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Nucleation theory is considered in d-dimensional systems which undergo a nearly mean-field-like

transition, such as Ising magnets or mixtures with a large but finite range r of the interaction, or

polymer mixtures with chain lengths X& ——Xz ——X»1. Near two-phase coexistence the nucleation

free-energy barriers are b F* cc r4( 1 —T/T, )
~ (5g/P, „) '" " and 15F* cc X'd~ "(1—T/

T, )
~ (5$/li„,„) 'd ", respectively, where p„,„ is the order parameter, 6g the deviation of the

order parameter in the metastable state from that at coexistence, and T, the critical temperatures

where the transition is second order. The crossover to nucleation near T, where

AF*/keT, =c(6$/P„,„) '" ", c for d&4 being a universal constant, is controlled by the same

Ginzburg criterion as for the static critical properties, i.e., crossover occurs at r (1—T/T, )
" =1,

"(1—T/T, ) "=1. In polymer mixtures, mean-field-like behavior occurs only for d & 2. In

the mean-field region, metastable states are well defined up to a narrow region near the spinodal

curve P,p; the width of this region is given by [(rtj g, )/g„—,„]" d~ '=[rd{ 1 —T/T, ) "~2] ' or
[N' ~ "(1—T/T, )

~~
] ', respectively. This rounding of the spinodal curve can again be under-

stood by the Ginzburg criterion for the metastable state at li near li,p. At the unstable side of the

mean-field region, the linear theory of spinodal decomposition holds outside of correspondingly nar-

row regions close to the spinodal curve, too.

I. INTRODUCTION

This work is concerned with the theory of first-order
phase transitions in the framework of continuum
theories. ' We consider models which are close to a
mean-field limit, such as Ising magnets or binary mixtures
with large but finite range r of interaction, or polymer
mixtures with large but finite chain length N. These sys-
tems are described by a mean-field free-energy density

f (P), P being the volume fraction of, e.g. , species A in the
mixture,

Cf(P)/T=g in/+(I —P) ln(1 —P)+2 P(1 —P) .
T

The conjugate thermodynamic variable is the chemical po-
tential difference p, p/T =c)f(P)/|3J; the corresponding
problem of an Ising magnet with magnetization m in a
magnetic field H then corresponds to this problem by us-

ing P=(1—m)/2, p=2H, and considering the potential

g (P)=f(P) —pP. The resulting Ginzburg-Landau-Wilson
Hamiltonian which forms the basis of continuum nu-
cleation theory then is, in d dimensions,

I dd f[0(x)] + z[gy( )]

r being the range of interaction.
The analogous problem of a polymer mixture of two

chains A,B with Xz,Xz subunits of size o.z, o.z each is
described by the Flory-Huggins model

piy -( )
in/+ ln(1 —P)+vg(1 —P) (3)T Ng Ng

bM f (6)polymer d d polymer

T T (4)

with'

36rp =crz lg+crz/(1 —P) .

Note that the length rp is of short range, as is the range of
interactions in the polymer problem; the simplifying
feature making the polymer problem (for d &2) mean-
field-like is the largeness of the chainlength N (henceforth
we consider N„=Nz N). Formally the or——dinary binary
mixture is obtained as a special case of Eq. (4) if we would
put X =1, I"~ =r.

Other systems for which mean-field theory is (at least
nearly) valid include ferroelectrics and dipolar magnets
for d & 3, superconductors, and systems undergoing elastic
phase transitions of various types; these systems will not
be explicitly considered here. In all these cases we do ex-
pect, however, that metastable states with at least very
large (if not infinite) lifetimes do exist. ' ' In the strict
mean-field limit r~oo the limit of metastability is the
spinodal line, which behaves as a line of critical
points' ' described by a "spinodal fixed point. "' The
equation of state which follows from (1) or (3) is shown in
Fig. 1, which serves to clarify our notation.

