equilibrium, which
may be obtained, for instance, through field-cooling. The
interpretation of a spin-glass as a metastable state and the
Monte Carlo one-spin dynamics are considered in Sec. IV,
where we also outline some new experiments to check the
dynamical picture. We give our conclusion in Sec. V. In
the Appendix we prove the surprising result that, notwith-
standing the randomness, all ergodic components have the
same free energy.

Ergodicity is a central notion in equilibrium statistical
mechanics. Since the number of particles, spins, etc., is
very large we will take the thermodynamic limit X—+~
explicitly and discuss the conditions which are to be
satisfied by an equilibrium state of an infinite system.
Such an equilibrium state can be decomposed into its ex-
tremal (ergodic) components. A critical temperature T, is
such that below T, the extremal components are ergodic

Suppose, for the time being, that we have a finite classi
cal system, say, ltd particles in a box, which are described
by a phase space Q and a dynamical evolution T, . That
is, if co is a point in Q at time t =0, T,co is the position of

at time t. An observable f is a function on the phase
space Q. If we integrate f with respect to a probability
measure p, we get the phase-space average of f,

(f)= f dy(ruff 4o) . (2.1)

Let A denote an arbitrary "event" in Q; p(A) is its prob-
ability. Throughout what follows, we suppose that p is
time invariant, i.e., p(T,A)=p(A) for any A. We then
have the necessary ingredients for ergodicity: a phase
space Q, a dynamics T, which transforms Q into itself,
and a T,-invariant probability distribution p. %e say p is
ergodic with respect to T, if the empty set 0 and Q itself
are the only sets in Q which are invariant under T, . More
pr'eels ely,

T,A CA ~p(A) =0 or 1.

As a consequence, time average and phase-space average
agree with probability 1,

T
1Ml dt Tg 6)

T~e T
(2.3)

The set of all co where (2.3) does not hold has probability 0
and, hence, will be discarded.

Alternatively, p is nonergodic with respect to T, if we
can split up Q into disjoint, invariant subsets Q; of posi-
tive measure, so that p(Q; ) & 0 and

0= UQg, Qg AQJ ——g, TQ; CQ; . (2.4)

Call p; the normalized restriction of p to Q; [p;(Q;)=1]
and a; =p(Q;). Each p; is T, invariant, and

whereas the equilibrium state is not. The phenomenon of
broken ergodicity is closely related to the occurrence of a
phase transition at T, and the relevance of an order pa-
rameter below Tc.

A. Ergodicity
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p=g&tpi& ++i =1 (2.5) godic with respect to this dynamics. " We now turn to the
problem how to describe the system as X~ oo.

In other words, p is nonergodic if p may be written as a
convex combination of other invariant probabihty mea-
sures. The converse is also true: One can show that p is
ergodic if and only if p cannot be written as a convex
combination of other invariant measures. In the limit
N ~ ao the notion of energy surface loses its meaning, but
the above notion of ergodicity survives without
difficulty —together with (2.3). One says that p is ergodic
or extremal invariant.

The p; in (2.5) live on disjoint subsets of A. Suppose
now that p, can be written as a convex combination of two
ergodic measures p~ and pz. Is it true that for disjoint 0,
and Q~

+1 U +2~ p'1(+2) p2(+1) (2.6)

Indeed it is. If p, and pz are both ergodic with respect to
T„ then either p~ ——p2 or (2.6) holds. So the extremal
components of an invariant measure p are ergodic and live
on dijsoint subsets 0; of the phase space.

In the thermodynamic limit the microcanonical and the
canonical ensemble are equivalent. It is then convenient
to think of the components 0; as being separated by infin
itely high free energy barriers. Of course, infinitely high
is also a matter of time scales. The point is that for prac-
tical purposes a free energy barrier may becoroe "infinite-
ly" high if it cannot be passed within the time available
for the experiment. Here we need not go into this prob-
lem since it has already been discussed very carefully by
Munster. '

B. Classical lattice systems

The real objects of our study are not continuous sys-
tems, but lattice spin systems which, for the sake of sim-
plicity, are assumed to be classical and of the Ising type.
Now, Ising spans do not have a dynamics by themselves,
so they must be given one. Usually a Glauber dynam-
ics"' is taken, which is a one-spin dynamics: Only one
spin can change during one step. The procedure is widely
used in Monte Carlo simulations.

Throughout what follows, the interaction between the
spins is taken to be a pair potential. The Harniltonian for
N spins in a magnetic field is given by

C. The thermodynamic limit

In a macroscopic system the order of magnitude of N is
1023. Working with energy hypersurfaces in such a high-
dimensional space is quite deceptive and we, therefore,
take the practical point of view that an infinite system is a
reasonable approximation of a macroscopic system.
Moreover, taking the system infinite is unavoidable if one
wants to study equilibrium phase transitions. ' One only
may wonder what to do with exp( PH&—) as N» m.

I.et p~ or simply p be an equilibriurD state of the infin-
ite system. It is a probability measure on the system's
phase space 0, the set of all possible spin configurations.
If A and 8 are two events in 0 with p(8) ~0 (say spin up
in i and spin up in j), then the conditional probability

p(A i
8)=p(A AB)lp(B) (2.8)

S, nS, ,, (,. )
) =p(S

I SA~;~)p

where p(S;
~ SA~;~ ) is given by

p(S; ~Sx~;, )=Cexp P g J;;S,S
j &A(,i)

(2.9)

(2.10)

the constant C in (2.10) being chosen in such a way that
p(S; = + 1

~
SA~;~ )+p(S; = —1

~ SA~;~ ) = 1. Stated in
words, each point is in thermal equilibrium with its sur-
roundings. This is just what one expects from an equi-
libriurn state.

