PHYSICAL REVIEW A

VOLUME 29, NUMBER 6

JUNE 1984
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A modified local-plasma model, based on the works of Lindhard and Winther, and Bethe, Brown, and
Walske is established. The Gordon-Kim model for molecular-electron density is used to calculate stopping
power of N,, O,, and water vapor for protons of energy ranging from 40 keV to 2.5 MeV, resulting in
good agreement with experimental data. Deviations from Bragg’s rule are evaluated and are discussed

under the present theoretical model.

Recently, departures from Bragg’s rule have been noticed
in the theoretical calculations of the mean excitation ener-
gies of various molecular systems.!'2 Analysis of the experi-
mental data on energy loss of low-energy o particles in
gases also indicates deviations from Bragg’s rule.?-5 In this
paper, the stopping power theory of Lindhard and Winther,®
and the local plasma theory of Lindhard and Scharff,” are
used to perform calculations in the low-energy region.
Modifications are introduced through a simplifying model
which incorporates the effects of the shell corrections and of
the screening of the projectile. The model is justified on the
basis of fulfilling the more ambitious aim of obtaining the
molecular stopping power. The Gordon-Kim? electron den-
sity model of molecular wave functions is utilized in the cal-
culations. Such a model, as is known, allows a successful
method of calculating chemical bond effects. Calculations
done on N,, O,, and water vapor are found to be in fair
agreement with experiments. Furthermore, departures from
the Bragg’s rule are noticed for all these systems.

The celebrated stopping-power formula for an energetic
charged particle of charge ze and velocity v, traversing
matter of charge number Z is given by

_ dE _ 4mz%e*
dx mu?

where m is the mass of an electron and N the number of

NZL , 6}

atoms per unit volume of the medium.

The stopping number L of Eq. (1) has been a topic of
considerable study. For instance, Lindhard and Winther
have investigated the function L for a free-electron gas in
the regions of low- and high-energy incident charged parti-
cles. These authors give for the high-energy case, the ex-
pression for L to order 1/v2 as

L=InY- —1( n_, @
3 mv 2
where Y=2mv¥he p» the classical plasma frequency

w,= (4mpeY m)V2, p is the electron density, and (T, the
average kinetic energy, is given by

(T)=({)mv} ,

where vy is the Fermi velocity.
For the low-energy case, they give
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TABLE 1. Proton stopping cross-section values (in units of 10~ !5 eV cm?) per atom. These were obtained
by dividing by two, the stopping cross section per molecule of the oxygen molecule.

Curve-fitted

Theoretical values,
values of Andersen and Ziegler Experimental results
the present Reynolds et al. Langley
E (keV) paper (Ref. 14) (Ref. 15) (Ref. 16)
40 15.89 14.6 15.2+2.6
80 17.48 17.0 17.25+2.6
100 17.43 17.0 17.17 £2.6
300 11.84 11.9 11.99 +1.7
500 8.92 8.8 8.84 +1.7 S
1037 5.64 ... S 5.25
2591 2.97 2.85
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TABLE II. Proton stopping cross-section values (in units of 10~1% eVcm?) per atom. These were ob-
tained by dividing by two, the stopping cross section per molecule of the nitrogen molecule.

Theoretical Curve-fitted
values of values, Experimental results
the present Andersen and Ziegler Reynolds e al. Langley
E (keV) paper (Ref. 14) (Ref. 15) (Ref. 16)
40 17.20 16 17.1 £2.6
80 18.41 17.9 18.5+£2.6
100 17.79 17.7 179 £2.6
300 10.85 11.2 112+£1.7
500 8.10 8.1 8.08 £1.7 SRR
1037 5.20 .- ... 4.78
2591 2.71 2.56
with and R is the Rydberg constant. Walske,!! on the other
) P hand, took the upper limit for momentum transfer to be in-
x2=—£ , == finity, thus overestimating the nuclear momentum recoiling
mhvp 2m and obtained instead 2/n;. In reality, however, due to the

Equation (2) for the L function warrants some discussion.
First, one notes that the L function of Egs. (2) and (3) are
derived by Lindhard and Winther for a free-electron system.
Transition to an atomic system of the first term of Eq. (2),
as studied widely, is accomplished under the so-called local-
plasma model in which density p(T) is evaluated by using
quantum-mechanical wave functions. The local-plasma
model is equivalent to replacing the molecular dipole oscilla-
tor strengths by the corresponding classical plasma absorp-
tion spectrum. The adequacy of such a replacement was re-
cently shown by Johnson and Inokuti® to be most accurate
for evaluating atomic quantities associated with stopping
power in spite of differences between the plasma spectrum
and the actual oscillator strength distribution. A quantum-
mechanical analog of the second term of Eq. (2) would be
of interest. In this context, a result first derived by Brown
would prove to be useful. Brown!® studied the K-shell
asymptotic stopping power of an hydrogenic system (with
two K electrons) for a fast projectile, taking the maximum
momentum transfer equal to 2mv as if the electron was
free. The asymptotic stopping power equation obtained by
Brown can be expressed in a form similar to the Eq. (2).
The first terms of both these equations, since they involve
the mean excitation energy, can be assumed essentially
equivalent within the local-plasma approximation. He ob-
tained for the second term in Eq. (2) for a hydrogenic sys-
tem, the quantity 1/n,, where n,=+mv?% Z2R, where Z, is
the effective nuclear charge for the s shell (s=K,L, ...)

