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The stochastic wandering of magnetic field lines allows momentum of even perfectly magnetized

electrons to be transported across the mean B. We include this effect, along with the usual accelera-
tion and scattering terms, in a spatially one-dimensional Boltzmann equation for the electron distri-

bution function. For an electric field E~~ (along local 8) which varies versus position normal to 8,
the momentum transport leads to a nonlocal electrical conductivity. We apply the formalism to
sheared, force-free magnetoplasmas, in which the Ei~ gradient is caused by variable twisting of 8
with respect to an externally applied uniform E. We examine in particular the experimentally docu-
mented phenomenon of field-aligned current density j~i )0 in regions of the sheared magnetic field
where E~~ =0 or even E~~ (0. This phenomenon is in apparent violation of Ohm s law. Under suit-
able conditions of stochasticity and collisionality, we find that the spatial structure and temporal
persistence of these force-free configurations can be directly caused by electron-momentum trans-
port. This result is derived solely on the basis of electron dynamics. In contrast to fluid-turbulent
models, our kinetic derivation requires no hypothetical "plasma dynamo" and no conjecture on the
decay rates of magnetic helicity versus magnetic energy.

I. INTRODUCTION

The notion of electrical conductivity is based on a local
constitutive relation between electric field E and current
density j . The local Ohm s law implies a pointwise bal-

ance momentum gain (via E) and inomentum loss (via
scattering) on the part of the charge carriers. The local
Ohm's law for plasma' is regularly used in calculations of
plasma dynamics, transport, and equilibrium. In contrast,
if momentum gain and momentum loss are only globally,
but not locally, in balance, then we must develop a nonlo-
cal conductivity.

Consider field-aligned currents carried by a plasma em-
bedded in an equilibrium uniform-magnitude magnetic
field Bo. At x =0, BO(0)=zBo. At locations x)0, the
magnetic field becomes rotated by an angle P, so that

Bo(x)=Bo(z cosP+y sing). The rotation ("magnetic
shear") is caused by field-aligned current density j~~(x).
Let the currents be driven by a uniform electric field

F=E,z. Then the component of E along B is
E~~(x)=E,B,(x)/Bo, which varies with x. The gradient
BE~~ jBx would cause nonlocal-conductivity effects—
whatever their origin —to have significant effects on the
magnetic equilibrium.

We base our nonlocal-conductivity model on the
motions of electrons in a magnetic field which is subject
to many small, spatially overlapping perturbations. The
magnetic perturbations B& include B

&
components. Pro-

vided that the perturbations cause overlap of magnetic is-
land structures, the magnetic flux surfaces are then des-
troyed. Instead of remaining confined within its y-z
plane, a magnetic field line will now wander randomly in
x. The mean-square displacement in x accrued during a

path length 1 may then be approximated as if it wandered
erg odically:

a=((M) )~
()E(

(

E)( Bx
(2)

For a«1 a local Ohm's law is correct. However, for
0.) 1 the cross-field momentum transport causes electron
scattering to occur far (in x) from the locality of accelera-
tion. The assumption of pointwise balance between
momentum gain and momentum loss is no longer true,
and the local Ohm's law must be replaced by a global
solution over the entire E~~ gradient.

We will assume that the magnitude 80 of the magnetic
field is uniform, and that the electron s pitch angle is adi-
abatically conserved during the electron's field-aligned
wander, except for collisions That is, . the field-line
wander is due to sufficiently gentle local-field-line curva-
tures that the electron's magnetic moment is not affected
by the curvatures. Furthermore, we shall ignore effects of
finite electron Larmor radius or of electron drifts perpen-
dicular to B.

((hx) ) =21D~,

where DF is the field-line diffusivity. Rechester and
Rosenbluth have shown how the diffusion of electrons in
such a magnetic field system leads to enhanced "cross-
field" heat transport. In this paper we discuss the analo-
gous process of electron-momentum transport. We define

2((Ax) )~ as the mean-square, cross-Bo excursion of an
electron in one mean free path (for cumulative scattering
through 90') as it wanders along a stochastic field line [see
Eq. (1)]. We then define a locality paraineter a,
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In Sec. II we shall derive the differential equation for
the perturbed electron distribution function in the pres-
ence of stochastic magnetic fields. In order to character-
ize this new effect as clearly as possible, the simple
Lorentz ion model will be used. The neglect of electron-
electron scattering will, in a manner similar to its effect
on local-conductivity results, cause our crude model to
overstate'the overall current by a factor on the order of

