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Breather excitations in the sine-Gordon equation influenced by constant driving forces are
investigated—Ilarge driving forces cause the breather to split into a kk (27 kink—27 antikink) pair
while for small driving forces the breather excitations enter stationary modes. A perturbation
method and a potential-energy argument yields expressions for the threshold for breather decompo-
sition. Good agreement between theory and numerical results is found when the initial phase (6) of
the breather is either O or 7. For 6 =/2 and 6=37/2 the deviation gets larger.

I. INTRODUCTION

The study of nonlinear wave phenomena in quasi-one-
dimensional systems has recently drawn considerable
theoretical and experimental effort because of the relative
ease with which current theories can be tested.! In particu-
lar the Josephson junctions modeled by the perturbed
sine-Gordon equation with appropriate boundary condi-
tions is remarkable—most of the experimental findings
are explained in the framework of the model.>* Further,
the sine-Gordon equation has been used to model, e.g.,
propagation of ultrashort optical pulses and propagation
of crystal dislocations.*

The pure sine-Gordon equation possesses the remark-
able soliton and antisoliton solutions (27-kink solutions)
and the so-called breather solution which can be viewed as
a bound state of a soliton and an antisoliton. The breather
solution itself is a soliton solution. Unlike the 2m-kink
solutions, the breather need not require an activation ener-
gy because its rest energy can range from O to 2E,, where
E, is the rest energy of the kinks and antikinks. Further,
the breathers’ internal degree of freedom increases their
physical potential.

The perturbed sine-Gordon equation, where the perturb-
ing terms represent dissipative effects, energy input, and
various kinds of impurities has been analyzed by several
authors.>~7 Specific analyses of breather solutions to the
perturbed sine-Gordon equation have been performed by
Scott,® Inoue and Chung,’ and Inoue.!® In Ref. 8 the per-
turbation scheme outlined in Ref. 7 is used to calculate the
dynamic behavior of a moving breather under influence of
dissipative and energy supplying terms in the sine-Gordon
equation while in Refs. 9 and 10 the breather is shown to
dissociate into a kink-antikink pair (kk) when influenced
by large driving forces.

In the present paper we examine the influence of a driv-
ing force on a breather excitation. In the presence of
damping a kink and an antikink can annihilate each other.
During this process an intermediate breather state is
formed, but it collapses into plasmons. In the presence of
a driving force, it is possible for breathers to convert into
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a kk pair (i.e., 27 kink—27 antikink pair).°~!! Applica-

tion of a perturbation method and a potential-energy argu-
ment yield expressions describing the borderline between
regions where breathers decompose and enter breatherlike
modes, respectively. However, numerical experiments
show that the breather conversion depends strongly on the
initial phase of the breather—the expressions only agree
with the experiments in half the range of the initial phase
of the breather. Further, numerical investigations show
that breathers influenced by a driving force less than the
threshold value enter stationary modes.

The outline of the paper is as follows. In Sec. II we
derive expressions for the threshold value of the driving
force 7., versus the initial frequency wp of the breather as
well as an expression for the frequency of a breather influ-
enced by driving forces less than 7,,. Section III contains
comparisons between analysis and numerical experiments.
Finally in Sec. IV we summarize and conclude the paper.

II. ANALYSIS

In this section we derive expressions for the threshold
value of the driving force 7., versus the initial frequency
wp of the breather. Firstly, a perturbation approach is
used to obtain expressions for 7., vs wp and for the fre-
quency of the breather influenced by a driving force less
than 7. Secondly, an instructive energy argument is
used to derive a similar expression for 7., vs wp.

The equation in question is the perturbed sine-Gordon
equation

Gxx — P =sing+7 , (1)
where time and space are denoted ¢ and x, respectively.
The term 7 is the driving force. The Hamiltonian for the
pure sine-Gordon equation [Eq. (1) with n=0] is

H(t)= [ [3¢%+3¢7+(1—cosp)]dx . )
Differentiation of (2) and insertion of (1) yield’

H(t)=—7 [ ¢.dx . 3)
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The breather solution to the pure sine-Gordon equation is
given by

1—w2)172
¢(x,t)=4tan"! —(~—~£B—)——-sin[w3(t—t0)]
p
Xsech[(l—w%)l/z(x-xo)] @

Here xy and wpty=0 is the initial position and phase of
the breather, wp is the initial frequency. The traveling
breather solution is obtained by Lorentz transformation of
the solution (4).