recoiling of the nucleus the result should be expected to fall
somewhere between 1/m, and 2/n,. This fact will be incor-
porated later [see Eq. (6)] as a parameter which we later es-
timate. At the present, however, for the sake of simplicity,
combining Brown’s result for the K shell with Walske’s
result for the L shell,!? but retaining the consistency with
the free-electron model, we write the analogous second
term (known as shell correction) for a hydrogenic system
with Z electrons as

C = Criomt Co = ——+ - Z—”l] , @
ng  mr| 8
which can be rewritten for a real atom as
T
c-14D 4(z) ®)
2 -z—ff'lv2

where

6 (Z2)=2f(Z)g , (6)
and

(Ty=—ZIZRR+(Z-2LZPR] . ™

In the above, a coefficient f(Z) has been introduced to
distinguish a real atom from a hydrogenic one. The coeffi-
cient £(Z) is known to be less than unity for L shells for
low atomic number targets. The coefficient g is introduced

TABLE III. Proton stopping cross-section values (in units of 10~!5 eVcm? per molecule for water
vapor.
E (keV) 40 80 100 300 500
Theoretical values of
the present paper 28.81 27.8 26.8 17.1 12.6
Reynolds et al. (Ref. 15) 25.0+2.6 27.6 £2.6 27.3+2.6 179 +1.7 13.0+1.7
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TABLE IV. Deviations from Bragg’s rule in the case of oxygen molecule. € (atomic), the atomic stopping
cross section (in units of eVx 10~ 15 cm2/atom), was obtained from Egs. (3) and (10). e (molecule) is in

units of % eVx10~15 cm% molecule.

E (keV) 40 100 200 300 500 1037 100000
¢ (atomic) 17.44 17.48 14.65 12.15 9.1 5.72 0.1492
€ (molecule) 15.89 17.43 14.36 11.84 8.92 5.64 0.1476
Percentage deviation 8.9 0.3 2.6 2 1.4 1.1

to incorporate the effect due to the recoiling of the nucleus.

At this stage, it is appropriate to discuss various features
associated with the low-energy projectiles and the low atom-
ic number targets. First, in the low-energy region, the
projectile’s full charge z will not be operational in the stop-
ping process due to electron capture that is influenced main-
ly by the outer shell electrons of the medium. Second,
Walske has pointed out that the coefficients f(Z) are un-
reliable for the low atomic numbers Z < 30 due to use of
the hydrogenic wave functions.

It is evident from the above observations that some sort
of crude estimate of the quantity Cis on order. This is jus-
tified since the usual incorporation of these effects involves
the fitting with the experimental data. The inclusion of the
effect of projectile’s effective charge should decrease the
stopping number of all the elements: for Li the most and
for Ne the least. In order to incorporate this effect and the
other problem of the need for an accurate value of the coef-
ficient f(Z) as stated above, it is reasonable as a first ap-
proximation to assume a semiempirical constant value of
the quantity ¢(Z) equal to half the total number of elec-
trons in noble-gas atoms. Such a division should overesti-
mate shell corrections for lithium and beryllium in decreas-
ing fashion and underestimate that for helium, neon, car-
bon, nitrogen, oxygen, and fluorine also in a decreasing
manner. Such a change in shell corrections is indeed what
is needed as almost entirely compensating the effect of the
effective charge of the projectile on the stopping power.
Since, in this paper we are interested in the atoms with
atomic number below 10 this assumption implies that

1 forZz=<2,

(=15 tor3<z=10 . ®)

Implicit in the above partition of ¢ is the fact that the quan-
tity C no longer represents the so-called shell corrections
only, but presumably also some other effects including that
due to the projectile’s effective charge as well as due to the

neglect of the higher-order terms in Eq. (2). One can now
write Eq. (5) as

ll<T> lforZ$2 s
C 2 val Z
- = 9)
z —12—1<T>2% for3<z=<10 ,
—2-mv

where (T) by virial theorem is just the average kinetic en-
ergy of the electron and should be averaged over all the Z
electrons in the atom.

In order to make a transition to an atomic system, we as-
sume the above results and accordingly replace Eq. (2) with

31.5 1

- = <
InY xZ ¥ forZz<2 ,
L= 315 (10)
- =7Z=<10 .
InY XZ Y for3=Z=<10

The low- and high-energy L functions should now be
combined to determine the appropriate dependence of the
stopping power on energy. To do this, we used Egs. (3) and
(10) for our desired results after replacing w, by yw, in
them, where nonconstant values of y were obtained from
Ref. 2. Bonderup,!? had combined Egs. (2) and (3) and as-
sumed a constant value of y equal to ~/2. Unlike Bonderup,
we tried to preserve the continuity between the low-energy
stopping number function given by Eq. (3) and the high-
energy function given by Eq. (10). In this way, stopping
number values for a system can be obtained given the velo-
city of the projectile and the density p( 7).

