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Microscopic theory of photoacoustic pulse generation. II. Solids
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The nonlinear-response theory of acoustic pulse generation by linear spectroscopy developed in an
earlier paper [Phys. Rev. A 29, 1453 (19841] is extended to the case of solids. Viscoelastic equations
for the dynamics of the fluctuations are obtained by explicitly including the stress tensor into the
macroscopic description of the system, as well as correlation-function forms for the coupling con-
stants linking the incident optical pulse to the local stress relaxation. Since transverse waves

propagate in solids, absorption-driven transverse shear waves are obtained and their properties are
discussed.

I. INTRODUCTION

In the preceding paper in this series' (hereafter referred
to as I), the generation of the photoacoustic pressure pulse
in liquids was considered from a microscopic point of
view. Specifically, response theory to quadratic order in
an external electric field of the form

i(u;„ t —k ~ r )

E,„,(r, t)—:e(r, t)e '"' +c.c. ,

was used (c.c. denotes the complex conjugate of the
preceding terms). The field amplitude was allowed to be
space and time dependent in order to account for any
modulation of the incident beam.

In addition to the usual expression for the sound gen-
erated by the adiabatic expansion of the fiuid upon ab-
sorption of the light z several new terms were obtained. In
general the new terms have a different pulse time depen-
dence. Significantly, one of them has a dependence on the
polarization of the incident light which is totally absent in
the phenomenological theory. They arise from any
coherent aspect of the force being exerted on the fluid
molecules in the absorption process. In other words, if
upon absorption of light, the molecule polarizes or has
some other geometry change in a specific direction (relat-
ed to the incident optical polarization), then the resulting
sound field should reflect this direction to some extent. A
mechanism based solely on heating will not have any po-
larization dependence in an isotropic medium to quadratic
order in the applied field.

In this paper the analysis of I will be extended to the
case of solids. In solids there are two kinds of sound, i.e.,

II. SUMMARY OF PREVIOUS RESULTS

In I and here, the system is taken to be governed by the
Hamiltonian

Kr H p( r, t)e E,„,(——r, t)—
H+Hi(t), — (2.1)

where p(r, t) is the dipole moment density and H is the
Hamiltonian in the absence of the external electric field

E,„,. The symbol e is used to denote a dot product and
an integration over r. The evolution of the system is
governed by the quantum Liouville equation, which can
be solved perturbatively in E,„„and the result used to
compute the average of any observable, e.g., B. To quad-
ratic order, this procedure yields

transverse and longitudinal, with two different sound
speeds. Only the latter is present in fluids, the transverse
modes are diffusive As. will be shown, the possibility of
transverse sound leads to a new type of photoacoustic sig-
nal which is qualitatively different from that predicted by
the phenomenological theory or by the microscopic theory
presented in I.

In Sec. II the method used in I is outlined and the
necessary results are summarized. In Sec. III the method
is extended to solids. In Sec. IV the elastic response of a
solid is discussed as it pertains to the photoacoustic pulse
generation. Section V contains an analysis of the pho-
toacoustic pulse and the last section summarizes and
discusses the results.

(8(t)}„,=(a}—f dt, . +E(r t, )
([8(t t, ),p (r)]}—

(2.2)
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where the notation ( )„, and ( ) are used to denote a
nonequilibrium and equilibrium average, respectively. In
addition, it was assumed that the system was in equilibri-
um in the infinite past. Subsequently, use was made of
the existence of three very different time scales: the
fastest was the period of the incident light, next was the
time scale characterizing the "fast" processes in the fluid
(i.e., the collision or dipole moment relaxation times), and
finally there were the time scales which characterize the
"slow" (e.g. , hydrodynamic) motions of the fluid as well

as the modulation of the incident light (it is assumed that
the optical modulation is slower than the dipole moment
relaxation time). The large difference between the first
two and the third allows the nonlocality in time and space
in e(r, t) to be dropped. The fact that the measurements
arc being carried out us1ng a slow response-t1mc dctcctoI'
(e.g., a piezoelectric crystal) allows the term linear in the
external electric field to be dropped; it will oscillate at the
frequency of the incident light. Thus Eq. (2.2) was rewrit-
ten as