In order to determine the time evolution of the breather
it is necessary to calculate the integral in Eq. (3). This has

1

47”7 . (1—60%;)1/2

H(t)=Hp—
B (1—60%)1/2 wp

where Hjp is given by (6).

Now, a condition for conversion of a breather into a kk
pair can be obtained. If the energy (7) exceeds the rest en-
ergy of a 27 kink and a 27 antikink, it becomes energeti-
cally possible for the breather to convert into a kk pair.
Thus an expression for the lower bound of the critical
value of the driving force 7., versus the initial frequency
wp 18

[1—(1—w})?)(1—w3)?

Ner = (8)

SHES

In |- [14+(1—03)2]
Op

We stress that the calculations above have been performed
under the restrictive assumption that wp and ¢, are in-
dependent of time. An approximate expression for the
frequency of a breather influenced by a driving force less
than the threshold force can be found by assuming that an
expression similar to Eq. (6) holds even when wjp is a
function of time: w(¢). Differentiating Eq. (6) with
respect to time then yields the following:

—160(1 —®)V 260 = —16@,,(1—@%)”2(2) )

By insertion of this approximation in Eq. (5) and by in-
tegration we get

(1—wp)'?
w=wg+ 1 _1n 2 sinfwg(t—tgy)]
4(03 @p
1—o} 2
+ {1+ 5 Bsinz[wg(t——to)]] )
@p

9)

This expression reflects the fact that a positive (negative)
driving force accelerates a 27 kink (27 antikink) to the
right and a 27 antikink (27 kink) to the left. Therefore,
the part of the period where the force tends to split the
breather is longer than the part where the driving force
and the breather mechanism work together.

sinfwp(t—tg)]+ |1+
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not been performed in general because wy and ¢, are func-
tions of time, but assuming wp and t, independent of
time, insertion of (4) into (3) and integrating we get

(t—to)
COSE(DB 0 ] _— (5)

H(t)=—4my

@p .
3 sin®wp(t—tq)
wp
The energy of a static breather solution to the pure
sine-Gordon equation is given by®

Hp=16(1—w3)'2 . (6)

Further, the rest energy of a 27 kink is 8. Integration of
(5) yields the energy H(t) of the breather

2

172
Ne sinZ[mB(z—to)]J } , (7)
@p

Finally in this section we present an analysis for breath-
er conversion into a kk pair based on a potential energy ar-
gument.!' In Fig. 1 we have sketched the potential
V(¢)=1—cosp+n¢. If a breather is oscillating around a
ground state

$o= —sin~yp(mod2r) (10

which is the trivial solution to Eq. (1), it is clear that if it
can overcome the energy gap AV, it can reach the lower
ground state ¢,=¢o+27. But by doing so it breaks up
into a kk pair (cf. the unperturbed case). The energy gap
is given by

AV=V(¢))—V(dy)

=2[(1—) 24 ysin~n]4+9r, (11)

where ¢, is the unstable point ¢; =7 +sin~'9(mod27). In
the unperturbed case, the gap AV =2 while the energy re-
quired by the breather is 16. Assuming this ratio to be
valid in the presence of the driving force, we get the rela-
tion

T T
21— —
/T\ :
B av
=0 r
%o ¢
-2 ¢2 B—
-4 l | |
[0} 2w 4

¢

FIG. 1. Potential v(¢)=1—cosd +n¢ drawn for (a) =0 and
(b) p=—0.265.
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FIG. 2. Time evolution of breathers influenced by force
terms. Parameter values are wp=0.8, f,=0, 7=0.1 (a),
11=0.25 (b), and 17=0.265 (c). For the low value of the force (a)
the breather almost immediately enters a stationary mode—only
little radiation is observed, while for the value of the force in (b),
just below the threshold value, the picture is different—much
radiation is observed, see Fig. 3. In (c) the breather decomposes
into a kk pair. The time evolution 0 < ¢ <25 is shown.

16(1—w3)' 2 /AV(, )= (12a)

or

Ner ™
2

(1—3)2=(1—n2)" 247, sin~ 19, +
(12b)

In the next section we compare the analyses in this section
with numerical experiments.
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FIG. 3. Value of ¢(0,¢) (the point of symmetry) vs time. Pa-
rameter values as in Figs. 2(a) and 2(b). After transients the
breathers enter stationary modes. For the higher value of the
force (b) ¢(0,¢) is modulated.

