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We suggest a new geometrical interpretation of the renormalization-group transformation near
the critical point. Using the Weinhold-Ruppeiner metricization, conformal Killing symmetry is as-

sumed and scaling laws are verified.

I. INTRODUCTION

This paper is concerned with an intrinsic geometrical
interpretation of the scaling properties of a thermodynam-
ic system in the vicinity of a critical point. The metrici-
zation of the thermodynamic-state space was carried out
in the past; perhaps the subject was treated most exhaus-
tively by Weinhold' and Ruppeiner.?

In Sec. II we define the Riemannian metric on the space
of thermodynamic states and Sec. III discusses a new sta-
tistical interpretation of path lengths, while in Sec. IV we
introduce the notion of symmetry in our Riemannian
space. In particular, in Sec. V we show that the scaling
properties usually brought out by renormalization-group
procedures are a simple geometrical symmetry and can be
derived from the existence of a conformal Killing equa-
tion for our metric tensor. While our considerations do
not contribute in a substantive way to extending the re-
sults of renormalization-group methods, they do provide a
new insight into their geometrical meaning.

II. METRIC ON THE SPACE OF

THERMODYNAMIC STATES
Consider a homogeneous thermodynamic system
depending on r+1 extensive state coordinates

(XL,x2%... ,X"“}. We shall fix the scale of our sys-
tem by keeping X" *! fixed. If the homogeneous system
characterized by the extensive coordinates
{X Lx2...,x" } is not closed but is in contact with a
reservoir, then the quantities X* (i =1,2, ..., r) will fluc-
tuate around their equilibrium values.

We can introduce a Riemannian metric tensor gy
(i,k=1,2,...,r) on the manifold of thermodynamic
states of our system. Following Ruppeiner’s definition?

g x)=(Ax'Ax*) (i,k=1,2...,r), 2.1)

i.e., the contravariant metric tensor is chosen to be equal
to the correlation matrix of the fluctuation Ax’ of the
coordinates x‘ (i=1,2,...,r) defining the thermo-
dynamic state of the system. Because of the transforma-
tion properties of a metric tensor, definition (2.1) is valid
for arbitrarily chosen coordination of the state space. The
x'! can be in particular the extensive coordinates X".

Let the entropy S be given as a function of the X’s.
Since X" *! was fixed, we exclude it from the set of argu-
ments of the function S; hence S will not be a first-order
homogeneous function of its arguments. At the points
where the system is stable, the matrix constructed from
the second partial derivatives of S with respect to the X”s

(i=1,2,...,r) is a negative definite® and gives the corre-
lations of the statistically fluctuating X”s as follows:*
-1
i 3’5 (X)
i ky__ -
(AX'AX") = axax |, (2.2)

From Egs. (2.1) and (2.2) we get the covariant metric ten-
sor gj in extensive coordinates (g is the inverse of the
contravariant matrix g‘*):

_ 325 (X)
ax‘ax* -
We can construct a distance® ds between two infini-

tesimally close points of the thermodynamic configura-

tional space, whose coordinates are X and X +dX, respec-
tively:

gi(X)= (2.3)

4 ; LS (X)) .
ds)’= w(X)dX dX*k=— == dx‘dx* .
(ds) i,k2=1gk i,k2=16X'8Xk

2.4)

This distance ds in the configurational space can be ex-
pressed not only by means of the extensive parameters.
Introducing the entropic intensive parameters as®

Y"=—a§(—).(), i=12...,r 2.5)
). ¢
(ds)? can be written in the following symmetric form:
r . .
(ds)=—3, dx'dY’. (2.6)
i=1
Let us use coordinates Y! (i=1,2,...,r) in the

thermodynamic-state space and define the thermodynamic
potential ¢, which is the Legendre transform of S and is
expressed through the Y”s as

$=4(1)=5—3 X'V,

i=1

2.7
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The first derivatives of ¢ give the extensive parameters X:
9 “.’)=—X", i=12...,r. (2.8)
Y’
Using Egs. (2.6) and (2.8) one obtains (ds)* as a function
of the intensive parameters:

r 2
dsp=3 28D jyigy, 2.9)
L2, Y'Y

From (2.9) we get the metric tensor in intensive coordi-
nates:

2
g () FOT)

. , . (2.10)
aYay*

Lk=12...