To derive (2.9) and (2.10) we imagine A' to be contained

is the probability that A happens given 8. Pick an arbi-
trary lattice point i, and let A(i) be the sphere around i
with radius r but with i deleted. The J& with j outside
A(i) vanish. Let A' be a domain which contains A(i); see
Fig. 1. Finally we denote by Sz an arbitrary set of spin
values S;, i EA, and by p(S&) the probability of getting
SA. Then p is said to be an equilibrium state or Gibbs
state if, whatever i, p satisfies the Dobrushin-Lanford-
Ruelle (DLR) condition'

H~ ———gJ;JS;SJ—h+S;, (2.7)

where S;=+1, 1(i (N, and J;;=0. Each pair Iij I is
counted only once. For reasons of convenience we assume
the potential to be of finite range r, i.e., JJ. =0 if
~i —j ~

&r. Unless stated otherwise we take free boun-
dary conditions and h =O.

For a finite systerD consisting of N spins thermodynam-
ic equilibrium at inverse temperature P is described by the
Gibbs state pp~ with density Cexp( PH~) where H~ is-
the Hamilton function. The Glauber dynamics is con-
structed in such a way that p@& is invariant and even er-

FIG. 1. Spin at i interacts only with spin inside the sphere
A(i).
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in a large volume, with gati ~ determined by the Boltzmann
factor exp( P—H~). We then apply (2.8) and note that, by
the finite range of the interaction, the conditional proba-
bility ptitv(S; ~

SA ~(;) ) reduces to gatv(S; ~
S~~;~). Having

fixed SA~;~ we see that the spins S~ with j in A(i) produce
an external field Q.~~~,.~JJSJ at the site i and, hence, the
Boltzmann factor (2.10). We now send E~ oo and obtain
(2.9). One can show' that, given (2.9) and (2.10) for each
i, the same holds true with i replaced by an arbitrary finite
region. The above arguments may be extended straight-
forwardly to so-called short-range potentials which satisfy
condition (3.8) below.

Alternatively one could argue that an equilibrium state
should be obtained as a limit of finite-volume Gibbs
states,

(A ) = lirn Tr[dexp( —PHiv)]/T«xp( —PH~) (2 11)
X~~

Then (2 ) = ldtt(te)A (st) anti ts satisfies the DLR eqna-

tions. For ferromagnetic interactions the existence of the
limit in (2.11) is guaranteed by correlation inequalities, but
this need not be the case in spin-glasses below Tf ~ Instead
of Iptt~I one could pick a (weakly) converging subse-
quence I@@A.I (this is possible by a compactness argu-
ment), but a better way out is presented by the DLR equa-
tions themselves, which do not involve a limit any more.
Some properties of solutions to the DLR equations are
listed below.

Any solution to the DLR equations is called a Gibbs
state (Gibbs measure). Gibbs states have some remarkable
properties. First, for a finite system there is a unique solu-
tion to the DLR equations: the Gibbs state p~ z we start-
ed with. This is another way of saying that a finite sys-
tern does not exhibit a phase transition. Second, any con-
vex combination of Gibbs states gives another solution to
the DLR equations, as is most easily seen by noticing that
the right-hand side of (2.10) does not depend on p. Con-
versely, every Gibbs measure p may be decomposed
uniquely' ' into extremal or ergodic components. This is
the ergodic decomposition of p with respect to time
translation. It is basic to all that follows. Finally, ergodic
components are space-cIustering, i.e., if p' ' is ergodic,
then

(2.12)

T, the ergodicity is broken. '

The free energy per spin f (P) is given by

Pf—(P) = lim —In Tr. exp( PH—Jv ) .
x

(2.13)

III. BROKEN ERGODICITY

The limit exists and does not depend on the boundary con-
dition. In the case of short-range random systeins, f (P)
does not depend on the random configuration of the JJ ei-
ther. ' As a first and surprising consequence of this result
we note that if a short-range random system has a phase
transition, all samples have the same T, .

We can also assign a free energy to each of the ergodic
components of a Gibbs state gati. Thermal equilibrium is
characterized by a (local) variational principle: The free
energy has to be minimal. Accordingly, the free energy of
the ergodic components should not exceed f(P) as given
by (2.13). If, on the other hand, their free energy agrees
with f (P), the interpretation of the ergodic components as
pure thermodynamic phases makes sense and we get a
conventional phase transition, i.e., below T, the system
"picks" one of the ergodic components. We incan the fol-
lowing. Though probabilistically pp is a convex combina-
tion of ergodic components @I' ', each with its own weight
(probability) ai, the system certainly picks one component

We just do not know which one. The probabilities ai
are consistent with our information (ignorance) about the
system: It is in thermal equilibrium. In the Appendix we
show that all the ergodic components have the same free
energy, which agrees with f(P) as given by (2.13). Thus
also for random systems the notion of conventional phase
transition is firmly rooted in the formalism of equilibrium
statistical mechanics.

Suppose now that we have determined all the ergodic
components pp '. How do we discriminate between them?
The answer is simple: by finding an order parameter.
More specifically, an order parameter is an observable A,
or a group of observables 3;, 1 &i & n, such that the num-
bers pp '(3) or pIt '(3;), 1 &i & n, determine A. and, hence,

(A, ) (A, )

p&
' uniquely. At the moment we do not specify n In.

Sec. III we will see that the formerly somewhat mysteri-
ous notion of an order parameter has been turned into a
sensible, well-defined concept.

where ~„ is a space translation by x.

