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Linear and nonlinear constants of motion for two-photon processes
in three-level systems
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Explicit expressions for the constants of motion and the complete solution for the time evolution of the
density matrix of a three-level system excited by two laser fields whose amplitudes are sinusoidally modu-
lated and have a phase difference of n/2 are presented.

Following the discovery by Hioe and Eberly' of a set of
nonlinear constants of motion for three-level systems excit-
ed by two lasers, Gottlieb noted two independent linear
constants of motion when the fields are sinusoidally ampli-
tude modulated and have a phase difference of m/2. He
also noted a remarkable fact that the time-evolution matrix
in that case becomes time independent, so the equations of
motion may be solved in terms of its eigenvalues.

It is the purpose of this note to present the following
results: (I) to clarify the difference in the nature of linear
and nonlinear constants of motion in these works, and (2)
to present a new formulation of the problem which can be
used very simply to write down explicitly two linear con-
stants of motion as well as the complete solution for the
time evolution of the density matrix for the general case
when neither the frequency of the modulated laser field am-
plitudes nor the one-photon detuning vanishes. The latter
results were not given by Gottlieb as it would be consider-
ably more cumbersome to arrive at them using his method.

Linear constants of motion can be seen to arise from the
following consideration. If the Hamiltonian Hof an N-level
system excited by a laser field is time independent (after the
rotating wave approximation is taken) as in the case when
the laser field amplitudes and frequencies are constant, then
it readily follows from the Liouville equation governing the
dynamical evolution of the density matrix p (t) given by

it"r&p(t)/t)t = [H, p(t) ]

that we have immediately N linear constants of motion
given by

tr[p(t)H&] =tr[p(0)H&] =K&, j=0, 1, 2, . . . , N —I . (2)

The N constants of motion are independent of each other
unless H is of rank less than N. For j~ N, H& can always
be expressed in terms of some linear combination of H of
lower powers by Hamilton-Cayley theorem and hence need
not be included.

That K& given by Eq. (2) are (linear) constants of motion
is true regardless of the form of H, so long as H is time in-
dependent. For example, consideration of whether the sys-
tem has equal detunings or at multiphoton resonance is ir-
relevant.

If the Hamiltonian of the system is time dependent (after
the rotating wave approximation is taken), then the quanti-
ties given by Eq. (2) are no longer constants of motion.
The most general set of constants of motion in this case, for
incident laser fields of arbitrary strength, time dependence,
and resonance character, are

tr p(t)&= tr p(0)&= C&, j = 1, 2, . . . ,

of which N of them are generally independent unless p is of
rank less than N. The constants of motion are nonlinear in

p except for the trivial one when j =1. Equation (3)
resembles the equation giving the Casimir operators „ in
terms of the generators P&, of U(N) algebra:

P&P&k Pit (3')

where each term in the summation is a product for n fac-
tors, n = 1, 2, . . . . Moreover, for appropriately chosen P,&,

we can represent p „(t)= (P„)—= tr[p(t)P„]. It is im-
portant to recognize, however, that Eq. (3) is not a direct
consequence of Eq. (3'), as (P;,P,;) cannot be equated to
(Pt&) (P&;) generally. The origin of Eq. (3) can be found in

the unitarity of p(t).
If the time dependent Hamiltonian assumes certain

symmetrical forms, then there may be further subclasses of
constants of motion, depending on the Hamiltonian, in ad-
dition to the set given by Eq. (3). These were the nonlinear
constants of motion quoted in Refs. 1 and 4, in which it
should be noted that the detunings and Rabi frequencies are
generally time dependent but of specific forms required by
the specified symmetries. Two distinct types of symmetry
have been discussed4 depending on the way the subgrouping
schemes are exploited:

SU(3) DSU(2) x U(1) or SU(3) DO(3)

We now consider the three-level systems excited by two
laser fields whose frequencies are kept at two-photon reso-
nance and whose amplitudes are time dependent. The laser
fields are assumed to consist of two classical fields of ampli-
tudes I&(t) and frequencies f&(t),j= 1, 2. Let a(t) and
p(t) be the half Rabi frequencies defined by

a(t) =t 'di2 I'i(t), p(t) =t 'd„ I',(t),
where d~2 and d23 are the atomic dipole moments between
levels 1 and 2, and 2 and 3. The detunings il.»+i(t) are
defined as usual by 5»+i(t) = (v»+i( —f&(t) where (v»+i(
is the frequency separation betweeen levels j and j+ I. At
two-photon resonance, we have bi2(t) = —623(t) A(t).
The time evolution of the density matrix is given by

itf&p(t)/Bt = [H(t), p(t) ],
where H(t) can be chosen to be

0 a(t) 0
H(t)= t a(t) A(t) P(t)—

0 p(t) 0
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We introduce the unitary matrix