)&:[e '"' e*(r ', t, )e(r ', t, )+c.c.], (2.3)

where 58=8 —(8 ) .
The separation of time scales between the fast and slow

motions of the system was exploited by using the follow-
1ng ldcntlty:

(2.4)

where G(k, t) is the propagator which describes the mac-

roscopic evolution of A(k, t) and A D(k, t) is referred to

as the dissipative or microscopic part of the rate of charge
of A. In I only densities of conserved variables were con-
sidered and dissipative currents appeared instead of 3 ~.
Equation (2.4) can be viewed as a definition of the dissipa-
tive variables. Alternately they can be defined in terms of
time correlation functions using projection-operator tech-
niques. Physically, they represent the parts of the exact
microscopic equations of motion governing A ( k, t) not
described by the macroscopic equations. Thus, providing
the correct macroscopic equations are known, the dissipa-
tive variables should evolve on fast time scales and corre-
lations involving them should decay quickly in time.
Specifically, using Eq. (2.4) in Eq. Q.2) for 8 =A gave

a(k, t) = f dtiG(k, t ti )[0J(k;co;„,)+Q—J'(k; —a);„,)]SJ'(k,ti), (2.5)

where repeated indices are henceforth summed, and

Q.6)

O'J(k;to;„, ) =Qg(k;co;„,)+Qg(k;co;„,) .

The reversible and dissipative parts of Q are defined by

Qg(k co )—: f dt'e '"' ([[A(k) p'( ——'k)] p ( ——'k —t')]}
c(iA') V

(2.8)

Qg(k;a);„,)= f dt f dt'e '"' ([[AD(k, t),p'( ——,
' k)],pj( ——,

' k, —t')]),
c(iA') V

respectively ( V is the system's volume and c is the speed

of light). Note that the trace of S( r, t) is the incident opti-
cal intensity. The remainder of I was concerned with the
analysis of the specific forms of the propagators and
correlation functions for fluids.

III. SOLIDS

It must be stressed that the manipulations which lead to
Eq. (2.5) are not specific to fluids. Equation (2.5) will be
valid as long as the various separation of time-scale as-
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sumptions hold. Clearly the assumption which is not al-
ways under control is the separation between the system's
fast and slow motions. In fluids the slow variables are
densities of conserved quantities. In particular, this
means that their characteristic time is inversely propor-
tional to the wave vector of the mode (which can be taken
to be as small as desired). On the other hand, in solids
there are slow nonconserved modes.

The solid is characterized by extremely slow stress re-
laxation rates. This is responsible for the observed elastic
behavior of solids. However, it is obvious that any
mechanical quantity whose evolution depends on large-
scale translational motion of the molecules comprising the
solid is apt to evolve on a slow time scale. In contrast,
quantities which depend on the velocities of the molecules
or on functions of their positions which change on micro-
scopic distances (e.g. , the interatomic forces) should in
general evolve on faster time scales. This is not to say
that such quantities exhibit only fast motions; there will
always be some slow component. Here it is assumed that
all slow motions can be expressed as a linear combination
of the slow variables whose averages specify the macro-
scopic viscoelastic state of the system [at least for the pur-
poses of calculating the averages in Eq. (2.5)].

In the usual treatments of the elastic behavior of solids,
the elastic state of the system is assumed to be determined
in terms of the strain field. Unfortunately, unless an
equilibrium lattice is assumed, strain is not easily defined
microscopically. On the other hand, in the linear regime
stress and strain are proportional (Hooke's law) and the
well-defined stress tensor can be used in place of the
strain. As will be shown below, the addition of the stress
to the set of variables, A(r, t), results in a correct macro-
scopic description of the elastic response of the solid.

The stress tensor is well-defined microscopically and
does not require the introduction of an equilibrium lattice,
harmonic forces, etc. In Fourier representation, the stress
tensor is defined as

where II(r, t) is the nonhydrostatic part of the stress [cf.
Eq. (3.3) below]. Note that, unlike theories of harmonic
solids, the density is an independent variable, due to the
existence of (extremely slow) defect diffusion processes.