D. Phase transitions and order parameters

If the temperature T is high enough, there is a unique
solution hatt to the DLR equations (Dobrushin's unique-
ness theorem). By the uniqueness p,e is ergodic and the
liinit of finite-volume Gibbs states. We say the system ex-
hibits a phase transition at T, if below T, we have several
solutions to the DLR equations. So the following picture
emerges. For T ~ T, there is a unique, ergodic equilibri-
um state. Below T, an equilibrium state as produced by
(2.11) with free boundary conditions is never ergodic, but
it may be decomposed into ergodic components, which
represent the pure thermodynamic phases. That is, below

The purpose of this section is to analyze the
phenomenon of broken ergodicity. This will be accom-
plished by studying several examples, including the two-
dimensional Ising model and the three-dimensional
Heisenberg model (both translationally invariant) as well
as disordered spin systems. %e will also discuss the
Edwards-Anderson order parameter, the breakdown of
linear response, and the possible number of ergodic com-
ponents.

A. The two-dimensional Ising model

The two-dimensional Ising model with trans]. ationally
invariant and ferromagnetic nearest-neighbor interactions
is defined by (2.7) with Jtj ——J& 0 if i and j are neighbors,
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Pp=2Pp +2Pp(+) & ( —) (3.1)

Below T, the ergodic components pp+' and pp
' are not

invariant under the full symmetry group of the Hamil-
tonian and the ergodicity of p~ has been broken. Both the
(+ ) state and the ( —) state have the same energy, entro-

py, and thus the same free energy. Hence the phase tran-
sition is conventional (Sec. IIID). A nice illustration of
(3.1) has been given by Aizenman.

An order parameter is easily found. We take So, the
spin at 0. If pp (So))0 we have A, =+, and if
pIt '(So) &0 we deduce A, = —.So the sign of p~ '(So) al-

ready determines A, completely.

B. The three-dimensional Heisenberg model

The Hamiltonian of the classical three-dimensional iso-
tropic Heisenberg model with nearest-neighbor interac-
tions is given by

H~ ———Jg S; Si,
(~,j)

(3.2)

where the sum is over nearest neighbors only. The natural
symmetries of the model are given by translational invari-

ance and the symmetry group SO(3): S&~gS; with g in
SO(3). As in the previous model the interaction is fer-
romagnetic and at T =0 all spins are parallel. In such a
ground state the remaining symmetry group (the isotropy
subgroup) is SO(2), so the coset space SO(3)/SO(2) labels
the ground states. This coset space is homeomorphic to
Sz, the surface of the three-dimensional unit sphere.

Indeed, the model has a phase transition at a positive
temperature T„and below T, we can label the uncount-
ably many ergodic states by the elements of SO(3)/SO(2)
or, equivalently, by S2. Above T, we have a unique and,
thus, ergodic equilibrium state, while the ergodicity is bro-
ken below T, .

What is the gist of what we have done't If the Hamil-
tonian has a symmetry group 6 and an ergodic state p has

and J,J. ——0 otherwise. Gnsager showed in his classic pa-
per that the model has a phase transition at a positive
temperature T, . Below T, the model has two equilibrium
states, a ( + ) state with positive magnetization and a ( —)

state with negative magnetization. More precisely, if we
take (+ ) boundary conditions and let X—+ oo, we find the
state pIt+', with ( —) boundary conditions we arrive at
the state pp '. If T) T„ then pp+' ——pp

' and the spon-
taneous magnetization m vanishes, whereas for T & T, we
have pp+'&pIt ' with m&0, and thus at least two dif-
ferent solutions to the DLR equations. Both p~+' and

pp
' are ergodic, and the model has no other ergodic

equilibrium states.
The natural symmetries of the model are translational

invariance, and spin-flip symmetry S;~—S; for all i By.
flipping the spins we map p~+' onto pIt ', and conversely.
If, however, ptI is the state we get by taking the limit
(2.11) with, either free or periodic boundary conditions,
then p& is invariant under the spin-flip symmetry opera-
tion. In fact, for these states

a symmetry group H, which is a subgroup of G (the iso-
tropy subgroup), then we can produce as many ergodic
states as there are elements in the coset space G/H. To
see this we first note that if p is ergodic and g is in 6,
then p' =po g is also ergodic. [p' is defined by
p'(A)=p(gA) for any observable A.] Suppose, namely,
that p' were not ergodic, then p'=o,'&p&+n2p2 with o:;)0
and a&+az ——1. Hence p=a~ (p&og ')+az(pzog '),
which is a contradiction unless p~ ——p2 ——p'. Here we used
the fact that also p;Og

' is an equilibrium state; simply
notice (2.9) and (2.10). Factoring out the symmetry group
H of p itself we end up with 6/H, as was to be shown.
We now return to the Heisenberg model.

If pp is the state we get by taking the limit (2.11) with
either periodic or free boundary conditions, then ptt is in-
variant under whatever element from SO(3), and its ergod-
ic decomposition is given by

Pp= I A Pp (3.3)

where dP(A, ) is the normalized uniform distribution on
the surface of the three-dimensional unit sphere, Sz. We
note again that pp is invariant under the full symmetry
group SO(3) whereas the ergodic, components pp are not.
We must take, so to speak, a convex combination of er-

godic states to restore the full symmetry of the Hamiltoni-
an.

Since the ergodic components are transformed into each
other by the elements of the symmetry group, they all
have the same energy, the same entropy, and the same free
energy. Hence we have a conventional phase transition at
T, (Sec. II D).

Here also the order parameters are easily found. We
take x, y, and z components of the vector So. Below T,
the vector p~ '(So) uniquely determines a direction and,
hence, a point on the surface of the unit sphere in R, i.e.,
A, itself.

In the above example the elements of a symmetry group
exhaustively label the ergodic components pIt

' of the
canonical Gibbs measure p~, cf. Eq. (3.3). More precisely,
by factoring out the isotropy subgroup H of the full sym-
metry group 6 so as to form the coset space G/H we find
all the ergodic components. This phenomenon is called
broken symmetry. One, therefore, might wonder whether
this is characteristic for a translationally invariant, non-
random system. It is not. There are examples where the
elements of the symmetry group do not exhaustively label
the ergodic components. So we must conclude that, in
general, broken ergodicity and not broken symmetry is the
important phenomenon in translationally invariant sys-
tems also.