The second major simplification in our model of nonlo-
cal conductivity will bc to treat only a homogeneous (i.e.,
isothermal and isodense) background electron distribution
function. This simplification allows us to avoid two
tcc11111CR1 collipllcatlolls 111 tllc Rllalysls. Fll'st, lf 811 clcc-
tron temperature gradient BT/Bx or electron density gra-
dient Bn/Bx were present while electrons could sample
thc gIadlcIlt length between c011181ons~ 1t would Qo 10Qgcr
bc poss1Mc to represent thc local background distribution
by a Maxwellian in local thermodynamic equilibrium. In-
stead, the background distribution function would bc 81g-
nificantly distorted by thermal conduction even before the
electric fields contribution is considered. Second, the
Lorentz's model's neglect of electron-electron scattering
would lead to serious errors if an electron could wander
significantly along, for example, the BT/Bx gradients dur-
ing one collision time. This is because the effective col-
lision length A, would now be a function of x, in view of
the x-dependent velocity spectrum of the background
electrons. Such an effect is beyond the scope of our sim-
ple Lorentz model. For both of these reasons we confine
our analysis to the case of uniform electron density and
temperature.

The nonlocal-conductivity equation will then be solved
for steady-state force-free magnetoplasmas in Sec. III. It
has been customary to explain the observed persistence of
certain of these configurations on the basis of hy-
pothesized magnetofluid turbulence. However, we will
show that under appropriate conditions of collisionahty
Rnd stochast1c1ty, thc kcy structUral Rnd temporal p10pcI'-
ties of force-free magnetoplasinas may be explained en-
tirely on the basis of electron-momentum diffusion.

II. INCI.USION OF MOMENTUM SPREADING
IN THE PERTURBED DISTRIBUTION FUNCTION

A. SlgIlificaIlce of colllsloQa11tg

Consider a test electron carrying parallel momentum

@~I =mu~~. Using the terminology of Ref. 3, we distin-
guish bctwccn co11181GQR1 RIld co11181onlcss clcctrons:
The collisional electron's 90-scattering length X is short
compared with the "correlation length" l~ of a field
line. (The field-line correlation length is, effectively, the
correlation length of B„copmt udealong the wandering
field-line's path. ) For collisionless electrons, however,
A, QQI y. Thc c011181onal clcctlon w111 lose thc sign of 1ts
parallel momentum during a single "straight" path within
which 8„ is essentially constant. The collisionless elec-
tion, on thc Other hand, will random-walk 1Q x wlth1Q R

c0111810Il time, salTlpling many spatial phases of thc 8„

perturbations. The particle diffusivity which results in
thc colllslonlcss case 1s

D, =D~

Juice

f, (3)

wheI'e
U~I is the velocity parallel to B. Gnly the magm-

tude, not the sign, of u~~ affects the particle diffusion.
This feature will be important in Sec. II8. Within one
collision time, the electron momentum also "diffuses" in
the x direction. However, for times longer than 8 scatter-
ing time, the sign of the momentum is lost Therefore Eq.
(3) is not complete for momentum (although it does suf-
fice for particle, or particle energy, or indeed any even
power of vol) diffusion. The diffusion term may be uti-
11zcd 1Q R Boltzm ann equation which also 1ncludcs
Coulomb colhsions; the solution will reflect a balance be-
tween scattering and diffusive spreading.

The conductivity calculation to follow assumes that the
pcrtUrbat10Q 1ndUccd by EI~ may bc dcscrlbcd by R IQPll-
nar perturbation f'"(v,x) in the electmn distribution
function. Thus we require Bf'"/By, Bf"'/Bz=0. At
first glance this would appear unlikely to be satisfied, be-
cause the magnetic perturbations are intrinsically non-
laminar:

~
x)&V+B„~ is not small. However, there is a re-

gime in which the distribution function f"'(v;x,y,z) may
be approximated by a laminar f"'(v,x) despite the obvi-
ously nonlaminar properties of 8„. This can be seen by
noting that an electron drifting along 8 {with field-
aligned velocity component ull) only "remembers" im
pulses (due to E~~) which occurred within the immediately
preceding mean free time. Equivalently, the electron
I'emernbers EI~ only along the mean free path A, it has just
traversed. Here the concept of collisionality from Ref. 3
plays a crucial role. Consider a plane x =xo within a
strong gradient BE~