In order to use Eqs. (2.5)—(2.9) the microscopic equa-
tions of motion for the elastic variables must be given.
For the conserved variables these are

N(r, t)= —V P(r, t), (3.2a)

P(r, t)= —V' r(r, t), (3.2b)

and

H(r, t) = —V JH(.r, t), (3.2c)

where Jzz(r, t) is the energy current, defined in the usual
way. The stress tensor is nonconserved and has a micro-
scopic form for its time derivative which is complicated
and not particularly illuminating.

The inclusion of the stress tensor into the set of macro-
scopic variables has been performed in many situations
and a variety of techniques have been used to derive the
macroscopic equations of motion. It is convenient to
decompose the stress into the hydrostatic part ph and the
viscoelastic part II (i e , i=pk+. .II.). The hydrostatic pres-
sure is defined by its Fourier transform,

(3.3)

where the tilde on A is used to denote the subset of A cor-
responding to the conserved densities. Note that for small
wave vectors

N(r, t), H(r, t), and P(r, t), respectively. They have their
usual definitions. The set of slow variables will be denot-
ed collectively by

A(r, t) = [N—(r, t),H(r, t),P(r, t), II(r, t)],

pa -I
a '

ah
N(k, t)+ H(k, r) +O(k')

—ik r"
JJ

(3.1)

where mi, pi, and Fii are the mass of the jth particle,
momentum, and force j' exerts on j, respectively. The
Fourier transform is defined by

f„—:I dr f(r)e'
Note the appearance of the terms explicitly depending on
A' in the kinetic part of the stress. In addition, note that
some care must be taken when considering the Hermitian
conjugate of the Fourier transform of an operator. The
Fourier-transform variable ik should not be included
when the Hermitian conjugate is taken. This is equivalent
to letting k-+ —k after Hermitian conjugation.

The other slow variables are the mass density, energy
density, and momentum density, hereafter denoted as

kryo

m ~r, t~= —~ij1~ i ijkl klI~ & ~IJki
X

(3.4a)

and

h(r, t)= —V' [ph, v(r, t) X.V T(r, t)], —(3.4b)

and the coefficients in Eq. (3.3) can be expressed as partial
derivatives of the hydrostatic pressure with respect to den-

sity and energy density. This definition has the conse-
quence that the viscoelastic part of the stress is orthogonal
to the slow variables in the sense that (II-A - )=0.

k —k

The equations of motion for the mass and momentum
densities follow trivially upon averaging Eqs. (3.2a) and
(3.2b). Those for the viscoelastic part of the stress and the
energy density need a constitutive law to relate the energy
current and stress rate of change to the slow variables.
This can be obtained from projection-operator techniques
or by using response theory. For example, in Ref. 6(c),
the following equations of motion (isotropy or cubic sym-
metry was assumed) were obtained:
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where repeated indices are summed. The fields v(r, t)
and T(r, t) are the velocity and temperature, respectively,
and are defined in terms of the densities of the conserved
variables in the same way as in an equilibrium system.
The parameters h„l,, co, and C are the specific enthalpy,
thermal conductivity, stress relaxation rates, and elastic
constants, I'cspcct1vcly. They have their usual microscop-
ic definitions, e.g.,

(3.58)

defining equation for the Green's function to be written as

(ico —M„) G(k, co)=1 . (4.1)

r(k, t)=7. n(k, t)+ h(k, t)

+ —,
' TrV(k, t) +Fr "(k,t)+Ir"(k, t)

The calculation of the Green's function is simplified by
decomposing the stress into its longitudinal and transverse
parts, 1.c.,

+V-"(k, t)+Vs "(k,t), (4.2)

etc., where the subscript T is used to denote the total or
k=0 value of the subscripted quantity. Note that com-
ponents of the various tensors are not all independent;
time-reversal symmetry and the rotational symmetry of
the solid relates them. For example, in isotropic systems
of 1n systems w1th cubic symmetry

C Cl (5'k5JI +5i!5Jk 5'J5kl )+C25'J5kl (3 68)

co' '=col(5;k5JI+5I5Jk ,'5—J5kt)—+co25;,5ki, (3.6b)

where

V."(k,t) =k k .[Ir(k, t) —
3 TrV(k, t)] k k,

V. "(k,t)—= (7L —k k) [Ir(k, t)

—
3 1TrVr(k, t)] (jL —k k),

rr '(k t)=k k [V(k t) —jLTrr—r(k t)].(jL —k k)

(4.3a)

(4.31)

A.'J =X5;J,

where 5;J is a Kronecker delta. In writing Eqs. (3Aa) and
(3Ab), terms containing more than first gradients have
been omitted and these should be unimportant for acous-
tic pllciloIIlcIla. Equatloils (3AR) Rnd (3.41}Ric soIIlctlIIlcs
referred to as the Maxwell relaxation equations for a
viscoelastic medium.