0
Q=Q= —0 e

,P 0
0

where e= (n2+P')'/2. Defined also

p'=0 pQ

and

More explicitly, we have

A t/12+ P tt23+ EP22 —cov13 = const

(6) (~'+ ~')p»+ (~'+ P')p»+ (/3'+ ~') p33

+ 0!Pt/13 GIJ(PU12+ 0!U23 AU13) COIlst

where
7

~jk P/k+ Pkj& +jk t (Pjk pkj)

(17a)

(17b)

/trip'(t)/fit = [H'(t), p'(t) ]

where

0 e(t) 0
H'(t)= t e(t) A—(t) 0

, 0 0 0,

(10)

The form of H'(t) in Eq. (11) suggests that the dynamical
space of p' can be factorized. It can be readily shown that
Eq. (10) can be written in the form given by Eq. (15) of
Hioe and Eberly'

dT(t)/dt = A(t)T(t) (12)

where A(t) is a block diagonal matrix consisting of three
independent matrices of dimensions 3, 4, and 1, and the
three independent nonlinear constants of motion follow.

We now consider the case introduced by Gottlieb in
which 5 is constant and a ( t ) and P ( t ) have the forms

H'= Q HQ

For the case considered by Hioe and Eberly, ' n(t) and
P(t) have the same time dependence but possibly different
amplitudes:

a(t) =aA, (t), p(t) = bQO(t)

Then Q is time independent, and Eq. (5) can be written

where

pnm=t '(~
n
—~m) . (19)

To express the solution in terms of the original density ma-
trix p, we use Eq. (7):

P=Ql 'Q"
~ (20)

where Q, Q are given by Eq. (6).
The eigenvalues A. „and eigenvectors $„(j)=p„'(j) of

the Hamiltonian H" can be found very simply. The eigen-
value equation is given by (for t = 1)

i 3+pi 2 (e2+ 2)g g 2 0 (21)

Equations (17) reduce to the results given by Gottlieb for
the special case co=0 or 5 =0. The general case expressed
by Eqs. (17) was not given by Gottlieb as it would be con-
siderably more cumbersome to arrive at it using his method.

The complete solution for the time evolution of p(t) can
also be written down very readily. Let $ „and P „be the
right and left eigenvt;ctors, respectively, corresponding to
the eigenvalue A. „of the Hamiltonian H" given by Eq. (15),
and let p„(j),p„(j),j =1,2, 3 denote their components.
From Eq. (14), we find

3

pjk
—— g p' (0)$„(p)$ (q)@„(j)Q (k)e

n, m,p, q 1

n(t) =A cos 01t+g+ —,P(t) =A cos(01t+@) (13) Let us consider the following three cases separately.
(a) The case co=0.

with common constant amplitude A =e=(o;2+P2)'' but
differing by phase 2r/2 from each other. The unitary matrix

Q of Eq. (6) is time dependent in this case. A remarkable
fact is that Eq. (5) can now be written as

itfjp'(t)/Bt= [H",p'(t)] (14)

where p' is given by Eq. (7) and H" is time independent
given by

$1(1)= $1 (2) = 0, Q1(3) = 1

x23= —,
' [ —b, +(5'+4e2)'/2], @23(1)=

(e + X2, 3) V
(22)

(b) The case b, =0.

,io) 0 0
(15)

From Eq. (2), we can immediately write down two linear
constants of motion given by

tr(p'H"j) =tr(Qp'Q QH"jQ ) =tr(pHj) = K&

J= lp2

Z1=0, @,(1)=0, @1(2)= + Cd

—lE

( 2+ 2) 1/2

~2 3
= + (e'+ ~')' ', y2 3(1)= +

I IE Cd

[2(e'+01')]'/' ' ' [2(e'+01 )]'/

(23)

where

0 n (t) /0)

H, = QH"Q'= t ~(t) b, P(t)—
,
—io) P(t) 0

(16)

(c) The general case co A 0, /3, & 0.

X= —76+ 3
[3(e2+cu2)+62]'/2cos +, k=0, 1, 2



3436 BRIEF REPORTS 29

where

6 [9(e'—2rd') +25']
[3(e2+ rd 2) y Q2] 3/2

(1) X +AX —ird(h+. 6)
b ~(2)

e ( —A. + I rd )

(3) A.2+ 5A. —e + ird()+i). ) b
e( —)E+ ird)

(24)

Eqs. (18) and (20) give one of few known explicit analytic
results involving excitations of an atomic system by two am-
plitude modulated laser fields with a nonzero phase differ-
ence. Two constants of motion of this problem are given by
Eq. (17).
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