~

/Bx & 0. If thc electrons are collision-
al, then f"'(v;xu, y,z) will have y and z variations closely
lcPllcatlllg 8 (xu,y,z). This ls bccausc 8 colllslollal clcc-
tron with, for example, u~~ &0 arriving from x &xu {i.e.,
drifting in a region where 8„&0) remembers only a weak

E~~, while one arriving from x &xo (i.e., in a region where
8„&0) remembers only a strong E~~. Electrons with
A, »I.F, however, will cause f"I(v;xo,y, z) to be much
smoother than 8 (xo,y,z). This is because any region
{8„&0or 8„&0)of the plane x =xo now contains elec-
trons which remember impulses due to E~I accrued over
~ ~ - bi..f-.d. .lk. th. g-d -t BE~~/B..

Therefore, the conductivity calculation (below) is re-
stricted to thc co111810Illcss case: A, ~+Ip. Thc assump-
tion of a laminar f'"(v,x) would be invalid for the col-
11s10nal case.

B. Neglect of space-charge effects

The linearized (i.e., infinitesimal E~~) solution to both
thc local condUctlvlty Rnd to thc 110Qlocal conductivity
[see Eq. (11) below] have a feature in common: For any
glvcll u, tllc number-density pcrtllrbRflo11 f {v,x) ls
purely odd in cos8 (where 8 is the angle between v and

E~~ which is aligned with 8). For a given u, the electron
number density with 8=80 is depleted (enhanced) by the
same amount as the number density with 0=00+180' is
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enhanced (depleted). This means that although electron
parallel momentum is transported down the gradient
a IE~~ I

/ax [see Eq. (» and its discus»on], n«eie««n
number density (averaged over 8) with speed U is not
transported down the gradient. Thus we are justified in

ignoring an E~ generated by space-charge accumulation;
in the linear regime such accumulation does not occur.

Were one to consider nonlinear solutio~s, one would
need to compute the perturbed total electron number den-

sity versus x and use Poisson's law to generate E„(x)
from the space charge. The E„would drive an electron
return flux up the gradient a

I E~~ I
/ax. The return flux

would be made possible by the stochastic wandering (in x)
of field lines. We have not investigated this return flux in
detail because in the linear regime space charge does not
accumulate. However, we remark that, on the basis of
symmetry, the return flux driven by space charge E„ in
the nonlinear regime will only carry electron charge, but
not electron parallel momentum, back up the gradient

C. Criterion for requiring nonlocal solution

In order to decide when a nonlocal conductivity is re-
quired, the mean-square displacement ((bx ) } for
momentum can be roughly estimated using Eq. (1) with a
kno~n DF. The locality parameter should be evaluated
using the electron mean free path averaged in a way that
properly weights each electron velocity's importance in
carrying current. %e can then show the extreme impor-
tance of electrons in the tail of the background Maxwelli-
an distribution. Thus l is taken as the 90' scattering
length (ignoring 8 dependence) aueraged over the electron
speed weighted by the differential current dj/d(U/Up).
For a I orentz plasma, the latter is

'+v V„f'"(v,r)+a V,f(V, r)

af'"(v, r)
(g)

coll

In principle, the Boltzmann equation [Eq. (8)] in this
form could be subjected to certain averaging procedures
which would lead to diffusion of electrons in the stochas-
tic magnetic field. The important terms leading to such
diffusion would be (a) the convective term v V'„f"' and

(b) the Lorentz electromotance vXB contained in the
term involving acceleration.

The development from Eq. (8) becomes far simpler,
however, in our long-collision-length regime (A, »I.q), be-
cause wc can cxplo1t two approximations: F1rst., the pcI-
turbed distribution function is laminar, varying only with
x. Second, as shown by Rechester and Rosenbluth, the
effect of a gradient af'"/ax will be to drive a diffusive
flux —D,af"'/ax down the gradient as in a Fick's law.
The divergence of that flux is (minus) the time rate of
change of f'" due to the diffusive flux. This leads to a
scatteringlike term

af' "(v,x) a afl "(v, x)
at z;tt ax axU~~ D~ x (9)

The Boltzmann equation with the above approximations
thcIl bccomcs

D. Boltzmann equation for nonlocal conductivity

Let f' '( v ) be a (spatially uniform) background
Maxwellian distribution. Then the Boltzmann equation
for the space-dependent perturbation f"'( v, r ) would nor-
mally be written' (with a identically equal to accelera-
tion):

dJ
d (U/Up) Up

'7
—(UIUO)2

e (4)
af"'(v, x) e af' '(v) af'"(v, x}——Eii(x)