with U &0 being some effective interaction parameter.
Unmixing occurs for v & v,„„with v„;,=2/N for
Xz ——X~. The resulting Ginzburg-Landau-Wilson Hamil-
tonian is
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FIG. 1 (a) Order parameter g=(tt —P„;t)/P„;t (note P,„;t= 2)
plotted vs chemical potential difference p (p=0 at coexistence
for symmetric mixtures). Stable and metastable branch are
shown as full curves, unstable branch dash-dotted. The values
of the order parameter at the spinodals +p,~ and associate
chemical potentials +1/j,~ are indicated. For a negative p & —p, ,~
there occurs a stable state (g„), an unstable state (1(„,), and a
metastable state (1(,). {b) Thermodynamic potential g(tt ) plot-
ted vs p for p=O, where two phases with 1(=+/, „can coexist
in equilibrium. (c) Thermodynamic potential g (P ) for
—

pgp (p (O.

P

FIG. 2 (a) Order-parameter profile 1((z) across an interface
between two coexisting bulk phases. The interface (hyper) plane
is oriented perpendicular to the z direction. The (intrinsic) inter-
face thickness is of the order of the correlation length at coex-
istence, g„,„. (b) Radial order-parameter profile for a marginal-
ly stable droplet of size R »g, „existing in a metastable state
g, near g „. For 1 —1(,/g „«1 the profile reaches in the
bulk of the droplet essentially an order parameter of —1( „,and
thus the profile essentially resembles that of (a). (c) Same as (b)
for f, near f,~ The orde.r-parameter differences tt4~ f„and-
/„—g(p=0) are of the same order, see Cahn and Hilliard (1959)
and Klein and Unger (1983) (Refs. 1 and 6).

II. CLASSICAL NUCLEATION THEORY
NEAR THE COEXISTENCE CURVE:

THE LONG-RANGE PROBLEM

It is assumed that the nucleation free-energy barrier is
due to a spherical droplet of radius R. Denoting the
volume and surface area of a d-dimensional unit sphere by
Vd and Sd, the free-energy excess of a droplet is decom-
posed in a bulk and a surface term as

bF(R) = —
VdR "pg„,„+SdR" 'f;„, .

The interface free energy per unit area f;„, is taken to be
that of a Aat planar interface between coexisting phases
[Fig. 2(a)]. This is legitimate for

~ p ~
&&

~ p,„~ [Fig. 2(b)]
but not near the spinodal [Fig. 2(c)], as will be discussed
below. The critical radius R* where the droplet is mar-
ginally stable [t)[AF(R)]/t)R

~

~*——OJ is then

(d —1)Sd f;„,
d Vd pfcoex

where due to the smallness of p one could eliminate p in
favor of 5/=1(t„,„—ttj, =X„,„5p, X„,„being the suscep-
tibility at coexistence curve. Then the nucleation barrier
becomes

d —]. d d —1
' —(d —&)

d —1 fitttXcoex 5P
2(d —1) (8)

Vd coex coex

We now focus attention to the vicinity of the critical
point of the model defined by Eq. (2). For large but finite
r this model has a mean-field-like critical region as long as
for d ( 4 the condition is satisfied:

r"(1—T/T, )
"i ))1,

as one can see most simply from the Ginzburg criterion
(cf., e.g. , Refs. 17—19 and Sec. V below). In this mean-
field critical region the quantities f;„„X„,„, g„,„, 1(t„,„
have the following behavior (see, e.g. , Ref. 18):

(d —1)Sd f;„,X„,„
dVd

5$
coex

(10a)
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f.t ~fb.l(k--cc T.r(1 —T/T. )'" (10b)

where the proportionality sign stands for proportionality
constants of order unity. Hence combining Eqs. (8) and
(10) one finds

At the boundary between mean-field and non-mean-field
critical regions, given by Eq. (9) with the inequality sign
taken as an equality, both Eqs. (11) and (13) give the same
order of magnitude for arbitrary (small) 5$/tt1„,„and
hence the crossover between the two expressions is ruled

by the standard Ginzburg criterion.

g, „=gp(1—T/T, ) ", X„,„=l (1 T/T, )—
pc~„=B(1—T/T, )~,

f f( 1 T/T )(d —1)v

(12a)

(12b)