III. PATH AND PATH LENGTH

Consider states P; and P, of the given thermodynamic
system and the corresponding points x; and x, in the
space of coordinates. Let us connect x; and x, by a path.
The length of this path is usually defined as the integral
of the line element ds =( 3 g dx’dx*)!/? along the path:’®

172
X2

-

By varying the path, the minimal path length is called the
geodesical distance’ between points x; and x,.

It is natural to ask® what the meaning of the Riemanni-
an distance of two arbitrarily chosen thermodynamic
states is. Ruppeiner’ has constructed a stochastic pro-
cess in which geodesical distances are relevant quantities.
Nevertheless, it seems that this process is not realizable in
an obvious way. We are going to show that the global dis-
tance derived from Eq. (3.1) corresponds to the so-called
statistical distance introduced recently by Wootters’ as a
distance between probability distributions.

Following Wootters, we regard the points x and x +dx
along the path as statistically distinguishable if dx is at
least equal to the standard fluctuation of x. In terms of
the distance (2.4) this is equivalent to (ds)?
=71 8(x)dx'dx*> 1.

Hence the maximal number N of statistically distin-
guishable states along a given path is equal to the path
length (3.1). Varying the trajectory between x; and x,,
Wootters interprets the minimum of N as the statistical
distance of x; and x,, which is just the geodesical dis-
tance on our Riemannian manifold.

S gi(x)dxidx* (3.1)

i,k=1

IV. SYMMETRIES IN RIEMANNIAN
MANIFOLDS (REF. 5)

The metric tensor fully determines the local structure of
a Riemannian space. Nevertheless, as is well known, e.g.,
in general relativity, it is definitely not a trivial task to
physically interpret even a known metric tensor. Howev-
er, there are some properties of the metric which have
clear physical consequences: one of them is symmetry.

Consider a point x in the space, the distance of any pair
(A4,B) of points in the neighborhood of x can be given as

(ds 45)?=gu(x)dx‘ g dx%y | @.1)
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where dx’p=x}—x/, and these distances yield the
geometrical structure of the space. From now on, we will
use the Einstein convention: There is a summation if the
same index occurs twice, above and below.

One can ask if there exists a motion which transforms
all these points in such a way that their relative distances
remain unchanged up to a common factor, i.e., during this
motion, an arbitrary infinitesimal geometrical object
remains similar to itself. In the generic case such a
motion does not exist; if it does exist, then it means that
there is at least one direction in which the geometry does
not change, apart from a possible change of scale. Then
the motion is called a conformal symmetry.

An infinitesimal motion is defined by a vector field

K(x),
x'sFi=x'+eKix), i=12...,r (4.2)

where € is the infinitesimal parameter of the displace-
ment. Now let us require that the displacement be a con-
formal symmetry. Then for the new distances

(d54p )} =gy (X)d% \ pdx Xz 4.3)
we find the relation
exp[¥(X)](d5 45 ) =exp[¥(x)](ds 45 ) (4.4)

with some function i characterizing the local scale. Sub-
stituting ds 45 and dsp from Egs. (4.1) and (4.3) one gets

exp[¥(%) g (X)dT ' p Ak p = exp[¥(x) g (x)dx g dx Xy .
4.5)

Using Egs. (4.2) and (4.5) and neglecting terms higher
than first order in € yields the following equation:

8irK i + 81K +8it, K"+ hgu =0, (4.6)

where h=1 ,K’. Henceforth the comma followed by an
index stands for partial derivative.

Equations (4.6) are called conformal Killing equations
and K(x) is the conformal Killing vector field of the
manifold. That is, the existence of a conformal Killing
vector is equivalent to the existence of a conformal sym-
metry. In the special case when # is a constant function,
K is called homothetic motion.