Bt m aU~~ at

where Up =—v'2kT/ mis the Maxwellian's most probable
speed. The mean free path (considering scattering off
fixed Lorentz ions) for speed U is written

Ac —Ap
Up

where A.p=90' scattering length for U =Up and cos8=1.
The averaged scattering length (ignoring 8 dependence)

1s then
4

ls= . f Ac dU =20Ap .j o 'dU

The locality parameter [Eq. (2)] would then be written

a =40K,pDp
1 ~EIl

(
E~i ax

The result [Eq. (6)], that ls ——20k,p, reflects the impor-
tance of tail electrons ( U & Up) in carrying current. (In the
exact solution' including electron-electron scattering, we
would get ls -5A,p. )

af"'(v x)+
Bt dg

(10)

The diffusive term expresses the rate of influx of electrons
(with velocity between v and v+1v, into the zone be-
tween x and x+dx) as if collisions did not take place.
The collisions are handled, however, in the normal
manner, by the first term on the right-hand side of Eq.
(10). The two effects are assumed to be superimposable.

In steady state Eq. (10) becomes

E(x) U—
cos8f ' '( v )

E~ Up

f"'(v,x)=

+2'
Up

8 af"'( v,x}
I
cos8

I
Dp(x)

whcIc E~ 1s thc crit1cal clcctric f1eld. Thc f1rst term on
the right-hand side of Eq. (11) is the local solution. ' The



3338 ABRAM R. JACOBSON AND RONALD W. MOSES

second term is the modification for diffusive spreading of
electron momentum.

The shear stress I z„ is the field-aligned electron momen-
tum transported sideways across unit area (of a plane
x =const) per unit time. Closely related is the current
transport I J„defined as the field-aligned current trans-
ported sideways across unit area (of a plane x =const) per
unit time:

eI jx= ——Ip~.
m

(14)

The current transport I J„ is responsible for distributing
the current density j~~ more evenly (versus x) than a local
solution [j~„(x)=OE~~(x)]. It is the current transport
which forces us to abandon a local Ohm's law in certain
regimes of collisionality and stochasticity.

III. STRUCTURE AND PERSISTENCE
OF HIGHLY SHEARED FORCE-FREE

MAGNETOPLASMAS WITH STOCHASTIC
MAGNETIC FIELDS

A. Background

The phenomenon of a plasma current whose force-free
self-magnetic field is comparable to (or larger than) the
background potential field is known to occur in astronom-
ical plasmas (e.g. , solar coronal loops ) and has been ex-
tensively exploited in laboratory plasmas [e.g. , the
reversed-field pinch (RFP) and spheromak classes of ex-
periments]. Common features of these latter plasmas are
as follows.

(1) Force-free (i.e., field-aligned) currents dominate; fre-
quently j XB can be neglected.

(2) The magnetic field is highly sheared, rotating by 90'
(as in a spheromak) or even more (as in an RFP).

(3) The ratio p, —:j~~/8 of the field-aligned current den-
sity to the field intensity tends toward a spatial constant.

Furthermore, the RFP (e.g., the ZT-40 experiment )
discharge has been observed in certain regimes to persist
far longer than is apparently allowed by resistive diffusion
of the magnetic field. Specifically, the force-free currents
at all angles to the applied electric field E,„,=zE, are ob-
served to persist on a quasisteady time scale as though

E. Electrical current density
and current-density transport

The distribution function obtained by solving Eq. (11)
may be integrated over velocity (with —

eu~~ weighting) to
give the current density parallel to 8:

J~~(x)= —e I u cosgf"'(v, x)dv .