C. Quantum system

Thermal equilibrium states of quantum spin systems
may also be decomposed into ergodic components. We
will make a small detour to sketch the necessary modifica-
tions. Full details may be found in Refs. 15 and 27.

Quantum spin systems have the pleasant property that
they possess a natural dynamics which, for a finite system,
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is given by (6=1)

(3.4)

(3.8)

We now take a local observable, for example, the product
of finitely many spin operators, and send X~ ao so as to
get the dynamics a, of the infinite system.

For one reason or another quantum equilibrium states
are denoted by co or p. Specifically, p is said to be an
equilibrium state at inverse temperature P if p satisfies the
Kubo-Martin-Schwinger (KMS) condition,

p((a,A)B)=p(B(a, +;pA)), (3.5)

(3.7)

for all local observables A and B. Note that a, is the
dynamics of the infinite system. This condition implies,
among other things, that p is stationary in time. In the
case of a finite system with Hamiltonian Htt, it uniquely

specifies the canonical Gibbs state pp z given by

pp ~(A) =Tr[A exp( l3H~)]—/Tr exp( l3H&) .—(3.6)

In the case of an infinite system, the KMS condition is sa-

tisfied by the infinite volume limit of pp~. With the use
of (3.6) it is straightforward to verify (3.5).

A KMS state p may be decomposed uniquely into a
convex combination of extremal KMS states p' ', which
are ergodic with respect to the dynamics a„ i.e., for each
pair of observables A and 8, we have

i.e., the tails of the interaction have to be uniformly small.
This condition and a standard argument suffice. If the
electron mean-free path is finite, the Ruderman-Kittel-
Kasuya- Yosida (RKKY) interaction is exponentially
damped and, hence, satisfies (3.8). So all the previous
arguments also apply to metallic spin-glasses. Moreover,
the free energy of the ergodic components agrees with

f (P) as given by Eq. (2.13); cf. the Appendix. So a con-
ventional phase transition is possible and, up to now, the
equilibrium picture is fully consistent.

Experimentally it is well-known that Tf and the free
energy are reproducible quantities, which do not depend
on the microscopic random configuration of the J&. Two
alloys whose microscopic structures differ but whose mac-
roscopic constitution and preparation are identical (same
concentration) give the same experimental outcomes. One
can take a specific sample and need not average over an
ensemble of them. The above equilibrium formulation of
the free energy and the phase transition at Tf satisfy the
reproducibility criterion. Any theory of spin-glasses
which finds no reproducibility of thermodynamic quanti-
ties is, in our opinion, particularly suspect.

Suppose now that the J;J are independent random vari-
ables whose distribution only depends on (i —j). For a
finite system of Ising spins the zero-field susceptibility

Xo( T) is given by

In addition, relation (2.12) holds with p' ' replaced by p' '.

Summarizing, here also the ergodic decomposition is
well defined, and the notion of phase transition and order
parameter may be defined as in Sec. IID. Nevertheless,
we will assume the spins to be classical throughout what
follows (except in the Appendix).

~ON(T) ~ g[P'p N(SSJ) Pp N(Sj—)Pp N(SJ )]
/, J

(3.9)

As to pp z we take free boundary conditions. It is tempt-
ing to rewrite (3.9) in the form

D. Spin-glasses —
JMp ~(S;)pp ~(Sl) (3.10)

A spin-glass is a disordered magnetic system where the
bonds between the spins are either ferromagnetic or anti-

ferromagnetic, and cannot be satisfied simultaneously
(frustration). One may assume the spins are on a regular
lattice and take the interaction as random. According to
Edwards and Anderson a field-cooled spin-glass is a new
thermodynamic phase with a well-defined phase transition
at a critical temperature T, = Tf. We now probe some of
the consequences of this suggestion within the context of
equilibrium statistical mechanics. We study the notion of
Tf, treat the breakdown of linear response, discuss the
Edwards-Anderson order parameter, and analyze the as-
sumption that the number of components grows with X
as exp(aX).

A phase transition shows up as a nonanalyticity in P of
the free energy f(P). We have seen in Sec. IID that,
whatever the random configuration of the J;J, we always
get the same free energy and, hence, the same T, . The
finite range of the potential is not really essential in the
sense that we only have to require

and to take the limit N~ oo so as to conclude that with

probability l
r

&0(T)=Py &Pp(SOS ))—(pp(So)pp(St) )
J

(3.11)

by the ergodic theorem. The angular brackets denote an
average over the randomness. Equation (3.11) is a so-
called fluctuation-dissipation relation. The simplicity of
its "derivation" is a bit specious, however. One has to
spell out the arguments more carefully. ' ' The case
h&0 only requires a small modification and need not be
given here.

Let first T & T, =Tf. Then the equilibrium state pp ex-
ists as the thermodynamic limit (X~oo) of pp~. (Note
that below T, the existence of the limit is not guaranteed. )

By spin-flip symmetry @pe(S;)=pp(S;)=0. If the tem-
perature is high enough, pp(S;SJ) decreases exponentially
fast as

~

i —j ~

~ oo, and we may rewrite the sum (3.9) in
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the form (3.10), knowing for sure that, if T ~ T, and given
i, the sum over j will converge as %~co. Hence (3.9)
holds with probability 1 and

(3.12)

Usually not that much of the right-hand side of (3.12)
remains, since in many spin-glass models one takes an
euen distribution for JJ, which allows a local gauge
transformation So~ —So& Jo ~—Jo within each aver-

age. Thus all averaged two-point correlation functions are
zero and Xo(T)=p because j =0 is the only term in
(3.12) which survives; the susceptibility has a pure Curie
beha Uior.