The most important consequence of adding the stress
tensor to the set of slow variables is the appearance of two
propagating transverse modes, in addition to the usual
longitudinal ones. Fortunately, the dynamics of the longi-
tudinal and transverse modes decouple, thereby greatly
simplifying the calculation.

—= [9"(k,t)]r . (4.3c)

The symbol is used to denote 8 unit vector. These defi-
nitions, when used in Eqs. (3.4a) and (3.41) together with
(3.6a) and (3.61), show that the calculation of the Green's
function [or matrix, cf. Eq. (4.1)] can be spht into a num-
ber of blocks. These are the fully transverse block (tt),
which contains V "(k,t); the transverse blocks (lt or tl),
which are made up of p'(k, t) and V '(k, t) [p'(k, t) is the
transverse momentum]; and finally, the longitudinal block
(ll), which comprises n(k, t), h(k, t), p'(k, t), TrV(k, t),
Rild TrV ( k, t) [p ( k, t) ls 'tllc lollgltlldillal IIlonlciltcnl].

The simplest block is the fully transverse one. From
Eqs. (3.4a) and (3.6a) and (3.6b) it follows that

V "(k,t) = 2co,V "(k,t—) ,
' (I kk)—c,'—ikp'(—k, t), (4A)

As was mentioned above, the calculation of the Green's
function is greatly simplified due to the fact that the lon-
gitudinal and transverse modes decouple. For what fol-
lows, an isotropic solid or cubic crystal is considered.
This simplifies the calculation without loosing any of the
physical content. In particular, the forms of the coeffi-
cients as given by Eqs. (3.6a)—(3.6c) will be used in all of
the subsequent manipulations.

The macroscopic dynamics of the solid is determined
by Eqs. (3.2a) and (3.21) and (3.4a) and (3.4b). In matrix
notation these can be written as

Ba(r, t)
Bt

=M a(r, t), .

where the transverse sound speed is defined by c, :—Ci/p.
The general solution to Eq. (4.4) has two terms. The first
is exp( —colt)V. "(k,t =0). This represents a very slow
mode of the system (recall that co;~0 in solids ) and is
completely unimportant for acoustics. The second term
only involves the longitudinal momentum, which does not
depend on the tt components of V. Thus Fourier
transforming in time and setting col to zero shows (for the
acoustic modes) that

G „„(k,co)- ——,'c, (7.—k k)kG I „(k,co)/a) . (4.5)

The next simplest contribution comes from the lt block.
From Eqs. (3.21), (3Aa), and (3.6}it follows that

where M is the differential operator corresponding to the
cquatloIls of IIlotloIl. Fouricr transforming thc Illacl'o-
scopic equations of motion in time and space allows the and

'p(k, t)=ik Vr "(k,t) (4.6a)
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m '(k, t)= —2cgIV.'(k, t)+c, ik p '(k, t) .

The associated Green's function is easily shown to be

(i co+2a) I )(1 k—k ) i k

(4.6b) As will become clear below, only the stress-stress element
of the lt Green's function is needed. By inverting all
Follrlcl' transforms, dl'opplIlg col Rlld golllg to 'tllc Rcollstlc
far field, this element can be written as

6"(k,c0)=
ik(l —k k)c, icok(7L k—k )k 6 I, I( r, t)- — 5'(r c,t—)+O(r ),r ( jl. —r r )r —2

4mr
(4.8)

(4.7)

wllcl'c 5(x) ls tllc 5 fllilctioll.
Finally, thc longitudinal variables must be considered.

Thcsc RI'c cleflllccl Rs

A (k, t) =—[X(k,t),H(k, t),k P(k, t),TrV(k, t),k k:[Ir(k, t) ——,TrV(k, t)]] .