(Here the integration is over 4m steradians and 0( u ( oo.)
The nonlocal-conductivity effect relies on transport of

field-aligned electron momentum down the gradient
8

( E~~ ~

/Bx. The electron shear stress associated with this
process is

I&„(x)=—mD~(x) J u coseicosoi ' dv . (13)
af"'( v, x)

E~~(r) =j~~(r)/0~~(r) were satisfied, which it is not.
It has been hypothesized elsewhere that both the p pro-

file and the quasisteady persistence of RFP discharges
could be due to a turbulent "dynamo" process. ' The
dynamo would supply both fluctuating velocity vt and
fluctuating magnetic field 8& in correct magnitude and
relative phasing to create a time-averaged electromotance

( v~ &&8~) which reconciles Ohm's law, viz. ,

(1S)

The plasma-dynamo hypothesis has never been confirmed
in laboratory plasmas by joint measurements of velocity
and magnetic field fluctuations. Nor has any self-
consistent fluid-dynamical calculation of a dynamo shown
the quasilaminar, axisymmetric, and quiescent properties
observed in certain RFP experiments. '

B. Slab-model force-free states
with uniform magnetic diffusivity

%'e consider a bounded plasma between x =+a with
j(x) having even symmetry in x. The magnetic field dif-
fusivity D~ is uniform within this region. The boundaries
(x =+a) are considered insulating; that is, the electron-
momentum stress is required to vanish at x =+a. Physi-
cally, this could represent, e.g. , the onset of good (nonsto-
chastic) flux surfaces for

~

x
~

&a. The boundary condi-
tions off' "(v, x) are then

Bf"'(v,x)
Bx

af'"( v, x)
~=o ~x &=a

We then solve the Boltzmann equation [Eq. (11)) for
each of 39 velocities (3 angles times 13 speeds). The solu-
tions at any x are tabulated and integrated with splines to
obtain the current density [Eq. (12)] and the current-
density transport [Eq. (13)]. The solution of Eq. (11) is
necessarily iterative because the driving electric field
E~(x) varies due to the magnetic shear, viz. ,

E(((x) 8,(x)
E B (17)

The force-free magnetic shear, in turn, obeys Ampere's
law with j &8=0, viz. ,

(18a)

(18b)

Thus the iterative solution of Eq. (11) proceeds as follows.
(1) A trial solution E~~(x) is chosen.
(2) The Boltzmann equation is solved for f"'(v,x) at

each of 39 velocities.
(3) The current density j~~(x) is computed [Eq. (12)].
(4) The profile B,/B is computed from the J~~ profile

[Eq. (18)].
(5) A new E~~/E, profile is obtained [by Eq. (17)]; then

return to (2).
Each convergent solution obtained from this iteration is

tagged by two independent dimensionless parameters.
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FIG. 1. Perturbation f'"(v,x) vs x for various v's, with

A~F/a2=0 05 Each. cu. rve is normalized by f'"(v,0). Top:
cos8=0.3. Bottom: cos8=1.0.

The first is a)MojII(0)/8, which serves as a starting wave
number in Ampere's law. The second is A,os/a, which
measures the importance of momentum diffusion [see Eq.
(11)].

Figure 1 shows the shape of solutions f"'(v,x) for in-
dividual velocities, with 1++/a =0.05 and a)Mo jII(0)
/8 =2.2. The case illustrated in the top panel (cos8=0.3;
U/Uo ——0.8) almost tracks the applied EII(x) shape (see
Fig. 2}, because the low speed (hence short mean free
time) and mainly cross-field orientation both disfavor
nonlocal effects. The field-aligned orientations (Fig. 1,
bottom panel) at higher speeds, in contrast, show the sys-
tematic trend toward more spatially uniform solutions.

The magnetic field and force-free current profiles for
this case are shown in Fig. 2. The jII(x) profile has been

normalized to its peak value at x =0. The nominal local
Ohm's-law current density is oL E, (where oL is the con-
ductivity using the Lorentz model}. The ratio
jII(0)/(crL E, ) is actually 0.505. This ratio is less than un-
ity because of electron-momentum transport. The axial
field profile 8, /8 is effectively the EII profile [see Eq.
(17)].

The jII profile in Fig. 2 has a much flatter shape than
does the 8,/8 (and hence EII) profile, as a result of
electron-momentum transport. The current extends all
the way to the insulating surface (x =a), and 8jII /Bx van-
ishes there. In the edge region j~~ &0, but E~~ &0.

The current-density transport [Eq. (14)] has units of
(current/area) time '. We normalize using a/Uo as a
time and using the nominal local Ohm's law current den-
sity err E,. The normalized transport (for the same condi-
tions as Figs. 1 and 2) is shown in Fig. 3. The gradient
BI~„/Bx is proportional to the rate at which electron
momentum is being locally removed. At the profile's
peak, scattering and acceleration are in exact balance. To
the left of the peak, acceleration exceeds scattering, and
momentum is being exported. To the right of the peak,
scattering exceeds acceleration, and momentum is being
imported.