Three aspects of this result are worth noticing. First, it
is exact and holds with probability I, i.e., it is reproducible
and does not depend on the specific sample. Second, the
result also holds for classical Heisenberg spins provided
the spin-spin interaction is isotropic. Third, the assump-
tion that the interaction is of finite range and the distribu-
tion of the J,

&
is even must lead to a pure Curie behavior

above T~.
Numerically exact results indicate that T, =O for

nearest-neighbor interactions in two dimensions. The
reason behind this behavior is the occurrence of a network
of zero-energy loops (which require an explanation
themselves). Let us assume that such a network of zero-
energy loops could be generalized to a network of zero-
energy surfaces in three dimensions. Then equilibrium
statistical mechanics could not account for a positive T&
in spin-glasses with allegedly short-range interactions as in
Eu Sr& S unless long-range dipole-dipole interactions,
which are not absolutely summable [cf. Eq. (3.8)], play an
important role. The assumption that zero-energy loops
are capable of generalization to three dimensions might be
wrong, however.

What happens to (3.11) below T, ? It is generally be-
lieved that (3.11) does not hold below T, ("breakdown of
linear response"). This belief is certainly correct. As it
stands Eq. (3.11) is not even true for the translationally in-
variant, ferromagnetic two-dimensional Ising model (Sec.
IIIA). Before turning to the random case we will study
this model in some detail.

With free or periodic boundary conditions.

pp(SOSJ) = ,
'

pp+'(SOSJ )+ —,
'

p—p '(SOS, ) m &0 (3.13)

as
~ j ~

~ oo, where m is the spontaneous magnetization.
Accordingly, the series in (3.12) diverges. Moreover, we
know (Sec. IID) that below T, the thermal equilibrium
behavior of the system is described by an ergodic com-
ponent. Let us, therefore, return to Eq. (3.10) and take ei-
ther (+ ) or ( —) boundary conditions. We then find, as
X~ ce,

T

&0(T)=g pp '(SOS, ) pp '(So)pp '(S,—), (3.14)

where A, denotes one of the ergodic components (+ ) or
( —). The convergence of the infinite series (3.14) is well
known and, in fact, consistent with (2.12). So, to make

sense out of the linear-response formula (3.11), we must at
least take an ergodic component. Note, however, that we
were fairly liberal in interchanging the limits h~O and
X~~. A more careful treatment could be based on, e.g. ,
Ref. 31.

However, what should we do in a disordered system
where we do not have translational invariance7 As in the
above examples we can take suitable (generalized) boun-
dary conditions so as to single out an ergodic component
A, as E~oo. Then for large X the following formula
correctly represents Xo(T) of the ergodic component A, :

Xo(T)= g[p—p '(S;S, ) pp '(—S;)pp '(S, )] .
l,j

(3.15)

In passing we note that Eq. (3.15), mutatis mutandis, also
holds for h~O. We now rewrite this equation in a form
which reminds us of the central limit theorem,

Xo(T) =pp — QS; —pp '(S;) . (3.16)

does not satisfy either of the above criteria. The inner
average p&(S;) is the canonical Gibbs average (hence zero)
and the outer average is taken with respect to the random-
ness, whereas we consider one fixed sample. There is a
very important fundamental truth about random systems
we must always keep in mind: "No real atom is an aver-
age atom, nor is an experiment ever done on an ensemble

For ferromagnetic systems it is known that the finiteness
of the susceptibility as X~ co implies and is implied by a
central limit theorem for the magnetization. In this case
the susceptibility is finite if T+T, . We speculate that the
theorem also holds for disordered systems and that the
Xo(T) thus obtained does not depend on the specific com-
ponent A.. The second half of our speculation can be sub-
stantiated considerably. We know (cf. the Appendix) that
all ergodic components have the same free energy, which
agrees with the usual f (I3,h) given by (2.13); here we have
also included the dependence upon h.

The function Pf(P, h) is—convex in P and h. For
given P, —Pf (P,h) is differentiable almost everywhere in
h and its derivative (proportional to the magnetization) is
monotonic. Monotonic functions are themselves dif-
ferentiable almost everywhere. Thus f(P,h) is almost
everywhere in h twice differentiable and its second deriva-
tive equals X(T,h). Nondifferentiability is expected only
there where we have a phase transition. Since the X's for
different components are derived from the same f, they
have to agree (almost everywhere) —as they should, since
they are reproducible.

Except for the spin-flip symmetry a disordered Ising
spin system does not have evident symmetries. Neverthe-
less, the notion of an order parameter is well defined and
should satisfy the following criteria (Sec. IID): (a) for a
gixed random configuration of the J,J it should single out
(b) precisely one ergodic component. The Edwards-
Anderson order parameter,
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(a) In each component the thermodynamic relations,
like df = —s dT mdh, a—re valid —as follows by formal
differentiation offwith respect to P and h.

(b) The linear-response formula (3.15) applies (N~ co ).
(c) The Maxwell relations hold. '

The thermodynamic (equilibrium) quantities derived from
(a)—(c) do not vary as we go from one ergodic component
to another, nor do they depend on the specific random
configuration. Hence they are reproducible —as they
should be —provided, of course, there is no phase transi-
tion.

The main problem one has to face when describing the
spin-glass phase within the context of equilibrium statisti-
cal mechanics is to characterize and label the ergodic
components. Once (and not before) one knows, or can
guess, the ergodic decomposition one can choose the order
parameters. Because of the complicated random structure
of spin-glasses this seems a formidable task.