Combining now Eqs. (8) and (12) one finds, instead of Eq.
(11),

hF* d T 5$
oc r

C C coex

The prefactor r (1—T/T, )
" has exactly the form that

appears in the Ginzburg criterion, Eq. (9). Hence it is au-
tomatically ensured that in the mean-field critical region
the nucleation barriers are always large, even if one moves
away from the coexistence curve by making the small pa-
rameter 5$/ttj„„ larger. Although then the 5f depen-
dence of Eq. (11) is no longer correct, the scale for the
function bF~/Tc is given by the factor r (1—T/T, )

right up to the spinodal. Equation (11) is also consistent
with the field-theoretic formulation of nucleation theory
due to Gunther et al. , which in addition yields the lead-
ing (-logarithmic) correction to Eq. (11).

Equation (6), in fact, is more general than Eq. (2) and
can also be applied in the non-mean-field region. This
statement can be understood from the fact that for drop-
lets which are very much larger than the correlation
length g„,„a quasimacroscopic description in terms of
bulk terms and surface corrections always must hold. It is
also understandable from the point of view of a continu-
um theory, if one renormalizes the functional in Eq. (2)

(see also Kaski et al. ) such that f [t}It(x)] then yields the
correct interfacial profile (cf. Refs. 21 and 22 for a discus-
sion of this problem by renormalization-group expansions
in 4—d). On the level of Eq. (6), we just have to replace
Eq. (10) by the non-mean-field critical behavior of these
quantities,

III. CLASSICAL NUCLEATION THEORY
NEAR THE COEXISTENCE CURVE:

THE POLYMER MIXTURE

This problem has already been considered in Ref. 8 for
d =3 but here it is generalized to arbitrary dimension.
Equation (9) now has to be replaced by (see Sec. V below
for a derivation and discussion of this result)

dNd/2 —1( 1 v /v)2 —d/2 (14)

i.e., for d & 2 and N large polymer mixtures have a mean-
field critical region. Similarly, Eq. (10) is replaced by

g„,„ocrp1/N (1 —u,„,/u)

Xco,„~N (1—u,„,/u) ', 1t„,„~(1—v,„,/v)'/',
(15a)

1 Uc~t
fbul)t ~ Tc

U

2

' 3/2
(15b)

1fiut ~fbu)Acoex ~ Tc~p 1—

Using then Eqs. (8) and (15), one finds instead of Eq. (11)

d~d /2 —1
Ucnt

2 —d/2 —(d —1)
5p (16)

Just as for the ordinary mixtures, the crossover between
the mean-field expression, Eq. (16), and the expression
valid in the non-mean-field regime, which is also Eq. (13)
in this case, is again ruled by the Ginzburg criterion. This
is a rather trivial extension of the results of Sec. II, of
course, since Eqs. (1) and (3) imply for Nz Nz ——N——

2F*
C

Sd
' "—'f zId i—

B2(d —1)

(13)

and hence

b,w polymer 1
with r —=r X. (18)

In this equation, the powers of (1—T/T, ) cancel out be-
cause of the hyperscaling relation dv=y+2P. In addi-
tion, due to two-scale factor universality of Stauffer
et al. , the critical amplitude combination

f I " '/B ' " is a universal constant, depending on
dimensionality only, ' for d =2 this constant is known ex-
actly while for d =3 it is known approximately from ex-
periments and numerical calculations. In the mean-field
critical region for d &4, neither hyperscaling nor univer-
sality holds, and thus the prefactor of the term
(5$/1', „) '" " in Eq. (11) depends both on the tempera-
ture distance from criticality, and the interaction range.

Thus the two problems can be simply scaled upon one
another. Since the free energies in the polymer problem
are a factor of N ' smaller than in the corresponding or-
dinary mixture, one obtains a factor N ' both in the
Ginzburg criterion, Eq. (14), and the nucleation barrier.