III. NUMERICAL RESULTS AND COMPARISONS
WITH ANALYSES

We solve the initial value problem Eq. (1) with outflow
boundary conditions at x = — 15 and 15. In the expression
¢(x,0) [Eq. (4)] for the initial profile we choose xq=0
throughout this section. The numerical solutions are ob-
tained by means of a computer program based on an im-
plicit finite-difference method which is second order in
both space and time.!! Further, we choose the vacuum in
the ground state,'? i.e., ¢(+ o0,t)= —sin~'7. None of the
results presented here were sensitive to this choice of vac-
uum [similar results were obtained with ¢(+ «0,#)=0].

In Fig. 2 we show the time evolution of a breather in-
fluenced by a force. The initial frequency of the breather
is wp =0.8 and the initial phase is =0. In Figs. 2(a) and
2(b) the value of the force terms is below the threshold
value. In Fig. 2(a) the breather almost immediately enters
a stationary mode—only a small amount of radiation is
observed. In Fig. 2(b) the value of the force term is just
below the threshold value resulting in creation of radiation
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FIG. 4. Illustration of the breathers internal contraction and
repulse forces. The point of symmetry ¢(0,¢) vs time. Parame-
ter values are wp=0.1, t,=0, 7=0.0027 (a), and p=0.0015 (b).
The part of the period where the breather tends to dissociate is
longest.
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FIG. 5. Comparisons between the analytical expressions for
the threshold force 7., vs the initial frequency wp and numerical
experiments. Solid lines represent the following analyses: The
dashed curve is the perturbation analysis and the solid curve is
the potential energy analysis. The points are numerically deter-
mined, 0=wpto=0 (0), 7/2 (D), m (A), 3 (+). The dissocia-
tion depends strongly on the initial phase 6, see Fig. 6.
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FIG. 6. Influence of the initial phase (6 =wpt,) of the breath-
er. The solid and dashed horizontal lines represent the energy
and perturbation analysis, respectively—the solid curve is deter-
mined from numerical experiments. For wpto~m/2 the devia-
tion from the analyses has a maximum resulting from the fact
that the initial energy of the breather deviates most from the en-
ergy of the unperturbed breather.

before a stationary mode occurs, see Fig. 3. Finally in
Fig. 2(c) the breather decomposes into a kk pair.

In Fig. 3 we show ¢(0,¢) (the point of symmetry) versus
time for the situations shown in Figs. 2(a) and 2(b). After
transients the breathers enter stationary modes—for the
higher value of the force the mode is modulated. These
examples illustrate the behavior of breathers below the
threshold value: after transients stationary modes occur.
This result has been predicted in Refs. 7 and 8 for o =1
and 7 <<1 by application of a perturbation theory. In
Fig. 4 we show how the force influences the stationary
mode for small initial frequencies. The part of the period
where the breather tends to dissociate is the longest—
illustrating the internal contraction and repulse forces.
The behavior of the breather in Fig. 4 is in qualitative
agreement with Eq. (9).

Finally, in this section we present comparisons between
the analyses and the numerical results. In Fig. 5 the
analytical expressions Eqs. (8) and (12) are compared with
numerical results. The threshold value for the breather-kk
conversion is seen to depend strongly on the initial phase
of the breather. None of the analyses take the initial
phase [resulting in an initial energy different from Eq. (6)]
into account. The influence of the initial phase for
©0p=0.6 is shown in Fig. 6. The maximum discrepancy
for 6=wpty=m/2 is due to the fact that the breather ini-
tial energy deviates most from the energy of an unper-
turbed breather at this phase value.

IV. CONCLUDING REMARKS

In the present paper the influence of a driving force on
a breather excitation is examined—large driving forces
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cause the breather to split into a kk pair while for small
driving forces the breather enters stationary modes. A
perturbation method and a potential-energy argument
yield expressions describing the threshold for breather
decomposition. Numerical experiments show that the
breather conversion depends strongly on the initial phase
of the breather, thus the expressions only agree with the
experiments in half the range of the initial phase. In-
clusion of dissipation in the model will probably lead to
damping of the stationary mode found for small driving

force values; however, we expect the break up into kk
pairs for larger values of the driver to be qualitative simi-
lar to the one reported here.
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