Though we cannot label the ergodic components yet
(T & Tf ) we can try to estimate their number. Estimating
this number is a sensible problem because the ergodic
components are disjoint (Sec. II A). According to a recent
suggestion by Palmer there are exp(aN) disjoint ergodic
components as X—+ ~. Nevertheless the spin-glass phase
transition is to be conventional in the sense that, at suffi-
ciently low temperature, the system is caught in a specific
component We will .show that in the context of equilibri
um statistical mechanics this is not possible. To facilitate
the discussion we take N finite but very large and estimate
the free energy f (P) of the canonical Gibbs state pp, cf.
Eqs. (2.11) and (2.13).

According to the above suggestion the phase space Q
can be decomposed into hf =exp(aN) disjoint components
Ag, and

l p= X~V p i p «.)=4, .(A. )

A, =1

Then the entropy of pp is given by

(3.19)

of samples. " Another candidate,

eE~=&pp(~~, )&, twj

is hardly an improvement. Both do not single out an er-

godic component. Even worse, taken literally, both are
identically zero. In our opinion, any averaging over the

J;J is to be avoided.
Let us pause briefly to see what we have gained. First,

and most importantly, there is conservation of ergodicity:
Above T, we have a unique, canonical equilibrium state

pp while below T„ though the ergodicity of p is broken
and there are several ergodic components pp, the system
still picks one specific pp ', which is ergodic. The ergodic
components all have the same free energy f(P, h). Since
singularities of f (P,h) in P and h occur at the same P and
h for all components, there is no "bifurcation" of different
components at different temperatures. All this needs no
modification in quantum mechanics. In addition, the fol-
lowing consistent picture arises.

(3.20)

where S~(pp ') is the entropy of the A,th component. To
estimate the second term in (3.20), which is called the
complexity,

M

I~ = —g EKED lncKi
A, =1

(3.21)

we note that +i=exp( —aN) with a & 0, and find I&-Na.
Hence t4e entropy per spin may be written

s(pp)= go.is(pp ')+a .
A, =1

(3.22)

The energy per spin is easily found,

u (pp) = pp(II~—) = g aalu (pp ),
M

(3.23)

and thus, since all the ergodic components have the same
free energy and f (P) =u (pp) —Ts (p, p),

f(P)= pa+(l3) aT=f(P—) aT ~a—=0, (3.24)

(A, )

Pp
=~0'.g Pp

If the variance U (2 ) =(3 —3 ) & 0, one has to face the
problem of how to interpret A. The point is that 2 cannot
have a direct physical significance: How sha11 we sample
it in view of many components~ The few values we get
from repeating an experiment certainly do not suffice in
the case of exp(aN) components. Accordingly it is hard
to interpret the complexity ' as a physical entropy simply
because parts of the phase space which the system does
not visit cannot contribute to the entropy.

which contradicts our assumption that a ~0. If the dis-

jointness of the components were only approximately true,
the same conclusion would hold. In fact, we have shown

'I~ =o (N): The canonical free energy cannot be
lower than the free energy of each of its ergodic com-

ponents. Phrased differently, if the complexity would

have a physical meaning, this result would exclude a con-
ventional phase transition.

Finally, we turn to a closely related sampling problem
which occurs when quantities are not reproducible. Below

T, the system is in a specific ergodic component A, . Mea-

surement of a physical quantity A ~ives rise to the expec-
tation value A' '. As A, varies, A' ' may also vary. We
only know that this is not the case for reproducible quan-

tities like the susceptibility or the specific heat. Whatever

A, one may define '
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IV. NONEQUILIBRIUM AND SPIN DYNAMICS

In this section spin freezing and other spin-glass proper-
ties are treated as dynamical phenomena of a nonergodic
nature which are characterized by metastability and decay
with "infinite" relaxation times as t moo—. We estimate
the number of potential valleys, study the sampling and

entropy problems, which are inherent to this description,
and suggest two new experiments for checking the internal
consistency of the nonequilibrium approach. We first try
to grasp what the classical energy landscape looks like.

One imagines ' ' that the phase space of a spin-

glass contains many potential valleys separated by large
but finite energy barriers; the depths of the valleys and the
heights of the barriers are randomly distributed. There
may also be some passes connecting two valleys. Because
the passes are narrow, they do not change the picture
essentially. The barriers must be finite since otherwise we
would have some kind of equilibrium phase transition.
Inside the valleys one finds only very small hills separated

by wide plains, each of which is to be associated with a
large ground-state degeneracy and, hence, nonzero entro-

py. When a spin-glass is cooled through T~ it is frozen
into a particular valley. It does not sample microscopic
states in other valleys that have the same energy but are
inaccessible because of the intervening barriers. Cooling
down further, and doing it carefully, one finally reaches a
ground state, which may be used to label the valley.

One of the main questions which now arise is how to
generate so many valleys that the barrier heights between
them remain finite. In the case of the two-dimensional Is
ing model an answer has been suggested by Morgenstern
and Horner. According to their suggestion there exists a
network of zero-energy loops. Inside a (nontrivial) loop
we have about 1SO spins. We can flip them all at the
same time for no cost in energy, by the very definition of
zero-energy loop. However, since an Ising model has no
natural dynamics we imagine it to be endowed with a
one spin dynamics -of the Glauber type (Sec. IIB) so that
we have to flip the spins one after the other. It, therefore,
takes quite a long time to travel from one valley to a
neighboring one over a high energy barrier. If the tem-
perature is low, the system has no chance to finish the trip
within the finite amount of time available for a Monte
Carlo experiment: It has been frozen into a certain valley.
Note that the hills and the valleys are determined by the

dynamical process one assumes Moreover, it. remains to
be shown that the Monte Carlo dynamics has a direct
bearing on the system's real dynamics, it being understood
that the system is in contact with a heat bath.