IV. NUCLEATION THEORY NEAR THE SPINODAL

If 5g/g„, „ is no longer very small, the function
(5P/g„,„) '" " in Eqs. (11) and (16) has to be replaced
by a more general function h (5g/1(t„,„), which can be
found by looking for a marginally stable nonuniform but
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spherically symmetric solution P(p) which leads to an ex-
tremum of Eqs. (2) or (4), respectively (see Cahn and Hil-
liard' and Klein and Unger ). While for general 5it/1tj„,„
this requires numerical work, near ps~ one can show
analytically that

hF
Tc

lassical
nucleation

c ()-0&/&I&„,„)

coex

and hence

3 —d/2

coex
(19a) i"(&--I '

T (a)
ltransition from nucleation

nodal decomposition

rossover

spinodal nucleation

gradua

T~r 1—
C Tc

' 2—d/2 0 .i 3 —d/2
'(t'sp

(19b)
&goer

d~ d/2 —1

P

for the long-range problem, and
3 —d/2

dF~ T 0'sp —V'

Tc Tc
]

Pcoex
(19c)

~F+
Tc

(b)

[ d( 1 T/T )2 —d/2] —2/(6 —d) (20a)

for the case of ordinary mixtures or Ising magnets, and

d~d
/2 1( 1 U /U )

—2 —d/2] 2/(6 d) (2—()b)—

for the polymer problem. Using the equation of state near

it/», cf. Fig. 1(a),
2

P.p—
(21)

coex

it is straightforward to express the width of the transition
regiOn in termS Of 5)(2,~/)Ms„ inStead Of 5(tjs~/it)„„ if
desired. Again it is seen that the smearing of the spinodal
is small in the mean-field critical regime, but it becomes
large, of order unity, when one reaches the crossover re-
gion to the non-mean-field critical regime. In this non-
trivial critical regime, the regime of "spinodal" nu-
cleation, as studied by Klein and. Unger, and the gradual
transition from nucleation to spinodal decomposition are
no longer clearly distinguished. The situation is sketched
in Figs. 3 and 4. In this paper we have focused attention
on the two regimes which are easily accessible to analysis,
the regime near coexistence (where classical nucleation
theory is valid) and the regime of "spinodal nucleation. "
The regime between classical and spinodal nucleation (in
between the two broken curves in Fig. 4) in the mean-field
critical region is characterized by very high nucleation
barriers and a treatment along the lines of Cahn and Hil-
liard' should be valid. In fact, we expect there is a smooth
interpolati. on between classical and spinodal nucleation in

for the polymer problem. From Eqs. (19) one sees that
one can come close to a spinodal line, if the system is
nearly mean-field-like, as predicted, "' and found in
simulations by Heermann et aI.

The ultimate limit of metastability is reached when the
nucleation barrier is no longer small, AF~/T, of order un-

ity. There one then observes a smearing of the transition
between nucleation and spinodal decomposition over a fi-
nite regime, rather than occurring at a well-defined sharp
line. The width 51)'js~ of this transition regime is immedi-

ately estimated from Eq. (19) as follows, for d & 6:

ual transition from nucleation

spinodal decomposif ion

C

I
I

4,p

FIG. 3. Schematic plots of the free-energy barriers for the
mean-field critical region, i.e., r (1—T/T, ) &&1, (a), and
the non-mean-field critical region, i.e., r (1—T/
T, )

" &&1, d &4, (b). Note that due to large prefactors to the
nucleation rate the constant of order unity, where the gradual
transition from nucleation to spinodal decomposition occurs, is
rather 10' than 10 . The analogous plot for the polymer
problem results replacing r (1—T/T, ) by

d/2 —1( 1 T/T )2—d/2

this crossover regiine [Fig. 3(a)]. The hard problems are
the gradual transition between nucleation and spinodal
decomposition, and the interpolation between this regime
and classical nucleation in the non-mean-field critical re-
gion (Fig. 4, shaded area between the left broken line and
the left dash-dotted line). It is this regime for which the
speculation has been advanced [e.g. , in Ref. 24, see also
Ref. 27(a)] that a nonclassical droplet model might be a
valid description (along the lines of the droplet model of
Fisher ). For an initial study of this crossover regime see
Ref. 27(b). In any case in this regime the nucleation bar-
rier is described by a universal "scaling function" with
nontrivial dependence on 5itj/g, ' which remains to
be calculated analytically. In the transition regime be-
tween nucleation and spinodal decomposition the meta-
stable state is decaying so rapidly that a fully kinetic
theory is required and the concept of a nucleation barrier
loses its physical significance.