There are five longitudinal modes. Two of them propagate and the rest are diffusive. The latter contain the heat mode,
as well as two which describe longitudinal stress relaxation [i.e., as related to the parameters co;, i=1,2 in Eq. (3.4a)]. On
the time scale of relevance to photoacoustic detection, these nonpropagating modes can be ignored.

Using Eq. (3.4a) it follows that the longitudinal modes satisfy

where

0 ikh,

0
0

PIt

alt

0

0

aph

ah

0

0

3ikC2/p —3c01

ik —,Ci/p 0

(4.10)

where the thermal conductivity has been neglected, as was
d1scusscd above.

For the problem at hand, the full longitudinal propaga-
tor is not needed. The various detectors respond to forces
exerted on their surfaces. These are equal to the normal
components of the stress tensor at the detector. By using
Eqs. (4.2), (4.4), and (4.10), the propagating part of the
stress can be reexprcssed as

V(k, co)= lc0-„[pt(k„c0)—p'(k, t =0)]

[(ice M I, ) ']—, „,
aPh aPs RI 1

an ah k 3
'

(c02—k2ct )

where the longitudinal sound speed is defined by

(4.12)

+V '(k, c0)+V'(k, co) aps
h

aA
a. +" ah+

( —,Ci+C2)
(4.13)

2c, kp (k„~)1

(kk —1) . (4.1 1)

Aside from the lt components, only the longitudinal
momentum appears. Moreover, from Eqs. (4.9) and
(4.10),

Thc stress propagator can now' bc obtained simply by
substituting Eq. (4.12} for p (k,c0) in Eq. (4.11). More-
over, only the couplings to the energy and m are needed.
For these, inverting the Fourier transforms in the far field
glvcs

aps 5'(r —clt) '

c,6,~(r, t)-— I+2 (r r I)—
ah 4nr. c I

(4.14a)

(4.14b)
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V. THE PHOTOACOUSTIC PULSES

The coupling of the mechanical and optical processes is
contained in the Q ii D coefficients defined in Sec. II. As
was the case in I, the reversible coefficients can all be cal-
culated explicitly. In fact the number, energy, and
momentum components are exactly equal to those dis-
cussed in I, i.e.,

Q8, N (5.1)

Q'j -(k;co;nc)+Qj' (k; co;„c)—=ike(co; )n5cij+0(k ),
(5.2)

and

Qg It(k;co;„,)+Q'j'i H(k; co;„,) =a—(co;„,)5;, +0(k ),
(5.3)

where

47TCO IrIg
a(co;„,)= . dtsin(co;„, t)([jJT,jJT(t)])

i Pic V

dt sin(co;„,t) ( p Tp T(t) ),
i V

(5.4a)

is the absorption coefficient and

e(Nine) = dt COS(tinct) ( [PT( t)l j T] )
ificV

(5.4b)

where e;, i =1,2,3, are the usual Cartesian unit vectors. In
obtaining this last result, Eq. (4.8) was used.

Thus once the forms for the various optical stress cou-
pling constants are known, it is a simple matter to use Eq.
(4.13) in (2.5) to compute the observed stress response.

is the derivative of a(co;„,)/co;„,. As was the case in I, e
will be extremely small and will make a negligible contri-
bution; henceforth it is omitted. This is the reason why
couplings to the momentum were not needed in Sec. IV.

The coupling to the stress tensor is new. Using Eqs.
(2.8) and (3.1) gives

(ik r )/2 ~~
[V.-,p ]/i%= , i g—e ' (k p +p k

J

(5.5)

The last term on the right-hand side of the equation is
nonclassical. As long as long-wavelength sound is con-
sidered, the stress component of Q ji is at least 0(k ),
since the average resulting from using Eq. (5.5) in (2.8)

can be written as k times the average of a third-rank ten-

sor function of k (in systems with inversion symmetry,
this must be at least proportional to one power of k). As
was the case in I, terms of this order are neglected, result-
ing in no new contribution at the reversible level.