V. RENORMALIZATION-GROUP TRANSFORMATION
AS CONFORMAL SYMMETRY

As it is known,® the renormalization group expresses
certain similarity properties of the states of a given ther-
modynamic system. Here we are going to formulate this
fact in the frame of the Riemannian structure introduced
for the state space in Sec. II.

Let us define a change L —L /s (s >1) of linear scale
of a given many-body system. Denoting the
renormalization-group element by R;, the change-of-state
coordinate x‘ caused by infinitesimal renormalization-
group transformation R, . can be written as®

x' — x'+eKix)+0(e?) . (5.1

R1+e
The vector field K is the infinitesimal generator of the re-
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normalization group. We claim that K satisfies the spe-
cial conformal Killing equation [see Eq. (4.6)]

8Ky + 81K i +8ix, . K™ +dgy =0 (5.2)

in the vicinity of the critical point, where d is the number
of spatial dimensions of the system.

Let us verify that if K is computed from a renormali-
zation group via Eq. (5.1) then the conformal-symmetry
assumption (5.2) yields the usual critical behavior.

Consider a ferromagnetic system possessing two
relevant parameters, temperature T and external magnetic
field H. If we choose x =(x!,x2)=(T,H) as coordinates
of the thermodynamic states, we get a Riemannian metric
(2.1) in the following form:

CT?
M T}

M 17!
xXT!

8rr 8TH

5.
8HT 8HH ’ (5-3)

where C, M, and X stand for specific heat, magnetization,
and susceptibility, respectively.

Let us choose for simplicity the renormalization-group
transformation in such a way that, other than the tem-
perature and the magnetic field, no more “coupling con-
stants” are generated in the course of the transformation
(e.g., one-dimensional Ising model, Migdal-Kadanoff
transformation®). In this case one can write the infini-
tesimal generator K of the renormalization group in the
neighborhood of the critical point x, =(T,,0) as

K'=KT=4|7|, where =T —T,
(5.4)
K*=K"=B|H| , A,B constant .

Substituting expression (5.4) of the vector field K into
the Killing equation (5.2) we get the following three dif-
ferential equations for the components of the metric ten-
sor:

24grr+A |7|grr,r+B | H |grr,n=—d8rr »
2Bgyy +B |H |gua,n+A4 | 7| 8un,r=—d8an, (5.5
(A +B)gry+A |7|8ra,r+B | H |70, = —d871H -

We conclude from these equations that the components of
the metric tensor are generalized homogeneous functions

3345
in the neighborhood of the critical point:
gTT(AA'r, }\.BH) =A"¢ ‘“g (r,H) ,
gru(AMr A BH)=A—4-4-8g(1.H) , (5.6)

gur (AT, ABH)=A"9"28¢(1,H) .

From Egs. (5.3) and (5.6) one can easily derive the criti-
cal behavior of the quantities of experimental interest:

C~gTT(T’0)~ |T| —d/4=2 ’

M,T~gT1-1(T,0)~ ]7-| —d/A—1—B/A ’

(5.7

—d/a—
X ~gup(T,0)~ | 7| ~4/a-2B/4,

M,c;1~gHH(0,H)~ |H | —d/B-2

Using the standard definitions for the critical indices,°
one gets the following expressions for the critical ex-
ponents of the specific heat, spontaneous magnetization,
susceptibility, and critical magnetization, respectively:

a=2+d/A,

=—d/A—B/A,

(5.8)
y=2B/A+d/A,

1/8=—-d/B—1.

From (5.8) the usual scaling laws follow, if d is indeed the
dimensionality of the space.

Let us summarize our geometrical interpretation of the
similarities during renormalization. Choose three neigh-
boring states near the critical point and perform a
renormalization-group transformation for them, with the
same parameter s. Then, the triangle formed by the three
states in the parameter space remains similar after the
transformation, because the ratios of the lengths of the
sides, measured by the expectation values of the fluctua-
tions as units, remain unchanged as a consequence of the
conformal Killing equation.
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