V. aINZBURQ CR.ITERIW

Why is the Ginzburg criterion' at all relevant for nu-
cleation near a critical point? This question is answered
recalling the derivation of the mean-field approximation
for equilibrium properties near T, from the more general
expression for the free energy:
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I' = —Tin Trexp( M—oLw/T)= —Tln f &/exp —f d"xIf [P(x)]+r [VP( x)] (22)

where the Ginzburg-Landau-Wilson (GLW) Hamiltonian
was taken to be Eq. (2), and the trace operation then
means the functional integral f&P W. hile Eq. (22) in-

cludes still all long-wavelength fluctuations, and hence the
correct non-mean-field critical behavior, the mean-field
approximation can be gotten from Eq. (22) assuming that
the distribution

exp —f d"x If [/(x)]+r [VP(x)] I

is very sharply peaked around its maximum, which occurs
for the minimum of f[P(x)] with spatially homogeneous

P( x ), so that we can replace this distribution by a 5 func-
tion with P =P;„. Below T, this minimum, which really

is a minimum in a high-dimensional configurational space
representing the effect of fluctuations [Fig. 5(a)], corre-
sponds to a nonzero order parameter t/i„,„. A necessary
self-consistency condition is then to require that the mean

square amplitude of fluctuations of the coarse-grained or-
der parameters is smaller than the order-parameter square
itself,

tain a restricted partition function. (2) We consider in ad-
dition a saddle point near the metastable minimum, which
is due to a basically nonuniform state, consisting of a uni-
form metastable background and one "critical droplet. "
Just as the stable and metastable minima, the saddle point
occurs in a high-dimensional configurational space
representing the effect of fluctuations [Fig. 5(b)]. The
Cahn-Hilliard theory of nucleation then is again a sort of
mean-field approximation, assuming that one single
nonuniform spherically symmetric state which extremizes

f d "x
If [(h( x )]+r [V(h( x ) ] I

dominates the functional integral. The nonuniform
order-parameter profile resulting from this approximation
is what has been shown schematically in Fig. 2. It is now
clear that again a necessary self cons-istency condition must
be to require that the mean square -amplitude of fluctua
tions of the coarse grained o-rder parameter along this radi
al profile must be smaller than the square of the order
parameter difference between p=O and p~ oo as described
by the profile itself,

([5$(x)] )z «P, „, "Ginzburg criterion ." (23)
([&q( )]') [y(p ) —y(p=0)]' . (24)

Now the field-theoretic description of the nucleation bar-
rier is quite similar to Eq. (22), with two distinctions: (I)
We restrict the functional integral to states in the vicinity
of the metastable state, and rather than the true partition
function [which would be overwhelmingly dominated by
the states near the stable minimum of f(P)] we thus ob-

For classical nucleation near the coexistence curve this
criterion is practically the same as the standard Ginzburg
criterion, Eq. (23), since there g(p~ oo ) —P(p =0) =2P„,„
[Fig. 2(b)]. But for "spinodal nucleation" near the spino-
dal curve a different criterion will result, since there the
difference g(phoo) —P(p=0) is of the same order as

g,—P,„itself.
We evaluate the left-hand side of the inequalities (23)

and (24) as usual, starting from the concept of an underly-
ing microscopic lattice model with an order parameter
f;, i being the lattice index, which is coarse grained over
cells of volume L centered at x, the lattice spacing is set
equal to unity,

g(x) —=
L"

([~q(x)]2),= 2d g((q, q, ),—(y&', )
S,J

d"x 0 x

(25)