The form of Qg(k, co) coefficients is easily obtained.
Unlike the case in I, the dissipative part of the momentum
current vanishes, since the exact stress tensor has been in-
cluded in the set of variables. (For a similar reason, the
dissipative mass current vanishes. ) Moreover, while the
dissipative energy current is nonzero, the resulting cou-

pling coefficient can be written as k times a third-rank
tensor. In systems with inversion symmetry, averages of
third-rank tensor functions of k must be proportional to
at least one power of k, thereby making the energy contri-
bution 0(k ). Note that this sort of argument implicitly
assumes that the correlations are nonsingular as k~0.

Hence only the coupling to the dissipative stress needs
to be considered. From Eq. (2.9) this becomes

Q' „„(k;co;„,)+ Q j'„„(k;—co;„,)= f dt f dt'cos(co;„,t')([[II " (t),iM' ],p ( —t')])+0(k )
D iiinn l lllc D ninn l lllc

( ~)i V p p
(5.6a}

=kl( coinc)( ~im 8jn + ~in ~j m Y~ij ~mn ) +42( coinc }5ij (imn (5.6b}

where the last equality holds for systems with cubic or isotropic rotational symmetry and with a symmetric microscopic
stress tensor. Note that, should the system not possess inversion symmetry, then the correction to Eq. (5.6a) can be
0 (k), although in this event many other new couplings must be considered.

It is now straightforward to combine Eqs. (2.5) (in the coordinate representation), (4.14a), (4.14b), (5.3), and (5.6b) to
obtain the far-field stress response. The result is

I+2 (~ ~ —jl }
C~ C)

X
~PI

a(co;„c)+$2(co;„,) I+2/i(co;„, )(~~——,
' I) .

2/i(co;„, )5(
~

r —r '
~

c,(t —t'))—
X (~I~+e;~ e;~+ e;~ ~e;+~ e;~ e; —4~ ~ ~ ~) S( r ', t'), (5.7)
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where ~ denotes the unit vector r —r ' and the derivative on the 5 function was transferred to S by integrating by parts

in time (S is the time derivative of S). If the measurements are carried out at distances large compared with a/I dimen-
sions of the incident beam (e.g., a point source), then Eq. (5.7) can be simplified further by dropping r with respect to r
and using the 5 function to CHminate the time integration. Equation (5.7) thus becomes

(V(r, t) &„,=
4mc ~I"

c,1+2 — (r r I )—
CI

a(pi;„,)+gI(co;„,) I

+2/1(co;„,)(r"r"——,'I) ': f dr'S(r', t —
~
r —r'~/ct)

2/i(a);„, )ct
(5.8)

Note that thele are now two different retaldation times due to the fact tllat thc 'tI'Rllsvclsc RIld longltudilial souIld spccds
aredifferent. From Eq. (4.13), it follows that ct & 3&~.

Unfortunately, most cxpcriments Rre carried out using extended sources. In order to scc the experimenta ramifica-
tions more clearly assume that the incident hght beam ls a uniform cylinder of radius R with Gaussian temporal profile
and linear polarization, i.e.,

Ip(t)
S( )=

0, otherwise
(5.9a)

Ip(t)—: (5.9b)

n is the polarization direction of the incident light (it of course must lie in the x-y plane), the subscript l denotes the
projection onto the x-y plane, Ep(t) is the energy in the incident pulse, and r~ is the pulse time. As long as the measure-
ments are carried out far from the beam soon after the pulse arrives [specifically, ri ~~A, ~~ct, and ri /ci, t-O(~~)], —
Eq. (5.9R) can be used in (5.8) to rewrite the latter as

. 2

('r(&~t))ne= I+2 — (rgt'I —I)
2&et(ctt +I'I ) CI

Ir(, )+$1(pI;„) +2/'I(co;„, )[(ri.n ) ——,
'

] iI'I(ri, t)

(5.10)

dr Ip(t')
F(,(r, t)=—, ' dt'

[ct,I(t I')
I
r—i —I—i I

]'" (5.11)

—D Sgp( —2' x)], (5.12)

Tllls illtcgrR1 lias tllc sRI1M for111 Rs tllosc collsldci'cd for
fiuids. It can be simplified in two limits. The first is the
thin beam limit, i.e., E. &~~&cI,. As was shown in I, in
the thin beam limit [cf Eq. (4.11a) a.nd Fig. 1 in I]

E 21/4 —x2/2

[2'"xD „,( —2'"x)I )Ij2

where x =(t —ri /ct, )/v~ and D, is the parabolic
cylinder function. This function will result in a compres-
sion pulse followed by a rarefaction pulse at the detector.