We now adopt the ratio B~(a)/(8, ) (where (8, ) is
identically equal to x-averaged 8,) as a dimensionless pa-
rameter to replace ago j~ I(0)/8, in order to facilitate com-
parisons with the phenomenology of force-free configura-
tions. [The value for the calculation in Figs. 1—3 was
Bz(a)/(8, ) =2.10.] Figure 4 shows the peak normalized
[using jII(0), not oLE„as the scale current] current-
density transport as a function of B~(a)/(8, ), for various
diffusivities. The top curve (A+F/a = ao ) is an analytic,
sinusoidal solution (jII =const versus x), while the others
are numerically calculated. [For the simple analytic case

(jII =const) we have a(Mo JII /8 =By(a)/(8, ).] The
current transport goes up as A,oDF/a goes up, at constant
8~(a)/(8, ). This is because the range of electron wander
between collisions increases at larger A,oDz/a . The trans-
port goes up as 8~(a)/(8, ) goes up, at constant
A,+F/a . This is because the gradient length

EII(BEI~/Bx) ' becomes shorter at higher values of axial
current [see Eqs. (2), (17), and (18)]. As the gradient
length decreases, current transport must increase to sus-

I
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FIG. 2. Magnetic field components and parallel current den-

sity vs x, with AOD~/a 2=0.05. Each curve is normalized to 1 at
x =0.

0.2 0.4
X
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0.6 1.0

FIG. 3. Normalized current transport vs x, with
A,ODF/a =0.05. The scale current is cri E,
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tron scattering length can be explained on the basis of
nonlocal electrical conductivity. In these circumstances a
local Ohm's law is obviously incorrect: The ratio of time-
averaged JI~(x) over time-averaged E~I(x) will not be a
spatial constant (in our isothermal model) equal to crt
Nonetheless, the notion of conductivity has proved con-
venient elsewhere for estimating a plasma discharge's
"temperature" by external electrical measurements, '

which are far easier than, e.g., Thomson scattering mea-
surements of the electron distribution function. Thus it
would be useful to utilize the conductivity parameter o by
defining it in terms of spatial integrals over the plasma, '

instead of a local constitutive relation.
To do this, let us multiply both sides of Eq. (11) by

—ev cosO and then integrate over both v and x. Then the
boundary condition (r)f"'/r)x =0 at x =O,a) causes the
diffusion term in Eq. (11) to integrate to 0, and we obtain

0.5 oL (E (19)
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F1G. 7. Tapered-diffusivity model. Top: A,ODF/a' vs x.
Bottom: Magnetic field components and j~~ versus x; each curve

is normalized to 1 at x =0.

D. Discussion

We have shown that strongly sheared magnetoplasmas
with sufficiently large magnetic field diffusivity and elec-

C. Example of slab-model force-free state
with tapered magnetic diffusivity

Laboratory force-free configurations [e.g. , RFP (Ref. 6)
and spheromak experiments] are generally encased in a
metallic, rigid conducting wall. Time-varying magnetic
fields (8, ) normal to and in the vicinity of the wall are
systematically reduced in amplitude by eddy currents in
the wall, relative to the B„amplitudes that would occur in
the absence of such a wall. This should lead to a sys-
tematic reduction in the magnetic diffusivity near the
plasma boundary, because DF -8, /8 .

We now include this effect in our slab model by letting
DF(x) vary as shown in Fig. 7 (top). The diffusivity
drops by a factor of 25 over a narrow transition region
(Ax/a=0. 2) centered at x/a =0.6. We continue to re-
quire the plasma to be isothermal all the way to x =a,
however, and continue to use an insulating boundary con-
dition at the wall: Bf"'(v,x)/"dx~0 as x —+a. The core
diffusivity coincides with the uniform diffusivity
[AoD~(0)/a =0.05] used in Fig. 2. The magnetic fields
and current-density profiles for the tapered diffusivity
case are shown in Fig. 7 (bottom). In contrast to Fig. 2,
the j(x) profile in Fig. 7 drops more precipitously in the
edge (x/a & 0.7).

where ( ) means spatial average. This formally resembles
an Ohm's law and, more significantly, the "conductivity"
is precisely that of the nominal local Ohm's law. The glo-
bal Ohm's law [Eq. (19)] is based on global momentum
balance between acceleration and scattering. We em-
phasize that Eq. (11) cannot be integrated (except in the
trivial case where

BE~ I /Bx =0) to give a global Ohm's law
based on dissipation that has the nominal local conductivi-
ty. That is,

(20)

This comparison of momentum- and dissipation-based
definitions of global conductivity leads to a conclusion al-

ready reached elsewhere' in the context of a v 0& B
dynamo and magnetic helicity dissipation. The con-
clusion of Ref. 12 is found to apply equally well to our
momentum-diffusion model as to the dynamo.