I

crit 5
FIG. 4. Various regions in the temperature-composition

plane near T, . The regime inside the two dashed-dotted lines
around the spinodal curve is the regime where a gradual transi-
tion from nucleation to spinodal composition occurs. The re-
gime between coexistence curve and the left of the two broken
lines is described by classical nucleation theory. In this regime,
a further (smooth) crossover from mean-field-like critical
behavior to non-mean-field behavior occurs. The regime be-
tween the right broken curve and the left dashed-dotted curve is
the regime of "spinodal nucleation": It exists only in the regime
of mean-field critical behavior.

where the integration is extended over a sphere of volume
L". Taking now the Ornstein-Zernike form for the corre-
lation function, as is appropriate for a mean-field theory,

(g(0)g(x))r —(P)z. ~r x ' 'exp( —x/g), (26)

one finds

( [$q( x)]2) ~ r —2L —d d d —1 —(d —2)
0

~I 2 —dr —2 g(2 —d)r —2 (27)
where in the last step the maximum possible choice of a
coarse-graining cell size, namely L =g, was taken. In us-
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(P(0)g(x) )T —(g) cc rex '" ' exp( —x/g),
which correctly yields

jd "x[(g(0)g(x) ) T —(1i')', ] ~ (g/r, )'

=N(1 —U,„,/U)'

(29)

if one uses

go. r~v N (1—U,„,/U)

cf. Eq. (15a). Then the mean-square fluctuation becomes

(30)

and using Eqs. (15a) and (30) in Eqs. (23) and (24), one
finds

rp [rp ~N (1—v,„,/U) ' ] && 1 —T/T, , (31)

(b)

FIG. 5. Free-energy functional b,W schematically displayed
as a function of two phase-space coordinates g, g. (a) shows a
minimum (corresponding to a stable or metastable homogeneous

phase), while (b) exhibits a saddle-point configuration, represent-

ing a metastable phase plus one droplet.

ing Eqs. (25)—(27) also for nucleation, we have considered
essentially the effect of "bulk fluctuations" on the inter-
face profile, which are independent of the coordinate p
along the interfacial profile, of course. In addition to
these bulk fluctuations of the local order parameter, there
are also typical long-wavelength fluctuations associated
with distortions of the local interface position away from
its equilibrium position. These capillary waves, which for
d &3 lead to a complete delocalization of flat inter-
faces, ' represent fluctuations of the droplet shape
around its average (hyper-) spherical shape; although these
fluctuations do have a pronounced effect on the droplet
free energy [they lead to logarithmic corrections to the
classical nucleation barrier, Eq. (11), see Langer and
Gunther et al."] they need not be considered here as their
effect can be explicitly taken into account and does not
alter our conclusions.

In equilibrium, or for nucleation near coexistence, Eqs.
(23), (24), and (27) then yield

r '[r (1—T/T, )
' ']' « 1 —T/T, ,

i.e., Eq. (9). In the case of the polymer problem, Eq. (26)
is replaced by

V «(g —p.,)' .
Recalling that g for /&0 in mean-field theory is (cf., e.g. ,
Ref. 13) in a normalization of P where the critical ampli-
tude of g,~ is 1 as in the Ising model,

—1/2

(32)

(1—P')

g,p
——(1—T/T, )

'

we can rewrite g for g near P,~ as

g~r(1 T/T, )
' (P P—)—

=r(1—T/T )
' (g/g —1)

Then Eq. (32) becomes

1 «rd(1 T/T )2 —d/2
l 4/4 —1

l

' d/2

(33)

(34)

(35)

which is identical to the condition that the nucleation bar-
rier b,F*/T is much larger than unity [cf. Eq. (19b)]. At
this point it is interesting to note that for d ~6 and
t)'j —+g,~ the Ginzburg criterion is always satisfied. This
self-consistency agrees with the result of Gunton and

i.e., Eq. (14). At this point we comment on the fact that
for d =2 the polymer problem even for arbitrarily large N
is no longer meanfield like, reinterpreting the Ginzburg
criterion following de Gennes ': Each polymer chain is
spread out over a volume with linear dimensions of the
polymer gyration radius, Rg o:r&~N. The concentration
due to this particular polymer chain in one such volume
region of size Rs" is hence c =N/Rs =r~ N' "~2. For
d &2 and large X this concentration is very small, and
thus in the same volume there must be monomers of a
large number of other chains, once the overall concentra-
tion is of order rz ", and hence a mean-field approxima-
tion is valid. For d =2, however, each chain can interact
at most with a few other chains, since c is of the same or-
der as the overall concentration, irrespective of X, and
hence for d &2 the mean-field approximation is then in-
valid.