In the thick-beam limit, the observed pulse shape is
determined by the acoustic propagation times across the
beam (i.e., R/c, I) and not by the optical pulse time. It is
not too difficult to approximately evaluate the integrals
appearing in Eq. (5.11). For the purpose of this discus-
sion, suffice it to note that E~, ccEpct, /R / and is in-
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dependent of wz. Further discussion of Eq. (5.10) is de-
ferred to the next section.

VI. DISCUSSION

and

h(r, t) = —V [ph, v(r, t)+ A. V T(r, t)]

+a(co;„,)S"(r, t) . (6.2b)

c)a(k, t) =M k a(k, t)+[Q'J(k;ro;„, )

+Q(k; —co;„,)]SJ'(k, t) . (6.1)

Using the explicit forms of the equations for motion [cf.
Eqs. (3.4a) and (3.4b)] and for the Q coefficients [cf. Eqs.
(5.3) and (5.6a) and (5.6b)] in Eq. (6.1) gives

In this paper, the methods of I were used to examine
photoacoustic pulse generation in solids. While the gen-
eral expressions should be valid for solids of arbitrary
symmetry, the discussion here has been restricted to iso-
tropic or cubic systems. This greatly simplifies the alge-
braic manipulations without losing any important physi-
cal consequences.

As was the case in fluids, terins other than those gen-
erated by the adiabatic expansion of the solid were ob-
tained, although as in I, only two new coefficients were
obtained in isotropic systems. From Eqs. (5.10)—(5.12) it
is easy to imagine a number of experimental configura-
tions which can measure gi(co;„,) since use can be made of
the propagating nature of the transverse modes. They will
arrive at the detector after the longitudinal ones and will
exert forces perpendicular to the propagation direction.
In contrast to what was obtained in I, the temporal profile
of the pulses will all be the same. This will complicate
any measurement of g2(co;„,).

Unlike the case in fluids, there are some experiments on
photoacoustic pulse generation in solids, although ab-
sorption measurements have not been carried out. These
measurements have been analyzed in terms of the
phenomenological theory of Ref. 10 and in terms of an
adiabatic expansion model similar to that used in Ref. 2.
The expressions obtained here can be used to write micro-
scopic expressions for the parameters used in the
phenomenological approaches. From Eq. (2.5) it follows
that the macroscopic fields satisfy

These equations are correct to first order in gradients. If
the stress relaxation coefficients are set to zero and the re-
sult used in Eq. (3.2b), then macroscopic equations
equivalent to those discussed in Refs. 9 and 10 are ob-
tained, along with microscopic forms for the P parame-
ters (sometimes referred to as Pockel's elasto-optic coeffi-
cients). It must be stressed, however, that the nature of
the phenomena for absorption measurements is potentially
quite different.

Keeping the co; coefficients results in equations which
are applicable to viscoelastic continua and in the limit of
large co;, these will yield expressions equivalent to those
obtained in I. For intermediate values of the stress relaxa-
tion constants, the resulting expressions can be applied to
viscoelastic media (e.g. , supercooled liquids) where absorp-
tion spectroscopy should yield information concerning the
local stress relaxation and dynamics.

The usual elasto-optical effect usually refers to the cou-
pling between the collective dielectric and elastic
responses of a solid. On the other hand, in absorption
spectroscopy a single particle is involved and thus any ob-
served sound (especially the transverse modes) is a mea-
sure of the interaction between the absorber and its local
environment. It is clear that this is not restricted to single
component crystals. Any probe molecule could be used.

In summary, as was the case in I, the pressure pulse can
be generated by nonthermal means, resulting in a response
which depends on the polarization of the incident light.
Unfortunately, an estimate for the magnitude of the coef-
ficients in these new terms for absorption spectroscopy is
not yet available, although work which should remedy
this is in progress. Nonetheless, the sound associated with
the new terms lends itself to a variety of sensitive detec-
tion schemes and should be observable.
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