Our slab-model solutions tend toward j~~
—+const in the

limit A,ODF/a ~Do. Our kinetic equation accomplishes
this by allowing electrons to follow field-line trajectories.
We plan to treat the generalization of this effect to
cylindrical force-free plasmas in a forthcoming publica-
tion. At this point we note two properties of the cylindri-
cal case; both are due to the fact that the magnetic field
intensity 8 must vary with r in cylindrical force-free
equilibria: First, the tendency j~I ~const (in the slab case)
becomes j~~/8~const in the cylinder. This is due to the
facts that (a) electrons wander along field lines, and (b) the
density of field lines is B. Second, the cylinder differs
from the slab in another, and less trivial way, due to the
magnetic mirror force on an electron wandering in radius
along the gradient r)B/r)r. This requires that (except for
collisions) cos0 be replaced by the electron's magnetic mo-
ment as a constant of the motion.

Although our nonlocal-conductivity model is steady
state, it can provide some insight into the relaxation time
required to approach the steady force-free configuration
following a sudden change in either DF or the drive elec-
tric field E,: Because the global j(x) profile is due to elec-
tron wander over the gradient of E~~, the minimum set-
tling time for a j(x) profile is the time required for a typi-
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cal current-carx'ylng clcctron elthcI' to sample tlM gI'Mbcnt

length or to scatter, whichever is less.
Finally, the model we have presented differs (apart

from geometry) from actual laboratory plasmas in two in-
terrelated ways: First, the model is isothermal, whereas
expcr1mcnts occul next 'to a Qcccssar1ly cold boundary and
thus must have a temperature gradient. Second, in a real
experiment we cannot rule out electron wandex all the way
to the material wall (balanced by, e.g., secondary emission
from the wall). This would enable direct loss of electron
momentum to the wall and would further increase the re-
quired electric field E, to sustain a given configuration.
This would corx'espon«I to a systematically higher "ap-
parent resistivity" than is implied by Fig. 5.

Aspects of our nonlocal-conductivity mechanism have
been suggested in earlier publications of other authors.
T111'cc pubhcatlons by Stlx llavc dealt wltli CI'oss-field clcc-
tron transport in stochastic magnetic fields: The first
t%'o ' po1Qt out that stochast1clty w1ll 1ncvltably rcdxs-
tribute force-free currents j~~, while the third' proposes a
specific Illcchallisill iilvolving propagatloll of Alfvcil
waves following transient magnetic reconnection. Al-
though the specific mechanism' of driving nonlocal
currents j~~ does not coincide with our kinetic process, the
suggestion that magnetic braiding would give rise to
current diffusion is an antecedent to our own work.
Another antecedent is in Ref. 3: a suggestion that sto-
chastic wander of electrons will give rise to an effective
electron shear viscosity. Although the context of that sug-

gestion was plasxna microinstabilities, it is an approxi-
mate description of the electron-momentum transport in
oux' kinetic mechanism. Finally, a treatxnent by Speiser'
of anomalously fast magnetic reconnection in the Earth' s
magnetotail shows that the apparent resistivity, which
determines the diffusion-layer thickness, may be more a
product of finite electron storage time (in the layer) than
of collisions with particles. This approach is somewhat
similar to our treatment of electron-momentum diffusion
down the gradient M~~/Bx: Electrons carry field-aligned
momentum out of the high-E)

~

region before scattering.
IOur dcvclopIIlcnt has hcav1ly relic«I on thc dcscript1on

in Ref. 3 of electron wander along stochastic magnetic
field lines. We remark that similar descriptions have been
offered by Stix' and by Jokipii and Parker. '

Our nonlocal-conductivity mechanism may be com-
pared to an earlier model of RFP sustainment, the tangled
discharge mechanism (TDM) proposed by Rusbridge'
and further discussed by Miller. ' The TDM applies to
the regime where the collision length is sufficiently short
to cnsulc a local OhIQ s law. IQ contrast, our mechanism
applies to the opposite regime, where the collision length
is long enough to void a local Ohm's law.
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