Finally we proceed to apply Eq. (24) in the regime of
spinodal nucleation, noting from Fig. 2(c) and Eqs. (24)
and (27) that
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Yalabik' that the "spinodal fixed point" of their
renormalization-group analysis of a mean-field model was
stable against finite range perturbations for d & 6, but un-
stable below. This point is discussed in more detail in
Ref. 6. Of course, this self-consistency is only a necessary
but not sufficient criterion for establishing the existence of
a sharp spinodal line.

In the polymer problem one has

g~rpU N 1— (1—P')

and thus Eq. (34) is replaced by

f ccrpVX(1 u,„,/—v) './ (g/P, 1)—
and Eq. (32) is

r 'g' «(q y, —)'.
Instead of Eq. (35) one finds

1&«N ' '(1 —v, /u)' /'~g/g, —1~3 "/2

(36)

(37)

which is identical with the condition that the associated
nucleation barrier, b,F*/T, in Eq. (19c), is very large.

VI. Spinodal decomposition

It is natural to expect that the Ginzburg criteria derived
in the previous section carry over to the other side of the
spinodal curve, and rule there the validity of the Cahn-
Hilliard linear theory of spinodal decomposition. In
fact, Eq. (32) still holds as a validity criterion, if we rein-
terpret g' as characteristic wavelength A. =2~/k of the
phase separation process, k being the wave vector where
the growth is maximal. ' Since

1/25'f (4)
T (A/2

= ln[r (y —y„)/g'-'/2] . (40b)

=(m) —(m')+h,
7

5 2

=2 (m2) —(m~)+h(m)
a7

(41a)

Thus the crossover time t„ increases with the range of in-
teraction only very weakly (t«cc lnr, or t„cc lnN, in the
polymer problem ), and thus in all practical cases will
hardly be much different from ~

qm
We hence conclude that for t & t„very weak fluctua-

tions characterized by a wavelength k will grow, but A,

does not change during this time, i.e., the fluctuations
"compactify" [see also Ref. 6(b)], but do not coarsen,
while for t &t„one enters a basically nonlinear regime
where the structure factor is peaked at k (t) with
k (t~ oo )~0, i.e., the inhomogeneous structure coarsens.
Indeed, a behavior rather similar to this has already been
observed by Heermann and Klein, but rather on the nu-
cleation side of the spinodal line of a medium-range Ising
model, where "ramified clusters" first "compactify" and
only afterwards start to grow. These considerations are
consistent with a rather smooth crossover between both
decay mechanisms as one passes the spinodal line in these
models.

Another justification for the application of Ginzburg
criteria to spinodal decomposition is obtained by discuss-
ing the effects of nonlinear terms explicitly, which can be
done approximately by the theory of Langer, Baron, and
Miller (see also Ref. 40). This theory leads to a closed
set of nonlinear equations for the moments (m ) of a
coarse-grained scaled order parameter m and the scaled
structure factor S(q, r), q being a scaled wave vector and
r a scaled time. ' For the case of a nonconserved order
parameter, these equations are (h being a scaled magnet-
ic field)

r 1(1 y /T )1/2(y/y 1)1/2 (38) + 1
& f dq q +'S(q, r)

q max

(41b)

a comparison of Eqs. (38) and (34) reveals that g, A.

diverge in a completely analogous fashion as the spinodal
curve is approached from either side. Hence, one immedi-
ately recovers Eq. (35) [or Eq. (37) for the polymer prob-
lern] as a condition, that there exists a regime of times
t & t„, that the linear theory is valid. This means that the
fluctuations present in the initial state at To (or uo, respec-
tively) from which one quenches to the state at T (or v, in
the polymer problem) ([5$(x)] )T, are amplified by an

exponential factor

B(m')
a~

~ ~ 4 )
BS(q, r) = —2{[q +A(m)]S(q, r) —1I,a7.