For a diatomic molecule, the Gordon-Kim model gives
the density as

Pmolecule=Pa(?)+Pb(?—§ab) , 1n

where p,(T) is the atomic ground-state density. R, is the

TABLE V. Deviations from Bragg’s rule in the case of nitrogen molecule. e (atomic), the atomic stopping
cross section (in units of eVx10~15 cm?/atom), was obtained from Egs. (3) and (10). e (molecule) is in

units of + eVx10~!5 cm%molecule.

E (keV) 40 100 200 300 500 1037 100000
€ (atomic) 19.33 18.57 14.32 11.46 8.53 5.30 0.1340
€ (molecule) 17.20 17.79 13.75 10.85 8.10 5.20 0.1319
Percentage deviation 11 4.2 4.00 6.1 5.0 1.9 1.3
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TABLE VI. Deviations from Bragg’s rule in the case of hydrogen molecule €(2x atomic), the atomic stop-
ping cross section (in units of eVx 10~ 15 cm?/atom), was obtained from Egs. (3) and (10). € (molecule) is

in units of eVx10~15 cm?/molecule.

E (keV) 100 200 300 500 800 1037 2591
€ (2% atomic) 12.7 8.13 4.17 2.89 2.36 1.11
€ (molecule) 11.43 7.53 5.71 3.93 2.75 2.24 1.07
Percentage deviation 10 7.4 5.8 4.8 5.1 3.6

distance between the two atoms, which is known to be 1.094
A for N, and 1.207 A for the 0O, molecule. Equation (11)
was generalized for water vapor including its partial ionic
bond nature and neglecting the overlap between the two H
atoms. The distance between the O and H nuclei was taken
equal to 0.958 A.

The molecular stopping power for protons was obtained
by averaging the stopping number over T for Nj, O,, and
water vapor molecules. Hartree-Fock wave functions were
employed in these calculations.

Table I lists the results of this paper, together with
Andersen-Ziegler curve fitted results,'* and two sets of ex-
perimental data for the O, molecules. Table II lists these
values for the N, molecule. In Table III, the results of this
paper for water vapor are compared with the available ex-
perimental data for energies ranging from 40 to 500 keV.
Good agreement, within 10%, is found with the experimen-
tal data.

In order to discuss the departures from Bragg’s rule, it
would be relevant to cite a systematic study carried out in a
series of experiments at Baylor University.3-5 The study re-
vealed that for low-energy projectiles there may exist a devi-
ation from Bragg’s rule depending on the physical state, but
most importantly, on the chemical structure of the com-
pounds. The confusing status of the dependence on the
chemical structure can best be described by citing these
studies in chronological order. First, in 1971 the Baylor
group® summarized that the compounds with single and
double bonds should obey Bragg’s rul/e’.' The compounds
containing triple-bond structure were found to deviate from
Bragg’s rule by as much as 12.8% (a particles of energy
between 0.3.and 2.0 MeV often were the projectiles). In
particular, these authors indicated that the molecular hydro-
gen (single-bonded molecule) should obey Bragg’s rule.
Later in 1972, the Baylor group* critically looked again on
their previous conclusions. They indicated that perhaps the
hydrogen atomic stopping cross section may be considerably

different than one-half of the molecular stopping cross sec-
tion and thus should cause considerable deviations. Howev-
er, the Baylor group in 1974,° recognizing the difficulty of
obtaining atomic cross sections experimentally, based their
analysis on the existence of some modified, but unique
atomic stopping cross sections.

It is therefore imperative that in order to discuss the devi-
ations from the Bragg’s rule, one must have access to the
atomic and molecular stopping cross sections. We calculated
both the atomic and the molecular stopping cross sections as
a function of projectile energy of the molecules O,, N,, and
H,. These results together with the deviations from Bragg’s
rule are exhibited in Tables IV-VI. One sees that the devi-
ations from Bragg’s rule become small as incident energy
increases—in agreement with observations made by many
workers including those at Baylor University. It is to be
noted that N, is a triple-bonded, O, is an approximately
double-bonded (from the bond energy point of view), and
H, is a single-bonded molecule. The maximum deviations
from Bragg’s rule for energy 100 keV and above are 6.1%,
2.6%, and 10%, respectively, for these molecules. Thus, the
deviation depends on the chemical structure. When the
Gordon-Kim model is used, the overlap of electron density
determines the deviation or molecular binding effects. For
instance, for the hydrogen molecule, the distance between
nucleons is very small, equal to 0.74 A TItis expected that
the overlap of electron density is large, thus explaining the
considerable deviation from the Bragg’s rule. The stronger
the bond energy, the shorter the distance will be. It is in-
teresting to note that single-, double-, and triple-bonded
carbon molecules have internuclear distances equal to 2.94,
2.52, and 2.24 in Bohr units, respectively. We may thus ex-
pect that the triple-bonded carbon will have more deviation
from Bragg’s rule than the single-bonded carbon.
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