The number of nontrivial zero-energy loops is propor-
tional to N, the number of spins, and flipping all the spins
inside one loop gives another valley, so that the total num-
ber of valleys is proportional to 2 for a certain b & 0, i.e.,
exp(aN) with a &0. The picture does not change essen-
tially when we add more spins: We simply get some more
zero-energy loops. This explains why thermodynamic
quantities are extensive. However, they are also reprodu-
cible and precisely here we get into serious problems. Be-

fore proceeding we remind the reader that reproducible
means that two samples (say, alloys) whose microscopic
structures differ but whose macroscopic constitution and
preparation are identical (same concentration) give the
same experimental outcomes. Examples include thermo-
dynamic observables such as the freezing temperature T~,
the susceptibility X, and (the magnetic part of) the specific
heat.

As we already noted in Sec. III0, there is the sampling
problem itself. It is, for instance, reasonable to assume
that cooling in different fixed magnetic fields leaves a
sample trapped in different regions of phase space. Be-
cause the number of potential valleys is extremely high we
will visit another valley each time we repeat an experi-
ment. Since it is not to be expected that all valleys are
equal, the ensuing experimental results are bound to be ir
reproducible, that is, they show a statistical scatter, hence
a nonergodic behavior, and hence a contradiction, thermo-
dynamic observables being reproducible. '

In view of the well-defined and reproducible freezing
temperature T~ (Refs. 3, 48—50) the difficulties associated
with the sampling problem become even more pro-
nounced. The point is this. In a real glass" we do not
have a sharp transition from the undercooled melt into the
glassy phase but instead we find a transition regime 4s
which indicates that the barrier height distribution has a
finite width. On the other hand, in the spin-glass case the
transition is fairly sharp and thus the width of the barrier
height distribution has to vanish, at least as X~Oo, which
is somewhat surprising. Even if it did, it is hard to see
how the transition could be sharp in a canonical descrip-
tion, the system being in contact with a heat bath. In this
case, even if we take the large-volume limit, the canonical
and the microcanonical descriptions are not equivalent.

Suppose there were a uniform barrier height and a
sharp transition at T& (by mechanisms which we do not
understand yet). If T & T~ the system may wander
through the whole phase space. T~ is characterized by the
system being caught in a specific valley, which it de facto
will not leave for T&T~. Then the system has to lose
nearly all its entropy at T~ and, hence, a considerable
amount of latent heat, which is amenable to experimental
verification. However, as far as we know, the entropy is
smooth.

Finally we note another interesting phenomenon which
is also a consequence of the occurrence of zero-energy sur-
faces and also amenable to experimental verification:
spurious magnetization. Each domain of size M, which is
surrounded by a zero-energy surface, has at low T, a net
magnetic moment proportional to ~M and, thus, a mag-
netization per spin —1/V M. All the domains have about
the same size. If one cools the system in a very weak
external field, one should be able to direct the magnetic
moment of each domain parallel to the external field and,
in so doing, generate a net or spurious magnetization,
whose order of magnitude is M ' times the saturation
magnetization. This effect is clearly borne out by Fig. 1

of Ref. 46 (dotted lines). However, evaluating carefully
the experimental results of Ref. Sl we cannot but con-
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elude that there is no spurious magnetization. It would be
interesting to check whether this is also true in Eu„Sri „S
or another spin-glass with nearest-neighbor-type interac-
tions.

Though the dynamical picture may be attractive from a
Monte Carlo point of view and quite suggestive for ex-
plaining metastability and irreversibility, some fundamen-
tal questions about its consistency remain open: The ab-

sence of a statistical scatter of the barrier heights and the
sharpness of the spin-glass transition at Tf are still unex-

plained, the predicted nearly complete loss of entropy at

Tf has not been observed yet, and the nonexistence of
spurious magnetization in archetypical spin-glasses like
AuFe and CuMn seems firmly established. One also has
to bear in mind that the interaction between the spins is
usually long range instead of nearest-neighbor, which
seems unfavorable for the occurrence of zero-energy sur-
faces, and that the very existence of zero-energy surfaces
in three dimensions still has to be shown. Finally, the
nonergodic point of view contradicts the validity of the
Maxwell relations. '

In particular, the Maxwell relations are always obeyed.
This agrees with experiment. The main problem is to find
and characterize the ergodic coinponents. The choice of
the order parameters, which uniquely determine the com-
ponents, depends crucially on our knowledge of the
decomposition.

Phase transitions are characterized by a singularity of
f(P,h) in either P or h. Thus, by its very definition, Tf
does not depend on the randomness. If one ergodic com-
ponent has a phase transition, so do all the other com-
ponents. This does not mean, however, that they bifur-
cate. In a typical bifurcation the outer prongs of the fork
branch off and are stable whereas the original solution
remains "in the middle" and becomes unstable. It is
tempting to imagine that below Tf the original pp may be
continued in some sense so as to be a metastable (or un-
stable) state. This is not the case.ss s In fact, though
there has been some progress, ' a satisfying theory of
inetastability still has to be found. Nevertheless it is pos-
sible to give a consistent statistical-mechanical description
of the equilibrium properties of a spin-glass.

V. CONCLUSION

In this paper we have treated the bare essentials of the
spin-glass problem with a special emphasis on certain
statistical-mechanical aspects. For the sake of definite-
ness we have neglected some other approaches like Neel's

superparamagnetism ' " and percolation. Most of the
time the interactions were taken to be short-range so as to
avoid technical complications and present the arguments
as simply as possible. With these restrictions in mind we
now turn to the results.

We have unambiguously shown (Sec. III) that it is pos-
sible to give a consistent description of the spin-glass tran-
sition and the spin-glass phase within the context of
equilibrium statistical mechanics, if the spin-glass is
field-cooled.