(41c)

and the sum rule relating fluctuations and correlations
similar as used in deriving the Ginzburg criterion (written
for the equilibrium case)

(m2) —(m )2=
d f dq q~ 'S,q(q) . (42)

0 q max

([5$(k,t)] ) T ——([5$(k)] ) T e ", t & t„ (39) The function 3 (m) in Eq. (41c) is defined as

t /~~
r —2g2 —d m (y y )2 (40a)

r.e.,

where ~ is the growth rate of fluctuations described by ak

wave factor k. The crossover time t„at which the non-
linear effects become important is found as

A(m)= bm
1 By

((gm)2) Bm

(I') —(m ) (m')
(m2) —(m)2

where a (scaled) free-energy density p( m ) = —m /2
+m /4 —hm was assumed. The cutoff wave vector q
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is of order unity (if q,„=a one has performed a coarse
graining over a box of lengths g/a, and fo is the only
nontrivial system-dependent parameter remaining in the
scaled form of the theory). ' If fo~ao, the higher-
order parameters reduce to the lower-order ones
[(m ) = (m ), cf. Eq. (42)], and then Eq. (41a) decouples
from the rest of the hierarchy to become an equation
t)(m)/t)r=(m &

—&m)3+h which is exactly soluble. ''
In this limit one just recovers mean-field theory. This fact
is also true for the conserved case.

Now the parameter fo can be expressed as39

fo ——const&&a (1—T/T, ) +' ~+r'g fB /C, (44)

where the constant is approximately 3' while in a fully
self-consistent theory it can only be obtained numerical-

ly and is somewhat n dependent, but is always of order
unity as well. Since the coarse-graining size should not
exceed g, a should be unity (or larger), i.e., the maximum

fo is obtained for a= 1 as chosen by Langer et al. Us-

ing then the exponents for the non-mean-field critical re-

gion, due to the hyperscaling relation fo is temperature in-

dependent, and moreover the critical-amplitude combina-
tion goIl /C is a universal constant. This universality
of fo, which is of order unity in the critical region, corre-
sponds to the universality of the prefactor of the nu-

cleation barrier in this region, Eq. (13). Since fo is not so
large, nonlinear effects are predicted to be important im-

mediately after the quench, consistent with computer
simulations and experiments. ' Thus, in the non-mean-
field regime neither "spinodal nucleation" nor "linear"
spinodal decomposition occur. But the situation is again
different with the mean-field exponents v = —,', P= —,',
y = 1 [Eq. (10)],noting go a: r in this regime, and hence

~ rd(1 T/T )d/2 —2 rd(1 T/T )d/2 —2)) 1

It would be very interesting to study the crossover from
initially linear spinodal decomposition in the mean-field
regime to the fully nonlinear behavior in the non-mean-
field critical regime approximately by numerically solving
the Langer-Baron-Miller equations for a variety of values
for fp.

VII. CONCLUSIONS

In this paper, the validity of the mean-field theory of
nucleation as formulated first by Cahn and Hilliard was
investigated for systems with long but finite range of the
forces and related problems (such as polymer mixtures).
The width of the transition regime between nucleation and
spinodal decomposition is estimated and interpreted in
terms of a generalized Ginzburg criterion. Various cross-
overs between different types of nucleation are obtained,
at least qualitatively (Figs. 3 and 4). The same arguments
are found useful on the other side of the spinodal curve,
too, where one can estimate the regime of times and tem-
peratures where initially the linear theory of spinodal
decomposition should hold.

Although our results are largely qualitative in charac-
ter, they allow the interpretation of various observations
found for such models in computer experiments. It is
hoped that this paper will also stimulate experimental
research to study nucleation and spinodal decomposition
in systems whose critical behavior is mean-field-like or
nearly so. It should also be a convenient starting point for
more explicit and powerful analytical theories of the ki-
netics of first-order phase transitions in cases where fo
can be treated as a small parameter.
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