Above Tf we have a unique equilibrium state gati, which
is the canonical Gibbs state for the infinite system
(N~ oo ). The state pti has a free energy f (13,h) which is
obtained through the thermodynamic limit —as usual—
with P as the inverse temperature and h as the external
magnetic field; f(P,h) does not depend on the random-
ness. Morever, hatt is ergodic with respect to the system's
dynamics.

At Tf we find a conventional phase transition. This
means that below Tf the ergodicity of p& has been broken
and pti may be decomposed into several ergodic com-
ponents pIt '. The system picks one of the components as
its equilibrium state. So, in a sense, we have "conserva-
tion of ergodicity. " The ergodic components all have the
same free energy f(P,h), which agrees with the one ob-
tained via the thermodynamic limit, i.e., the free energy of
the canonical Gibbs state pti itself (see the Appendix).
Our prescription is urichanged in quantum mechanics.
Thermodynamic quantities which are obtained by formal
differentiation of f (P,h) with respect to P and h neither
depend on the randomness nor on the specific component.
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APPENDIX

Let p be a state which satisfies either the DLR equa-
tions (classical) or the KMS conditions (quantum mechan-
ical). We show that the free energy per site of p is given
by

1
I3f(P)= liin —ln Trexp( f3Ht, ), —

iAi
(A 1)

provided the limit exists (see below). Special emphasis
will be given to the quantum case as it is more difficult.
Throughout what follows A denotes a finite region with

~

A
~

sites, and A~oo means that A goes to infinity in
the sense of van Hove. ' ' We write

Hz =Hz+ WA (A2)

where H~ and 8'~, respectively, represent the interaction
between the spins in A (free boundary conditions) and the
interaction between the spins in A and those in (its com-
plement) A', i.e., those which are not in A. It is assumed
that the interactions have finite range and that their ran-
dom distribution allows the application of the ergodic
theorem. Then the limit in (Al) exists with probability 1

and does not depend on the specific random configura-
tion. '

Following Sewell we define a conditional free energy
F~(p) which is designed to represent the free energy of the
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open system consisting of the spins in A, interacting with

one another and with the spins outside that region. F„(p)
is minimal for variations in the state which leave it un-

changed outside A. We will first show that

lim FA(p) =f(P) . (A3)

To this end we need some definitions.
Given a state p, its restriction pA to a finite region A is

defined by

p(A ) =Trpb, V A E PA, (A4)

where 6'~ denotes the collection of all observables inside
A. One may interpret the density matrix p~ as the
thermal average of p with respect to all degrees of free-
dom outside A (partial trace).

Given p and p~, the entropy of p in A is given by

where the infimum is taken over all p' which agree with p
outside A. Furthermore we have

S~(p) —2PI I wI I
&s~(p) & S~(p), (A13)

which we accept for now. The right inequality is just
(A9).

Let ptt z ——exp( I3H J,—)/Tr exp( PH—A ) be the canoni-
cal Gibbs state of the region A. Its free energy Fz also
satisfies a variational principle, which is well known,

FA =pp, A(HA) O'S—~(pp, A)

=inf[p'(H ) —P 'S (p')] .
P

(A14)

where p' ranges through all the density matrices defined
on A. We know, by (Al), that

I
A

I

'Fx converges to
f(P) as A~oo.

To use (A12) we choose p'=pti zp, . Then, since p' is

a product state,
SA(p) = —TrpxlnpA .

The entropy SA is strongly subadditive' '

SA, UA, +Sh, nwz &Swi+Sp2

and thus, if A C A',

SA &SA+Sp ~p,
which we rewrite in the form

(A5)

(A7) w,
On the other hand, by (A10), (A13), and (A14),

(A16)

SA (p') =S~(p') =S„(pt3 A), P'(Hw ) =pti Ji(HA ) .

(A15)
Thus, by (A12) and (A14),

FA(p) &pp, ~(H~)+p'(Wt ) l3 'S~(p—p, ~)

SA(p)= lim [SA (p) Sz ~A(p)]&—S~(p) .
A'~ oo

(A9)

(A8)

By the strong subadditivity (A6) the left side of (A8) is
monotonically decreasing in A'; moreover it is bounded
from below. Hence we find, as A'~oo, the conditional
entropy Sz(p):

F„(p)=p(H&)+ p( W~) P'S~(p)—

&p(HJ, )+p(Wp) —P 'Sg(p)

&p(H„) l3 's~(p») —
I I

w~
I
I—

&F~—
I
w~

I
~

Combining (A16) and (A17) we find

(A17)

Sz(p) is used to define the conditional free energy FA(p),

Ft, (p)=p(HA)+p(W~) —P 'S~(p) . (A10)

Suppose now that p is an arbitrary KMS state (the DLR
case may be handled analogously). We have to show that
the free energy of p,

f (P;p) = lim Fp(p)
1

IAI

= hm [p(H+) —P 'SA(p)], (All)1

exists and equals f (I3) as given by (Al). Instead of this we
will first prove (A3); the result will follow easily. The
point is that F~(p) satisfies a variational principle

FA(p) =p(H~)+p( W~) —P 'Sx(p)

&p(Hw )+p'( WA ) —P 'Sx(p)

so that

(A20)

—
II W~ I+FA &FA(p) &F~+

I
Wx II «18)

which implies (A3), since
I
A

I
'F~ ~f(P) and

0 as A~ oo. Furthermore, (Al 1) and

f (P;p) =f (P) also follow directly since, by (A13),

F~«) &FA«) &Fx«)+2I
I
WA

I I

~ (A19)

Finally, we prove (A13). Use p' =PA p, in (A12).
Then S~(p') =S~(p) and

FA(p) = inf [p'(H~) P'SA(p'—)],
P

(A12) s, (p) &s, (p) —2pl I
w,

I I

.

This completes the proof.

(A21)
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